Feeding Ractopamine Improves the Growth Performance and Carcass Characteristics of the Lard-Type Mangalica Pig
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Design
2.2. Carcass Fabrication during Postharvest
2.3. Carcass Composition Determination
2.4. Carcass Merit Determination
2.5. Statistical Analysis of Data
3. Results
3.1. Growth Performance
3.2. Carcass Parameters and Primal Cut Measurements
3.3. Carcass Composition
3.4. Longissimus Dorsi (Loin Eye) Color and Ultimate pH (24 h)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brewer, M.; Zhu, L.Z.; McKeith, F.K. Marbling effects on quality characteristics of pork loin chops: Consumer purchase intent, visual and sensory characteristics. Meat Sci. 2001, 59, 153–163. [Google Scholar] [CrossRef] [PubMed]
- NPPC. Pork Composition and Quality Assessment Procedures; Berg, E.P., Ed.; National Pork Producer’s Council: Des Moines, IA, USA, 2010. [Google Scholar]
- Wu, F.; Vierck, K.R.; DeRouchey, J.M.; O’Quinn, T.G.; Tokach, M.D.; Goodband, R.D.; Dritz, S.S.; Woodworth, J.C. A review of heavy weight market pigs: Status of knowledge and future needs assessment. Transl. Anim. Sci. 2017, 1, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Honeyman, M.S.; Pirog, R.S.; Huber, G.H.; Lammers, P.J.; Hermann, J.R. The United States pork niche market phenomenon. J. Anim. Sci. 2006, 84, 2269–2275. [Google Scholar] [CrossRef]
- Egerszegi, I.; Rátky, J.; Solti, L.; Brüssow, K.-P. Mangalica—An indigenous swine breed from Hungary (Review). Arch. Tierzucht. 2003, 46, 245–256. [Google Scholar] [CrossRef]
- Marincs, F.; Molnár, J.; Tóth, G.; Stéger, V.; Barta, E. Introgression and isolation contributed to the development of Hungarian Mangalica pigs from a particular European ancient bloodline. Genet. Sel. Evol. 2013, 45, 22. [Google Scholar] [CrossRef] [PubMed]
- Cannon, M.V.; Brandebourg, T.D.; Kohn, M.C.; Đikić, D.; Irwin, M.H.; Pinkert, C.A. Mitochondrial DNA sequence and phylogenetic evaluation of geographically disparate Sus scrofa breeds. Anim. Biotechnol. 2015, 26, 17–28. [Google Scholar] [CrossRef]
- Ratky, J.; Egerszegi, I.; Toth, P.; Keonuchan, S.; Nagai, T.; Kikuchi, K.; Manabe, N.; Brussow, K.P. Saving genetic resources of native pigs in Occidental and Oriental countries—Practical examples of the characterization and utilization of native pigs in Hungary and Laos. J. Reprod. Dev. 2013, 59, 437–441. [Google Scholar] [CrossRef]
- Frank, K.; Molnár, J.; Barta, E.; Marincs, F. The full mitochondrial genomes of Mangalica pig breeds and their possible origin. Mitochondrial DNA B Resour. 2017, 2, 730–734. [Google Scholar] [CrossRef]
- Hallowell, H.A.; Higgins, K.V.; Roberts, M.M.; Johnson, R.M.; Bayne, J.E.; Maxwell, H.S.; Brandebourg, T.D.; Hiltbold Schwartz, E. Longitudinal Analysis of the Intestinal Microbiota in the Obese Mangalica Pig Reveals Alterations in Bacteria and Bacteriophage Populations Associated with Changes in Body Composition and Diet. Front. Cell Infect. Microbiol. 2021, 11, 698657. [Google Scholar] [CrossRef]
- Egerszegi, I.; Torner, H.; Rátky, J.; Brüssow, K.-P. Follicular development and preovulatory oocyte maturation in Hungarian Mangalica and Landrace gilts. Arch. Tierzucht. 2001, 44, 413–419. [Google Scholar] [CrossRef]
- Egerszegi, I.; Schneider, F.; Rátky, J.; Soós, F.; Solti, L.; Manabe, N.; Brüssow, K.P. Comparison of luteinizing hormone and steroid hormone secretion during the peri- and post-ovulatory periods in Mangalica and Landrace gilts. J. Reprod. Dev. 2003, 49, 291–296. [Google Scholar] [CrossRef]
- Rátky, J.; Torner, H.; Egerszegi, I.; Schneider, F.; Sarlos, P.; Manabe, N.; Brüssow, K.P. Ovarian activity and oocyte development during follicular development in pigs at different reproductive phases estimated by the repeated endoscopic method. J. Reprod. Dev. 2005, 51, 109–115. [Google Scholar] [CrossRef]
- Rátky, J.; Brüssow, K.P.; Egerszegi, I.; Torner, H.; Schneider, F.; Solti, L.; Manabe, N. Comparison of follicular and oocyte development and reproductive hormone secretion during the ovulatory period in Hungarian native breed, Mangalica, and Landrace gilts. J. Reprod. Dev. 2005, 51, 427–432. [Google Scholar] [CrossRef]
- Sarlós, P.; Egerszegi, I.; Nagy, S.; Fébel, H.; Rátky, J. Reproductive function of Hungarian Mangalica boars: Effect of seasons. Acta Vet. Hung. 2011, 59, 257–267. [Google Scholar] [CrossRef]
- Roberts, M.M.; Perkins, S.N.; Anderson, B.L.; Sawyer, J.T.; Brandebourg, T.D. Characterization of growth performance and body composition in Mangalica pigs. Foods 2023, 12, 554. [Google Scholar] [CrossRef]
- Charlton, C.E.; Reeves Pitts, M.A.; Rehm, J.G.; Sawyer, J.T.; Brandebourg, T.D. Determination of Optimal Harvest Weight for Mangalica Pigs Using a Serial Harvest Approach to Measure Growth Performance and Carcass Characteristics. Foods 2022, 11, 3958. [Google Scholar] [CrossRef]
- Mills, S.E.; Mersmann, H.J. Beta-adrenergic agonists, their receptors, and growth:special reference to the peculiarities in pigs. In The Biology of Fat in Meat Animals. Current Advances; Smith, S.B., Smith, D.R., Eds.; American Society of Animal Science: Champaign, IL, USA, 1995; pp. 154–196. [Google Scholar]
- Mersmann, H.J. Overview of the effects of beta-adrenergic receptor agonists on animal growth including mechanisms of action. J. Anim. Sci. 1998, 76, 160–172. [Google Scholar] [CrossRef]
- Elanco Animal Health-Paylean for Swine: For a Uniform Finish. Available online: https://www.elanco.co.nz/products-services/pig/products/payleanURL (accessed on 31 October 2023).
- Apple, J.K.; Rincker, P.J.; McKeith, F.K.; Carr, S.N.; Armstrong, T.A.; Matzat, P.D. Meta-Analysis of the Ractopamine Response in Finishing Swine. Prof. Anim. Sci. 2007, 23, 179–196. [Google Scholar] [CrossRef]
- Aalhus, J.L.; Jones, S.D.M.; Schaefer, A.L.; Ton, A.K.W.; Robertson, W.M.; Merrill, J.K.; Murray, A.C. The effect of ractopamine on performance, carcass composition, and meat quality in finishing pigs. Can. J. Anim. Sci. 1990, 70, 943. [Google Scholar] [CrossRef]
- Carr, S.N.; Ivers, D.B.J.; Anderson, D.B.; Jones, D.J.; Mowrey, D.H.; England, M.B.; Killefer, J.; Rinker, P.J.; McKeith, F.K. The effects of ractopamine hydrochloride on lean carcass yields and pork quality characteristics. J. Anim. Sci. 2005, 83, 223. [Google Scholar] [CrossRef]
- Watkins, L.E.; Jones, D.J.; Mowrey, D.H.; Anderson, D.B.; Veenhuizen, E.L. The effect of various levels of ractopamine hydrochloride on the performance and carcass characteristics of finishing swine. J. Anim. Sci. 1990, 68, 3588. [Google Scholar] [CrossRef]
- Herr, C.T.; Hankins, S.L.; Schinckel, A.P.; Rickert, B.T. Evaluation of three genetic populations of pigs for response to increasing levels of ractopamine. J. Anim. Sci. 2001, 79 (Suppl. 2), 73. [Google Scholar]
- Armstrong, T.A.; Ivers, D.J.; Wagner, J.R.; Anderson, D.B.; Weldon, W.C.; Berg, E.P. The effect of dietary ractopamine concentration and duration of feeding on growth performance, carcass characteristics, and meat quality of finishing pigs. J. Anim. Sci. 2004, 82, 3245. [Google Scholar] [CrossRef]
- National Pork Producers Council (NPPC). Procedures to Evaluate Market Hogs, 3rd ed.; NPPC: Des Moines, IA, USA, 1991. [Google Scholar]
- National Pork Producers Council (NPPC). Official Color and Marbling Standards; NPPC: Des Moines, IA, USA, 1999. [Google Scholar]
- Anderson, S. Determination of fat, moisture and protein in meat and meat products by using the FOSS Food Scan near-infrared spectrophotometer with FOSS artificial neural network calibration model and associated database: Collaborative Study. J. AOAC Int. 2007, 90, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Burson, D. Procedures for Estimating Pork Carcass Composition. National Pork Board and American Meat Science Association Fact Sheet. Available online: https://porkgateway.org/wp-content/uploads/2015/07/procedures-for-estimating-pork-carcass-composition1.pdf (accessed on 22 November 2022).
- American Meat Science Association. Meat Color Measurement Guidelines; American Meat Science Association: Champaign, IL, USA, 2012. [Google Scholar]
- Stites, C.R.; McKeith, F.K.; Singh, S.D.; Bechtel, P.J.; Mowrey, D.H.; Jones, D.J. The effect of ractopamine hydrochloride on the carcass cutting yields of finishing swine. J. Anim. Sci. 1991, 69, 3094. [Google Scholar] [CrossRef] [PubMed]
- See, M.T.; Armstrong, T.A.; Weldon, W.C. Effect of a ractopamine feeding program on growth performance and carcass composition in finishing pigs. J. Anim. Sci. 2004, 82, 2474. [Google Scholar] [CrossRef]
- Apple, J.K.; Maxwell, C.V.; Brown, D.C.; Friesen, K.G.; Musser, R.E.; Johnson, Z.B.; Armstrong, T.A. Effects of dietary lysine and energy density on performance and carcass characteristics of finishing pigs fed ractopamine. J. Anim. Sci. 2004, 83, 3277. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, T.A.; Kremer, B.T.; Marsteller, T.A.; Mechler, D. Effects of ractopamine step-up use programs on finishing pigs fed under commercial conditions. J. Swine Health Prod. 2005, 13, 66. [Google Scholar]
- Yen, J.T.; Mersmann, H.J.; Hill, D.A.; Pond, W.G. Effects of ractopamine on genetically obese and lean pigs. J. Anim. Sci. 1990, 68, 3705. [Google Scholar] [CrossRef]
- Mitchell, A.D.; Solomon, M.B.; Steele, N.C. Response of low and high protein select lines of pigs to the feeding of the beta-adrenergic agonist ractopamine (phenethanolamine). J. Anim. Sci. 1990, 68, 3226–3232. [Google Scholar] [CrossRef]
- Mills, S.E.; Liu, C.Y.; Gu, Y.; Schinckel, A.P. Effects of ractopamine on adipose tissue metabolism and insulin binding in finishing hogs. Interaction with genotype and slaughter weight. Domest. Anim. Endocrinol. 1990, 7, 251. [Google Scholar] [CrossRef]
- Mitchell, A.D.; Solomon, M.B.; Steele, N.C. Influence of level of dietary protein or energy on effects of ractopamine in finishing swine. J. Anim. Sci. 1991, 69, 4487. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.Q. Mode of Action of Beta-Adrenergic Agonists on Muscle Protein Metabolism. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 1992. [Google Scholar]
- Dunshea, F.R.; King, R.H.; Campbell, R.G. Interrelationships between dietary protein and ractopamine on protein and lipid deposition in finishing gilts. J. Anim. Sci. 1993, 71, 2931–2941. [Google Scholar] [CrossRef]
- Dunshea, F.R.; King, R.H.; Campbell, R.G.; Sainz, R.D.; Kim, Y.S. Interrelationships between sex and ractopamine on protein and lipid deposition in rapidly growing pigs. J. Anim. Sci. 1993, 71, 2919–2930. [Google Scholar] [CrossRef] [PubMed]
- Dunshea, F.R.; King, R.H.; Eason, P.J.; Campbell, R.G. Interrelationships between dietary ractopamine, energy intake, and sex in pigs. Aust. J. Agric. Res. 1998, 49, 565–574. [Google Scholar] [CrossRef]
- Fan, F.S. Ractopamine residue in meat might protect people from Parkinson disease. Med. Hypotheses 2020, 145, 110397. [Google Scholar] [CrossRef]
- Fan, F.S. Ractopamine residues in meat might reduce the risk of type 2 diabetes. Nutr. Health 2023, 29, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Lusk, J.L.; Norwood, F.B. Animal Welfare Economics. Appl. Econ. Perspect. Policy 2011, 33, 463–483. [Google Scholar] [CrossRef]
Diet | |
---|---|
Ingredient, g/kg | |
Corn | 727.00 |
Soybean meal, 47.5% CP | 107.00 |
Dried Distillers Grains | 100.00 |
Dicalcium Phosphate | 0.16 |
Limestone | 11.51 |
Salt | 4.00 |
Vitamin-trace mineral premix | 0.45 |
Soybean oil | 46.00 |
Calculated composition | |
ME, mcal/kg | 3.47 |
Crude protein, % | 14.80 |
Fat, % | 4.60 |
Ca, % | 0.68 |
Available p, % | 0.45 |
Variable 1 | Control | Ractopamine | p-Value |
---|---|---|---|
Initial body weight, kg | 73.30 ± 3.20 | 72.20 ± 3.40 | 0.810 |
Final body weight, kg | 84.30 ± 2.90 | 85.90 ± 3.00 | 0.720 |
Daily feed intake, kg | 2.18 ± 0.10 | 2.23 ± 0.10 | 0.710 |
Average daily gain, kg | 0.525 ± 0.039 | 0.652 ± 0.041 | 0.037 |
Gain efficiency 2 | 0.241 ± 0.015 | 0.292 ± 0.016 | 0.028 |
Variable 1 | Control | Ractopamine | p-Value |
---|---|---|---|
Hot carcass weight, kg | 75.60 ± 1.20 | 77.60 ± 1.20 | 0.220 |
Cold carcass weight, kg | 74.00 ± 1.20 | 75.90 ± 1.20 | 0.250 |
Carcass length, cm | 73.70 ± 1.60 | 71.20 ± 1.80 | 0.260 |
Ham, kg | 15.13 ± 0.70 | 15.72 ± 0.80 | 0.210 |
Loin, kg | 24.86 ± 1.30 | 25.54 ± 1.30 | 0.430 |
Shoulder, kg | 14.41 ± 1.00 | 14.95 ± 1.10 | 0.450 |
Belly, kg | 16.36 ± 0.80 | 16.54 ± 0.90 | 0.730 |
Variable 1 | Control | Ractopamine | p-Value |
---|---|---|---|
Loin eye area, cm 2 | 8.1 a ± 0.3 | 9.8 b ± 0.3 | 0.001 |
Muscle score 2 | 1.21 ± 0.12 | 1.44 ± 0.14 | 0.220 |
Average back fat, cm | 5.30 ± 0.20 | 5.10 ± 0.20 | 0.410 |
Fat depth, cm | |||
1st rib | 6.00 ± 0.20 | 5.70 ± 0.20 | 0.310 |
10th rib | 5.70 ± 0.30 | 5.60 ± 0.30 | 0.900 |
Last rib | 4.60 ± 0.20 | 4.50 ± 0.20 | 0.600 |
Last lumbar | 5.20 ± 0.20 | 5.10 ± 0.20 | 0.610 |
Marbling score 3 | 2.23 ± 0.15 | 2.17 ± 0.16 | 0.770 |
Collagen (%) | 3.00 ± 0.10 | 3.10 ± 0.10 | 0.150 |
Fat (%) | 23.40 ± 1.50 | 21.20 ± 1.70 | 0.340 |
Protein (%) | 22.30 ± 0.50 | 23.30 ± 0.60 | 0.210 |
Moisture (%) | 63.10 ± 1.10 | 63.70 ± 1.20 | 0.680 |
Variable 1 | Control | Ractopamine | p-Value |
---|---|---|---|
Loin Ultimate Ph 2 | 5.74 ± 0.09 | 5.84 ± 0.10 | 0.470 |
L*, lightness | 55.39 ± 1.28 | 51.92 ± 1.41 | 0.080 |
a*, redness | 19.40 ± 0.31 | 18.94 ± 0.34 | 0.300 |
b*, yellowness | 15.76 a ± 0.34 | 14.63 b ± 0.38 | 0.040 |
Cook Yield, % | 20.40 a ± 0.60 | 18.10 b ± 0.70 | 0.020 |
WBSF, N 3 | 26.20 ± 1.20 | 24.30 ± 1.40 | 0.310 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reeves Pitts, M.A.; Smith, H.R.; Amerson, E.C.; Starkey, J.D.; Starkey, C.W.; Sawyer, J.T.; Brandebourg, T.D. Feeding Ractopamine Improves the Growth Performance and Carcass Characteristics of the Lard-Type Mangalica Pig. Animals 2023, 13, 3857. https://doi.org/10.3390/ani13243857
Reeves Pitts MA, Smith HR, Amerson EC, Starkey JD, Starkey CW, Sawyer JT, Brandebourg TD. Feeding Ractopamine Improves the Growth Performance and Carcass Characteristics of the Lard-Type Mangalica Pig. Animals. 2023; 13(24):3857. https://doi.org/10.3390/ani13243857
Chicago/Turabian StyleReeves Pitts, Maegan A., Hunter R. Smith, Ellie C. Amerson, Jessica D. Starkey, Charles W. Starkey, Jason T. Sawyer, and Terry D. Brandebourg. 2023. "Feeding Ractopamine Improves the Growth Performance and Carcass Characteristics of the Lard-Type Mangalica Pig" Animals 13, no. 24: 3857. https://doi.org/10.3390/ani13243857
APA StyleReeves Pitts, M. A., Smith, H. R., Amerson, E. C., Starkey, J. D., Starkey, C. W., Sawyer, J. T., & Brandebourg, T. D. (2023). Feeding Ractopamine Improves the Growth Performance and Carcass Characteristics of the Lard-Type Mangalica Pig. Animals, 13(24), 3857. https://doi.org/10.3390/ani13243857