Expression and Localization of Fas-Associated Factor 1 in Testicular Tissues of Different Ages and Ovaries at Different Reproductive Cycle Phases of Bos grunniens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Main Instruments and Reagents
2.2. Sample Collection
2.3. Extraction of Total Tissue RNA and Protein
2.4. Specific Primer Design
2.5. Relative Expression of FAF1 Gene in Testis Tissues of Different Ages and Ovarian Tissues of Different Reproductive Cycle Phases
2.6. Relative Expression of FAF1 Protein in Testicular Tissues of Different Ages and Ovarian Tissues of Different Reproductive Cycle Phases
2.7. Localization of FAF1 in Testicular Tissues of Different Ages and Ovarian Tissues of Different Reproductive Cycle Phases
2.8. Data Analysis
3. Results
3.1. Relative Expression of FAF1 mRNA in Testes Tissues of Different Ages
3.2. Relative Expression of FAF1 Protein in Testicular Tissues at Different Ages
3.3. Localization of FAF1 Protein Expression in Testicular Tissues of Different Ages
3.4. Relative Expression Levels of FAF1 Genes in Ovaries of Different Reproductive Cycle Phases
3.5. Relative Expression Levels of FAF1 Protein in Ovaries of Different Reproductive Cycle Phases
3.6. Localization of FAF1 Protein Expression in Ovaries of Different Reproductive Cycle Phases
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, G.; Kim, B.-S.; Kim, E. A novel function of faf1, which induces dopaminergic neuronal death through cell-to-cell transmission. Cell Commun. Signal. 2020, 18, 133. [Google Scholar] [CrossRef]
- Song, S.; Park, J.; Shin, S.; Lee, J.; Hong, S.; Song, I.; Kim, B.; Song, E.; Lee, K.; Kim, E. The complex of fas-associated factor 1 with hsp70 stabilizes the adherens junction integrity by suppressing rhoa activation. J. Mol. Cell Biol. 2022, 14, mjac037. [Google Scholar] [CrossRef] [PubMed]
- Adham, I.M.; Khulan, J.; Held, T.; Schmidt, B.; Meyer, B.I.; Meinhardt, A.; Engel, W. Fas-associated factor (faf1) is required for the early cleavage-stages of mouse embryo. Mol. Hum. Reprod. 2008, 14, 207–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, E.J.; Yim, S.-H.; Kim, E.; Kim, N.-S.; Lee, K.-J. Human fas-associated factor 1, interacting with ubiquitinated proteins and valosin-containing protein, is involved in the ubiquitin-proteasome pathway. Mol. Cell. Biol. 2005, 25, 2511–2524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omid-Shafaat, R.; Moayeri, H.; Rahimi, K.; Menbari, M.; Vahabzadeh, Z.; Hakhamaneshi, M.; Nouri, B.; Ghaderi, B.; Abdi, M. Serum circ-faf1/circ-elp3: A novel potential biomarker for breast cancer diagnosis. J. Clin. Lab. Anal. 2021, 35, e24008. [Google Scholar] [CrossRef] [PubMed]
- Song, E.J.; Kang, M.J.; Kim, Y.S.; Kim, S.M.; Lee, S.E.; Kim, C.H.; Kim, D.J.; Park, J.H. Flagellin promotes the proliferation of gastriccancer cells via the toll-like receptor 5. Int. J. Mol. Med. 2011, 28, 115–119. [Google Scholar] [PubMed] [Green Version]
- Xie, J.; Kalwar, Q.; Yan, P.; Guo, X. Effect of concentrate supplementation on the expression profile of mirna in the ovaries of yak during non-breeding season. Animals 2020, 10, 1640. [Google Scholar] [CrossRef]
- Yu, C.; Kim, B.-S.; Park, M.; Do, Y.-J.; Kong, Y.-Y.; Kim, E. Faf1 mediates necrosis through jnk1-mediated mitochondrial dysfunction leading to retinal degeneration in the ganglion cell layer upon ischemic insult. Cell Commun. Signal. 2018, 16, 56. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Liu, W.; Huang, L.; Zhang, T.; Mei, Z.; Wang, X.; Gong, J.; Zhao, Y.; Xie, F.; Ma, J.; et al. Hsp70 inhibits stress-induced cardiomyocyte apoptosis by competitively binding to faf1. Cell Stress Chaperones 2015, 20, 653–661. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Cui, Y.; Yu, S.; He, J.; Wang, M.; Pan, Y.; Yang, K.; Yang, K. Immunohistochemical analysis of the thymus in newborn and adult yaks (Bos grunniens). Folia Histochem. Cytobiol. 2022, 60, 136–145. [Google Scholar] [CrossRef]
- Kochenova, O.V.; Mukkavalli, S.; Raman, M.; Walter, J.C. Cooperative assembly of p97 complexes involved in replication termination. Nat. Commun. 2022, 13, 6591. [Google Scholar] [CrossRef] [PubMed]
- Franz, A.; Valledor, P.; Ubieto-Capella, P.; Pilger, D.; Galarreta, A.; Lafarga, V.; Fernandez-Llorente, A.; de la Vega-Barranco, G.; den Brave, F.; Hoppe, T.; et al. Usp7 and vcp(faf1) define the sumo/ubiquitin landscape at the DNA replication fork. Cell Rep. 2021, 37, 109819. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cheng, Y.; Li, J.; Liu, C.; Qian, H.; Zhang, G. Torularhodin alleviates hepatic dyslipidemia and inflammations in high-fat diet-induced obese mice via pparα signaling pathway. Molecules 2022, 27, 6398. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, R.; Polo Rivera, C.; Labib, K. Multiple ubx proteins reduce the ubiquitin threshold of the mammalian p97-ufd1-npl4 unfoldase. eLife 2022, 11, e76763. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.F.; Quan, J.H.; Choi, I.W.; Lee, Y.J.; Jang, S.G.; Yuk, J.M.; Lee, Y.H.; Cha, G.H. Faf1 downregulation by Toxoplasma gondii enables host irf3 mobilization and promotes parasite growth. J. Cell. Mol. Med. 2021, 25, 9460–9472. [Google Scholar] [CrossRef]
- Bonjoch, L.; Franch-Expósito, S.; Garre, P.; Belhadj, S.; Muñoz, J.; Arnau-Collell, C.; Díaz-Gay, M.; Gratacós-Mulleras, A.; Raimondi, G.; Esteban-Jurado, C.; et al. Germline mutations in faf1 are associated with hereditary colorectal cancer. Gastroenterology 2020, 159, 227–240.e7. [Google Scholar] [CrossRef]
- Park, M.-Y.; Ryu, S.-W.; Kim, K.D.; Lim, J.-S.; Lee, Z.-W.; Kim, E. Fas-associated factor-1 mediates chemotherapeutic-induced apoptosis via death effector filament formation. Int. J. Cancer 2005, 115, 412–418. [Google Scholar] [CrossRef]
- Park, M.-Y.; Jang, H.D.; Lee, S.Y.; Lee, K.-J.; Kim, E. Fas-associated factor-1 inhibits nuclear factor-κB (NF-κB) activity by interfering with nuclear translocation of the rela (p65) subunit of NF-κB. J. Biol. Chem. 2004, 279, 2544–2549. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Lee, J.H.; Lee, S.Y.; Kim, E.; Chung, J. Caspar, a suppressor of antibacterial immunity in Drosophila. Proc. Natl. Acad. Sci. USA 2006, 103, 16358–16363. [Google Scholar] [CrossRef] [Green Version]
- Cui, S.; Simmons, G.; Vale, G.; Deng, Y.; Kim, J.; Kim, H.; Zhang, R.; McDonald, J.G.; Ye, J. Faf1 blocks ferroptosis by inhibiting peroxidation of polyunsaturated fatty acids. Proc. Natl. Acad. Sci. USA 2022, 119, e2107189119. [Google Scholar] [CrossRef]
- Liu, A.Q.; Ge, L.Y.; Ye, X.Q.; Luo, X.L.; Luo, Y. Reduced faf1 expression and Helicobacter infection: Correlations with clinicopathological features in gastric cancer. Gastroenterol. Res. Pract. 2012, 2012, 153219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, T.; Wu, L.; Wang, S.; Wang, J.; Xie, F.; Zhang, Z.; Fang, X.; Li, J.; Fang, P.; Li, F.; et al. Faf1 regulates antiviral immunity by inhibiting mavs but is antagonized by phosphorylation upon viral infection. Cell Host Microbe 2018, 24, 776–790.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anggraeni, T.D.; Rustamadji, P.; Aziz, M.F. Fas ligand (fasl) in association with tumor-infiltrating lymphocytes (tils) in early stage cervical cancer. Asian Pac. J. Cancer Prev. 2020, 21, 831–835. [Google Scholar] [CrossRef] [PubMed]
- Bea, S.; Salaverria, I.; Armengol, L.; Pinyol, M.; Fernandez, V.; Hartmann, E.M.; Jares, P.; Amador, V.; Hernandez, L.; Navarro, A.; et al. Uniparental disomies, homozygous deletions, amplifications, and target genes in mantle cell lymphoma revealed by integrative high-resolution whole-genome profiling. Blood 2009, 113, 3059–3069. [Google Scholar] [CrossRef]
- Robert, N.; Yan, C.; Si-Jiu, Y.; Bo, L.; He, H.; Pengfei, Z.; Hongwei, X.; Jian, Z.; Shijie, L.; Qian, Z. Expression of rad51 and the histo-morphological evaluation of testis of the sterile male cattle-yak. Theriogenology 2021, 172, 239–254. [Google Scholar] [CrossRef]
- Niederberger, C. Re: The effect of age on the expression of apoptosis biomarkers in human spermatozoa. J. Urol. 2011, 186, 1015–1016. [Google Scholar] [CrossRef]
- Aitken, R.J.; Findlay, J.K.; Hutt, K.J.; Kerr, J.B. Apoptosis in the germ line. Reproduction 2011, 141, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Traore, K.; Martinez-Arguelles, D.B.; Papadopoulos, V.; Chen, H.; Zirkin, B.R. Repeated exposures of the male sprague dawley rat reproductive tract to environmental toxicants: Do earlier exposures to di-(2-ethylhexyl)phthalate (dehp) alter the effects of later exposures? Reprod. Toxicol. 2016, 61, 136–141. [Google Scholar] [CrossRef]
- Orazizadeh, M.; Khorsandi, L.S.; Hashemitabar, M. Toxic effects of dexamethasone on mouse testicular germ cells. Andrologia 2010, 42, 247–253. [Google Scholar] [CrossRef]
- Kamath, R.S.; Fraser, A.G.; Dong, Y.; Poulin, G.; Durbin, R.; Gotta, M.; Kanapin, A.; Le Bot, N.; Moreno, S.; Sohrmann, M.; et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003, 421, 231–237. [Google Scholar] [CrossRef]
- Ozbek, M.; Hitit, M.; Ergun, E.; Ergun, L.; Beyaz, F.; Erhan, F.; Yildirim, N.; Kandil, B.; Ozgenc, O.; Memili, E. Expression profile of toll-like receptor 4 in rat testis and epididymis throughout postnatal development. Andrologia 2020, 52, e13518. [Google Scholar] [CrossRef] [PubMed]
- Tilly, J. Apoptosis as the basis of ovarian follicular atresia. In Gonadal Development and Function; Raven Press: New York, NY, USA, 1992; pp. 157–165. [Google Scholar]
- Taniguchi, H.; Yokomizo, Y.; Okuda, K. Fas-fas ligand system mediates luteal cell death in bovine corpus luteum. Biol. Reprod. 2002, 66, 754. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Fu, Y. Nr1d1 suppressed the growth of ovarian cancer by abrogating the jak/stat3 signaling pathway. BMC Cancer 2021, 21, 871. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, F.; Inoue, N.; Manabe, N.; Ohkura, S. Follicular growth and atresia in mammalian ovaries: Regulation by survival and death of granulosa cells. J. Reprod. Dev. 2012, 58, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Peng, X.; Mei, S. Autophagy in ovarian follicular development and atresia. Int. J. Biol. Sci. 2019, 15, 726–737. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.M.; Qiao, J.; Leung, P.C. Oocyte-somatic cell interactions in the human ovary-novel role of bone morphogenetic proteins and growth differentiation factors. Hum. Reprod. Update 2016, 23, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Chang, H.-M.; Yi, Y.; Sun, Y.; Leung, P.C.K. Bone morphogenetic protein 2 inhibits growth differentiation factor 8-induced cell signaling via upregulation of gremlin2 expression in human granulosa-lutein cells. Reprod. Biol. Endocrinol. 2021, 19, 173. [Google Scholar] [CrossRef]
Primer | Primer Sequence | Tm | PCR Product Lengths (bp) | GenBank Accession Number |
---|---|---|---|---|
FAF1-F1 | 5′-GGTGGATGATGGAGAAGTAT-3′ | 49.5 | 232 | MK_416195.1 |
FAF1-R1 | 5′-GTGGAGGTAGATAGCAAGAA-3′ | 49.5 | ||
β-actin-F | 5′-CGTCCGTGACATCAAGGAGAAGC-3′ | 58 | 143 | DQ838049.1 |
β-actin-R | 5′-GGAACCGCTCATTGCCGATGG-3′ | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Pan, Y.; Zhang, R.; Xu, G.; Wu, R.; Zhang, W.; Wang, X.; Su, X.; Si, Q.; Yu, S. Expression and Localization of Fas-Associated Factor 1 in Testicular Tissues of Different Ages and Ovaries at Different Reproductive Cycle Phases of Bos grunniens. Animals 2023, 13, 340. https://doi.org/10.3390/ani13030340
Wang J, Pan Y, Zhang R, Xu G, Wu R, Zhang W, Wang X, Su X, Si Q, Yu S. Expression and Localization of Fas-Associated Factor 1 in Testicular Tissues of Different Ages and Ovaries at Different Reproductive Cycle Phases of Bos grunniens. Animals. 2023; 13(3):340. https://doi.org/10.3390/ani13030340
Chicago/Turabian StyleWang, Jingyu, Yangyang Pan, Rui Zhang, Gengquan Xu, Rentaodi Wu, Wenlan Zhang, Xiaoshan Wang, Xue Su, Qintuya Si, and Sijiu Yu. 2023. "Expression and Localization of Fas-Associated Factor 1 in Testicular Tissues of Different Ages and Ovaries at Different Reproductive Cycle Phases of Bos grunniens" Animals 13, no. 3: 340. https://doi.org/10.3390/ani13030340
APA StyleWang, J., Pan, Y., Zhang, R., Xu, G., Wu, R., Zhang, W., Wang, X., Su, X., Si, Q., & Yu, S. (2023). Expression and Localization of Fas-Associated Factor 1 in Testicular Tissues of Different Ages and Ovaries at Different Reproductive Cycle Phases of Bos grunniens. Animals, 13(3), 340. https://doi.org/10.3390/ani13030340