Precision Livestock Farming: What Does It Contain and What Are the Perspectives?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Subject Definition
3. Elements of PLF
3.1. Sensors
3.2. Algorithms
3.3. Applications
3.4. Interfaces
4. PLF Influencing Animal Husbandry
5. Animal Welfare and Animal Health
6. Human–Animal Relationship
7. Summary—PLF from the Veterinarian’s Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Savage, S. The Connected Cow: Optimizing Dairy Cow Health and Productivity with Technology. Forbes. 9 June 2022. Available online: https://www.forbes.com/sites/stevensavage/2022/06/09/the-connected-cow-optimizing-dairy-cow-health-and-productivity-with-technology/?sh=2d36a0b2656e (accessed on 2 October 2022).
- Deutschlandfunk. Big Brother im Kuhstall—Digitalisierung in der Landwirtschaft mit Nebenwirkungen. Available online: https://www.deutschlandfunk.de/big-brother-im-kuhstall-digitalisierung-in-der.697.de.html?dram:article_id=433167 (accessed on 10 May 2021).
- Bitkom, e.V. Pressemitteilung: Schon 8 von 10 Landwirten setzen auf digitale Technologien; Bitkom: Berlin, Germany, 2020; Available online: https://www.bitkom.org/Presse/Presseinformation/Schon-8-von-10-Landwirten-setzen-auf-digitale-Technologien (accessed on 15 May 2021).
- Markets.businessinsider.com. Precision Farming Market Size Worth $12.9 Billion/by 2027|CAGR: 13.0%; Grand View Research, Inc.: San Francisco, CA, USA, 17 February 2020. [Google Scholar]
- Gartner Inc. Definition of Digitalization—Gartner Information Technology Glossary. Available online: https://www.gartner.com/en/information-technology/glossary/digitalization (accessed on 23 January 2023).
- Berckmans, D. Precision livestock farming (PLF). Comput. Electron. Agric. 2008, 62, 1. [Google Scholar] [CrossRef]
- Berckmans, D. Precision livestock farming technologies for welfare management in intensive livestock systems. Rev. Sci. Tech. 2014, 33, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Frost, A.R.; Schofield, C.P.; Beaulah, S.A.; Mottram, T.T.; Lines, J.A.; Wathes, C.M. A review of livestock monitoring and the need for integrated systems. Comput. Electron. Agric. 1997, 17, 139–159. [Google Scholar] [CrossRef]
- Groher, T.; Heitkämper, K.; Umstätter, C. Digital technology adoption in livestock production with a special focus on ruminant farming. Animal 2020, 14, 2404–2413. [Google Scholar] [CrossRef] [PubMed]
- Lokhorst, C.; de Mol, R.M.; Kamphuis, C. Invited review: Big Data in precision dairy farming. Animal 2019, 13, 1519–1528. [Google Scholar] [CrossRef] [Green Version]
- Wathes, C.M.; Kristensen, H.H.; Aerts, J.-M.; Berckmans, D. Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? Comput. Electron. Agric. 2008, 64, 2–10. [Google Scholar] [CrossRef]
- Cabrera, V.E.; Barrientos-Blanco, J.A.; Delgado, H.; Fadul-Pacheco, L. Symposium review: Real-time continuous decision making using big data on dairy farms. J. Dairy Sci. 2020, 103, 3856–3866. [Google Scholar] [CrossRef]
- Rutten, C.J.; Steeneveld, W.; Oude Lansink, A.G.J.M.; Hogeveen, H. Delaying investments in sensor technology: The rationality of dairy farmers’ investment decisions illustrated within the framework of real options theory. J. Dairy Sci. 2018, 101, 7650–7660. [Google Scholar] [CrossRef] [Green Version]
- Rutten, C.J.; Velthuis, A.G.J.; Steeneveld, W.; Hogeveen, H. Invited review: Sensors to support health management on dairy farms. J. Dairy Sci. 2013, 96, 1928–1952. [Google Scholar] [CrossRef] [Green Version]
- Cambridge Dictionary. Definition: “Sensor”. Available online: https://dictionary.cambridge.org/us/dictionary/english/sensor (accessed on 5 October 2022).
- Stygar, A.H.; Gómez, Y.; Berteselli, G.V.; Dalla Costa, E.; Canali, E.; Niemi, J.K.; Llonch, P.; Pastell, M. A Systematic Review on Commercially Available and Validated Sensor Technologies for Welfare Assessment of Dairy Cattle. Front. Vet. Sci. 2021, 8, 634338. [Google Scholar] [CrossRef]
- Knight, C.H. Review: Sensor techniques in ruminants: More than fitness trackers. Animal 2020, 14, s187–s195. [Google Scholar] [CrossRef] [Green Version]
- King, M.T.M.; DeVries, T.J. Graduate Student Literature Review: Detecting health disorders using data from automatic milking systems and associated technologies. J. Dairy Sci. 2018, 101, 8605–8614. [Google Scholar] [CrossRef]
- Caja, G.; Castro-Costa, A.; Knight, C.H. Engineering to support wellbeing of dairy animals. J. Dairy Res. 2016, 83, 136–147. [Google Scholar] [CrossRef] [Green Version]
- Morrone, S.; Dimauro, C.; Gambella, F.; Cappai, M.G. Industry 4.0 and Precision Livestock Farming (PLF): An up to Date Overview across Animal Productions. Sensors 2022, 22, 4319. [Google Scholar] [CrossRef]
- Galon, N. The use of pedometry for estrus detection in dairy cows in Israel. J. Reprod. Dev. 2010, 56, S48–S52. [Google Scholar] [CrossRef] [Green Version]
- Kempf, A. Visuelle und computergestützte (Heatime®) Brunsterkennung. Ph.D. Dissertation, Stiftung Tierärztliche Hochschule, Hannover, Germany, 2016. [Google Scholar]
- Adenuga, A.H.; Jack, C.; Olagunju, K.O.; Ashfield, A. Economic Viability of Adoption of Automated Oestrus Detection Technologies on Dairy Farms: A Review. Animals 2020, 10, 1241. [Google Scholar] [CrossRef]
- Cerri, R.L.A.; Burnett, T.A.; Madureira, A.M.L.; Silper, B.F.; Denis-Robichaud, J.; LeBlanc, S.; Cooke, R.F.; Vasconcelos, J.L.M. Symposium review: Linking activity-sensor data and physiology to improve dairy cow fertility. J. Dairy Sci. 2021, 104, 1220–1231. [Google Scholar] [CrossRef]
- Reiter, S.; Sattlecker, G.; Lidauer, L.; Kickinger, F.; Öhlschuster, M.; Auer, W.; Schweinzer, V.; Klein-Jöbstl, D.; Drillich, M.; Iwersen, M. Evaluation of an ear-tag-based accelerometer for monitoring rumination in dairy cows. J. Dairy Sci. 2018, 101, 3398–3411. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Zhang, A.; Zhang, Y.; Wei, X.; Sun, J. Rumination recognition method of dairy cows based on the change of noseband pressure. Inf. Process. Agric. 2020, 7, 479–490. [Google Scholar] [CrossRef]
- Vanrell, S.R.; Chelotti, J.O.; Galli, J.R.; Utsumi, S.A.; Giovanini, L.L.; Rufiner, H.L.; Milone, D.H. A regularity-based algorithm for identifying grazing and rumination bouts from acoustic signals in grazing cattle. Comput. Electron. Agric. 2018, 151, 392–402. [Google Scholar] [CrossRef]
- Scheurwater, J.; Hostens, M.; Nielen, M.; Heesterbeek, H.; Schot, A.; van Hoeij, R.; Aardema, H. Pressure measurement in the reticulum to detect different behaviors of healthy cows. PLoS ONE 2021, 16, e0254410. [Google Scholar] [CrossRef] [PubMed]
- Abuelo, A.; Wisnieski, L.; Brown, J.L.; Sordillo, L.M. Rumination time around dry-off relative to the development of diseases in early-lactation cows. J. Dairy Sci. 2021, 104, 5909–5920. [Google Scholar] [CrossRef] [PubMed]
- Sturm, V.; Efrosinin, D.; Öhlschuster, M.; Gusterer, E.; Drillich, M.; Iwersen, M. Combination of Sensor Data and Health Monitoring for Early Detection of Subclinical Ketosis in Dairy Cows. Sensors 2020, 20, 1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giordano, J.O.; Sitko, E.M.; Rial, C.; Pérez, M.M.; Granados, G.E. Symposium review: Use of multiple biological, management, and performance data for the design of targeted reproductive management strategies for dairy cows. J. Dairy Sci. 2022, 105, 4669–4678. [Google Scholar] [CrossRef]
- Cabrera, V.E. Invited review: Helping dairy farmers to improve economic performance utilizing data-driving decision support tools. Animal 2018, 12, 134–144. [Google Scholar] [CrossRef] [Green Version]
- Shine, P.; Murphy, M.D. Over 20 Years of Machine Learning Applications on Dairy Farms: A Comprehensive Mapping Study. Sensors 2021, 22, 52. [Google Scholar] [CrossRef]
- Warner, D.; Dallago, G.M.; Dovoedo, O.W.; Lacroix, R.; Delgado, H.A.; Cue, R.I.; Wade, K.M.; Dubuc, J.; Pellerin, D.; Vasseur, E. Keeping profitable cows in the herd: A lifetime cost-benefit assessment to support culling decisions. Animal 2022, 16, 100628. [Google Scholar] [CrossRef]
- Cambridge Dictionary. Definition: “Algorithm”. Available online: https://dictionary.cambridge.org/us/dictionary/english/algorithm (accessed on 12 October 2022).
- Rosa, G.J.M. Grand Challenge in Precision Livestock Farming. Front. Anim. Sci. 2021, 2, 650324. [Google Scholar] [CrossRef]
- Hossain, M.E.; Kabir, M.A.; Zheng, L.; Swain, D.L.; McGrath, S.; Medway, J. A systematic review of machine learning techniques for cattle identification: Datasets, methods and future directions. Artif. Intell. Agric. 2022, 6, 138–155. [Google Scholar] [CrossRef]
- Dittrich, I.; Gertz, M.; Krieter, J. Alterations in sick dairy cows’ daily behavioural patterns. Heliyon 2019, 5, e02902. [Google Scholar] [CrossRef] [Green Version]
- Carslake, C.; Vázquez-Diosdado, J.A.; Kaler, J. Machine Learning Algorithms to Classify and Quantify Multiple Behaviours in Dairy Calves Using a Sensor: Moving beyond Classification in Precision Livestock. Sensors 2020, 21, 88. [Google Scholar] [CrossRef]
- Michie, C.; Andonovic, I.; Davison, C.; Hamilton, A.; Tachtatzis, C.; Jonsson, N.; Duthie, C.-A.; Bowen, J.; Gilroy, M. The Internet of Things enhancing animal welfare and farm operational efficiency. J. Dairy Res. 2020, 87, 20–27. [Google Scholar] [CrossRef]
- Michels, M.; Bonke, V.; Musshoff, O. Understanding the adoption of smartphone apps in dairy herd management. J. Dairy Sci. 2019, 102, 9422–9434. [Google Scholar] [CrossRef]
- Sorge, U.S.; Kelton, D.F.; Lissemore, K.D.; Sears, W.; Fetrow, J. Evaluation of the Dairy Comp 305 Module “Cow Value” in Two Ontario Dairy Herds. J. Dairy Sci. 2007, 90, 5784–5797. [Google Scholar] [CrossRef] [Green Version]
- Van Hertem, T.; Rooijakkers, L.; Berckmans, D.; Peña Fernández, A.; Norton, T.; Vranken, E. Appropriate data visualisation is key to Precision Livestock Farming acceptance. Comput. Electron. Agric. 2017, 138, 1–10. [Google Scholar] [CrossRef]
- Schuetz, C.G.; Schausberger, S.; Schrefl, M. Building an active semantic data warehouse for precision dairy farming. J. Organ. Comput. Electron. Commer. 2018, 28, 122–141. [Google Scholar] [CrossRef] [Green Version]
- Ferris, M.C.; Christensen, A.; Wangen, S.R. Symposium review: Dairy Brain-Informing decisions on dairy farms using data analytics. J. Dairy Sci. 2020, 103, 3874–3881. [Google Scholar] [CrossRef]
- Gengler, N. Symposium review: Challenges and opportunities for evaluating and using the genetic potential of dairy cattle in the new era of sensor data from automation. J. Dairy Sci. 2019, 102, 5756–5763. [Google Scholar] [CrossRef]
- Neethirajan, S.; Kemp, B. Digital Twins in Livestock Farming. Animals 2021, 11, 1008. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Espinosa, G.; Vera, G.; Ferret, A.; Castillejos, L. A virtual dairy herd as a tool to teach dairy production and management. J. Dairy Sci. 2020, 103, 2896–2905. [Google Scholar] [CrossRef] [Green Version]
- Eckelkamp, E.A.; Bewley, J.M. On-farm use of disease alerts generated by precision dairy technology. J. Dairy Sci. 2020, 103, 1566–1582. [Google Scholar] [CrossRef] [PubMed]
- Guatteo, R.; Clément, P.; Quiniou, R.; Bareille, N. Monitoring Drops in Rumination Time and Activity for the Detection of Health Disorders in Dairy Cows; European Conference on Precision Livestock Farming: Nantes, France, 2017. [Google Scholar]
- Lora, I.; Gottardo, F.; Contiero, B.; Zidi, A.; Magrin, L.; Cassandro, M.; Cozzi, G. A survey on sensor systems used in Italian dairy farms and comparison between performances of similar herds equipped or not equipped with sensors. J. Dairy Sci. 2020, 103, 10264–10272. [Google Scholar] [CrossRef] [PubMed]
- Steeneveld, W.; Vernooij, J.C.M.; Hogeveen, H. Effect of sensor systems for cow management on milk production, somatic cell count, and reproduction. J. Dairy Sci. 2015, 98, 3896–3905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutton-Regester, K.J.; Barnes, T.S.; Wright, J.D.; Rabiee, A.R. Lameness in dairy cows: Farmer perceptions and automated detection technology. J. Dairy Res. 2020, 87, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Fraser, D. The role of the veterinarian in animal welfare. Animal welfare: Too much or too little? Abstracts of the 21st Symposium of the Nordic Committee for Veterinary Scientific Cooperation (NKVet). Vaerløse, Denmark. 24–25 September 2007. Acta Vet. Scand. 2008, 50 (Suppl. S1), S1–S12. [Google Scholar] [CrossRef] [Green Version]
- Maroto Molina, F.; Pérez Marín, C.C.; Molina Moreno, L.; Agüera Buendía, E.I.; Pérez Marín, D.C. Welfare Quality® for dairy cows: Towards a sensor-based assessment. J. Dairy Res. 2020, 87, 28–33. [Google Scholar] [CrossRef]
- Gusterer, E.; Kanz, P.; Krieger, S.; Schweinzer, V.; Süss, D.; Lidauer, L.; Kickinger, F.; Öhlschuster, M.; Auer, W.; Drillich, M.; et al. Sensor technology to support herd health monitoring: Using rumination duration and activity measures as unspecific variables for the early detection of dairy cows with health deviations. Theriogenology 2020, 157, 61–69. [Google Scholar] [CrossRef]
- LeBlanc, S. Monitoring metabolic health of dairy cattle in the transition period. J. Reprod. Dev. 2010, 56, S29–S35. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Bokkers, E.A.M.; van Mourik, S.; Groot Koerkamp, P.W.G.; van der Tol, P.P.J. Automated body condition scoring of dairy cows using 3-dimensional feature extraction from multiple body regions. J. Dairy Sci. 2019, 102, 4294–4308. [Google Scholar] [CrossRef] [Green Version]
- Zin, T.T.; Seint, P.T.; Tin, P.; Horii, Y.; Kobayashi, I. Body Condition Score Estimation Based on Regression Analysis Using a 3D Camera. Sensors 2020, 20, 3705. [Google Scholar] [CrossRef]
- Kofler, J.; Pesenhofer, R.; Landl, G.; Sommerfeld-Stur, I.; Peham, C. Langzeitkontrolle der Klauengesundheit von Milchkühen in 15 Herden mithilfe des Klauenmanagers und digitaler Kennzahlen. Tierärztliche Prax. Ausg. G Großtiere/Nutztiere 2013, 41, 31–44. [Google Scholar]
- Tremblay, M.; Bennett, T.; Döpfer, D. The DD Check App for prevention and control of digital dermatitis in dairy herds. Prev. Vet. Med. 2016, 132, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Weigele, H.C.; Gygax, L.; Steiner, A.; Wechsler, B.; Burla, J.B. Moderate lameness leads to marked behavioral changes in dairy cows. J. Dairy Sci. 2018, 101, 2370–2382. [Google Scholar] [CrossRef] [Green Version]
- Van Nuffel, A.; Zwertvaegher, I.; Van, W.S.; Pastell, M.; Thorup, V.M.; Bahr, C.; Sonck, B.; Saeys, W. Lameness Detection in Dairy Cows: Part 2. Use of Sensors to Automatically Register Changes in Locomotion or Behavior. Animals 2015, 5, 861–885. [Google Scholar] [CrossRef] [Green Version]
- O’Leary, N.W.; Byrne, D.T.; O’Connor, A.H.; Shalloo, L. Invited review: Cattle lameness detection with accelerometers. J. Dairy Sci. 2020, 103, 3895–3911. [Google Scholar] [CrossRef] [Green Version]
- Alsaaod, M.; Fadul, M.; Steiner, A. Automatic lameness detection in cattle. Vet. J. 2019, 246, 35–44. [Google Scholar] [CrossRef]
- Kang, X.; Zhang, X.D.; Liu, G. A Review: Development of Computer Vision-Based Lameness Detection for Dairy Cows and Discussion of the Practical Applications. Sensors 2021, 21, 753. [Google Scholar] [CrossRef]
- Becker, C.A.; Aghalari, A.; Marufuzzaman, M.; Stone, A.E. Predicting dairy cattle heat stress using machine learning techniques. J. Dairy Sci. 2021, 104, 501–524. [Google Scholar] [CrossRef]
- Levit, H.; Pinto, S.; Amon, T.; Gershon, E.; Kleinjan-Elazary, A.; Bloch, V.; Ben Meir, Y.A.; Portnik, Y.; Jacoby, S.; Arnin, A.; et al. Dynamic cooling strategy based on individual animal response mitigated heat stress in dairy cows. Animal 2021, 15, 100093. [Google Scholar] [CrossRef]
- Bloch, V.; Levit, H.; Halachmi, I. Assessing the potential of photogrammetry to monitor feed intake of dairy cows. J. Dairy Res. 2019, 86, 34–39. [Google Scholar] [CrossRef]
- Bishop, J.C.; Falzon, G.; Trotter, M.; Kwan, P.; Meek, P.D. Livestock vocalisation classification in farm soundscapes. Comput. Electron. Agric. 2019, 162, 531–542. [Google Scholar] [CrossRef]
- Neethirajan, S.; Reimert, I.; Kemp, B. Measuring Farm Animal Emotions-Sensor-Based Approaches. Sensors 2021, 21, 553. [Google Scholar] [CrossRef] [PubMed]
- Allain, C.; Chanvallon, A.A.; Clement, P.; Guatteo, R.R.; Bareille, N.N. Scope, applications and prospective of precision dairy and beef farming. In Proceedings of the 21. Rencontres Recherches Ruminants (3R), Institut de l’Elevage—INRA, Paris, France, 3–4 December 2014; p. 422. [Google Scholar]
- Raad voor Dierenaangelegenheden. Digitalisering van de Veehouderij; Raad voor Dierenaangelegenheden: Den Haag, The Netherlands, 2019. [Google Scholar]
- Kling-Eveillard, F.; Allain, C.; Boivin, X.; Courboulay, V.; Créach, P.; Philibert, A.; Ramonet, Y.; Hostiou, N. Farmers’ representations of the effects of precision livestock farming on human-animal relationships. Livest. Sci. 2020, 238, 104057. [Google Scholar] [CrossRef]
- Krampe, C.; Serratosa, J.; Niemi, J.K.; Ingenbleek, P.T.M. Consumer Perceptions of Precision Livestock Farming-A Qualitative Study in Three European Countries. Animals 2021, 11, 1221. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kleen, J.L.; Guatteo, R. Precision Livestock Farming: What Does It Contain and What Are the Perspectives? Animals 2023, 13, 779. https://doi.org/10.3390/ani13050779
Kleen JL, Guatteo R. Precision Livestock Farming: What Does It Contain and What Are the Perspectives? Animals. 2023; 13(5):779. https://doi.org/10.3390/ani13050779
Chicago/Turabian StyleKleen, Joachim Lübbo, and Raphaël Guatteo. 2023. "Precision Livestock Farming: What Does It Contain and What Are the Perspectives?" Animals 13, no. 5: 779. https://doi.org/10.3390/ani13050779
APA StyleKleen, J. L., & Guatteo, R. (2023). Precision Livestock Farming: What Does It Contain and What Are the Perspectives? Animals, 13(5), 779. https://doi.org/10.3390/ani13050779