Micro- and Macro-Algae Combination as a Novel Alternative Ruminant Feed with Methane-Mitigation Potential
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Feeds
2.2. Donor Animals and Rumen Fluid Collection
2.3. Experimental Design
2.4. In Vitro Incubation and Sample Collection
2.5. Chemical Analysis
2.6. Bromoform Concentration in Asparagopsis
2.7. Fatty Acid and Amino Acid Composition of Euglena
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herrero, M.; Havlík, P.; Valin, H.; an Notenbaert; Rufino, M.C.; Thornton, P.K.; Blümmel, M.; Weiss, F.; Grace, D.; Obersteiner, M. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl. Acad. Sci. USA 2013, 110, 20888–20893. [Google Scholar] [CrossRef] [Green Version]
- Becker, G.S. Livestock Feed Costs: Concerns and Options; Congressional Research Service, Library of Congress: Washington, DC, USA, 2008. [Google Scholar]
- Bradford, G. Contributions of animal agriculture to meeting global human food demand. Livest. Prod. Sci. 1999, 59, 95–112. [Google Scholar] [CrossRef]
- Leroy, F.; Abraini, F.; Beal, T.; Dominguez-Salas, P.; Gregorini, P.; Manzano, P.; Rowntree, J.; van Vliet, S. Animal board invited review: Animal source foods in healthy, sustainable, and ethical diets—An argument against drastic limitation of livestock in the food system. Animal 2022, 16, 100457. [Google Scholar] [CrossRef] [PubMed]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; ISBN 9789251079201. [Google Scholar]
- McLeod, A. World Livestock 2011-Livestock in Food Security; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2011; ISBN 925107013X. [Google Scholar]
- Kim, S.W.; Less, J.F.; Wang, L.; Yan, T.; Kiron, V.; Kaushik, S.J.; Lei, X.G. Meeting Global Feed Protein Demand: Challenge, Opportunity, and Strategy. Annu. Rev. Anim. Biosci. 2019, 7, 221–243. [Google Scholar] [CrossRef]
- Saadaoui, I.; Rasheed, R.; Aguilar, A.; Cherif, M.; Al Jabri, H.; Sayadi, S.; Manning, S.R. Microalgal-based feed: Promising alternative feedstocks for livestock and poultry production. J. Anim. Sci. Biotechnol. 2021, 12, 76. [Google Scholar] [CrossRef]
- Barkia, I.; Saari, N.; Manning, S.R. Microalgae for High-Value Products Towards Human Health and Nutrition. Mar. Drugs 2019, 17, 304. [Google Scholar] [CrossRef] [Green Version]
- Lum, K.K.; Kim, J.; Lei, X.G. Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. J. Anim. Sci. Biotechnol. 2013, 4, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkman, J.K.; Brown, M.R. Nutritional Value of Microalgae and Applications: Algal Cultures, Analogues of Blooms and Applications; Science Publishers, Inc.: Hauppauge, NY, USA, 2006; ISBN 1578083923. [Google Scholar]
- Aemiro, A.; Watanabe, S.; Suzuki, K.; Hanada, M.; Umetsu, K.; Nishida, T. Effect of substituting soybean meal with euglena (Euglena gracilis ) on methane emission and nitrogen efficiency in sheep. Anim. Sci. J. 2019, 90, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Madeira, M.S.; Cardoso, C.; Lopes, P.A.; Coelho, D.; Afonso, C.; Bandarra, N.M.; Prates, J.A. Microalgae as feed ingredients for livestock production and meat quality: A review. Livest. Sci. 2017, 205, 111–121. [Google Scholar] [CrossRef]
- Altomonte, I.; Salari, F.; Licitra, R.; Martini, M. Use of microalgae in ruminant nutrition and implications on milk quality—A review. Livest. Sci. 2018, 214, 25–35. [Google Scholar] [CrossRef]
- Lamminen, M. Nutritional value of microalgae for ruminants and implications from microalgae production. CABI Rev. 2021, 2021. [Google Scholar] [CrossRef]
- Reis, M.E.; de Toledo, A.F.; Da Silva, A.P.; Poczynek, M.; Cantor, M.C.; Virgínío Júnior, G.F.; Greco, L.; Bittar, C.M.M. Effect of supplementation with algae β-glucans on performance, health, and blood metabolites of Holstein dairy calves. J. Dairy Sci. 2022, 105, 7998–8007. [Google Scholar] [CrossRef] [PubMed]
- Aemiro, A.; Watanabe, S.; Suzuki, K.; Hanada, M.; Umetsu, K.; Nishida, T. Effects of Euglena (Euglena gracilis) supplemented to diet (forage: Concentrate ratios of 60:40) on the basic ruminal fermentation and methane emissions in in vitro condition. Anim. Feed Sci. Technol. 2016, 212, 129–135. [Google Scholar] [CrossRef]
- Suzuki, K. Large-Scale Cultivation of Euglena. In Euglena: Biochemistry, Cell and Molecular Biology; Schwartzbach, S.D., Shigeoka, S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 285–293. ISBN 978-3-319-54910-1. [Google Scholar]
- Machado, L.; Magnusson, M.; Paul, N.A.; de Nys, R.; Tomkins, N. Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS ONE 2014, 9, e85289. [Google Scholar] [CrossRef] [Green Version]
- Kinley, R.D.; Martinez-Fernandez, G.; Matthews, M.K.; de Nys, R.; Magnusson, M.; Tomkins, N.W. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean Prod. 2020, 259, 120836. [Google Scholar] [CrossRef]
- Li, X.; Norman, H.C.; Kinley, R.D.; Laurence, M.; Wilmot, M.; Bender, H.; de Nys, R.; Tomkins, N. Asparagopsis taxiformis decreases enteric methane production from sheep. Anim. Prod. Sci. 2018, 58, 681. [Google Scholar] [CrossRef]
- Allen, K.D.; Wegener, G.; White, R.H. Discovery of multiple modified F(430) coenzymes in methanogens and anaerobic methanotrophic archaea suggests possible new roles for F(430) in nature. Appl. Environ. Microbiol. 2014, 80, 6403–6412. [Google Scholar] [CrossRef] [Green Version]
- Stefenoni, H.A.; Räisänen, S.E.; Cueva, S.F.; Wasson, D.E.; Lage, C.F.A.; Melgar, A.; Fetter, M.E.; Smith, P.; Hennessy, M.; Vecchiarelli, B.; et al. Effects of the macroalga Asparagopsis taxiformis and oregano leaves on methane emission, rumen fermentation, and lactational performance of dairy cows. J. Dairy Sci. 2021, 104, 4157–4173. [Google Scholar] [CrossRef]
- Pandey, D.; Mansouryar, M.; Novoa-Garrido, M.; Næss, G.; Kiron, V.; Hansen, H.H.; Nielsen, M.O.; Khanal, P. Nutritional and anti-methanogenic potentials of macroalgae for ruminants. In Seaweed and Microalgae as Alternative Sources of Protein; Lei, X.G., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2021; pp. 195–228. ISBN 9781786766205. [Google Scholar]
- Muizelaar, W.; Groot, M.; van Duinkerken, G.; Peters, R.; Dijkstra, J. Safety and Transfer Study: Transfer of Bromoform Present in Asparagopsis taxiformis to Milk and Urine of Lactating Dairy Cows. Foods 2021, 10, 584. [Google Scholar] [CrossRef]
- Hristov, A.N.; Melgar, A.; Wasson, D.; Arndt, C. Symposium review: Effective nutritional strategies to mitigate enteric methane in dairy cattle. J. Dairy Sci. 2022, 105, 8543–8557. [Google Scholar] [CrossRef] [PubMed]
- Glasson, C.R.; Kinley, R.D.; de Nys, R.; King, N.; Adams, S.L.; Packer, M.A.; Svenson, J.; Eason, C.T.; Magnusson, M. Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants. Algal Res. 2022, 64, 102673. [Google Scholar] [CrossRef]
- Vijn, S.; Compart, D.P.; Dutta, N.; Foukis, A.; Hess, M.; Hristov, A.N.; Kalscheur, K.F.; Kebreab, E.; Nuzhdin, S.V.; Price, N.N.; et al. Key Considerations for the Use of Seaweed to Reduce Enteric Methane Emissions From Cattle. Front. Vet. Sci. 2020, 7, 597430. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Seppänen-Laakso, T.; Rischer, H.; Wiebe, M.G. Euglena gracilis growth and cell composition under different temperature, light and trophic conditions. PLoS ONE 2018, 13, e0195329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analyses and gas production using rumen fluid. Anim. Res. Develop. 1988, 28, 7–55. [Google Scholar]
- McDougall, E.I. Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem. J. 1948, 43, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, E.; Fukuma, N.; Hanada, M.; Nishida, T. The Efficacy of Plant-Based Bioactives Supplementation to Different Proportion of Concentrate Diets on Methane Production and Rumen Fermentation Characteristics In Vitro. Animals 2021, 11, 1029. [Google Scholar] [CrossRef]
- Mabjeesh, S.J.; Cohen, M.; Arieli, A. In Vitro Methods for Measuring the Dry Matter Digestibility of Ruminant Feedstuffs: Comparison of Methods and Inoculum Source. J. Dairy Sci. 2000, 83, 2289–2294. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- Vogel, K.P.; Pedersen, J.F.; Masterson, S.D.; Toy, J.J. Evaluation of a Filter Bag System for NDF, ADF, and IVDMD Forage Analysis. Crop Sci. 1999, 39, 276–279. [Google Scholar] [CrossRef]
- Ahmed, E.; Fukuma, N.; Hanada, M.; Nishida, T. Insects as Novel Ruminant Feed and a Potential Mitigation Strategy for Methane Emissions. Animals 2021, 11, 2648. [Google Scholar] [CrossRef]
- O’Neill, E.C.; Kuhaudomlarp, S.; Rejzek, M.; Fangel, J.U.; Alagesan, K.; Kolarich, D.; Willats, W.G.T.; Field, R.A. Exploring the Glycans of Euglena gracilis. Biology 2017, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Hildebrand, M.; Abbriano, R.M.; Polle, J.E.W.; Traller, J.C.; Trentacoste, E.M.; Smith, S.R.; Davis, A.K. Metabolic and cellular organization in evolutionarily diverse microalgae as related to biofuels production. Curr. Opin. Chem. Biol. 2013, 17, 506–514. [Google Scholar] [CrossRef]
- Amundsen, M.R. Study of Carbohydrates in Euglena Gracilis. Master’s Thesis, Department of Food Science and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland, 2018. [Google Scholar]
- Vucko, M.J.; Magnusson, M.; Kinley, R.D.; Villart, C.; de Nys, R. The effects of processing on the in vitro antimethanogenic capacity and concentration of secondary metabolites of Asparagopsis taxiformis. J. Appl. Phycol. 2017, 29, 1577–1586. [Google Scholar] [CrossRef]
- Roque, B.M.; Salwen, J.K.; Kinley, R.; Kebreab, E. Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. J. Clean Prod. 2019, 234, 132–138. [Google Scholar] [CrossRef]
- Pacheco, D.; Araújo, G.S.; Cotas, J.; Gaspar, R.; Neto, J.M.; Pereira, L. Invasive Seaweeds in the Iberian Peninsula: A Contribution for Food Supply. Mar. Drugs 2020, 18, 560. [Google Scholar] [CrossRef]
- Brooke, C.G.; Roque, B.M.; Shaw, C.; Najafi, N.; Gonzalez, M.; Pfefferlen, A.; de Anda, V.; Ginsburg, D.W.; Harden, M.C.; Nuzhdin, S.V.; et al. Methane Reduction Potential of Two Pacific Coast Macroalgae During in vitro Ruminant Fermentation. Front. Mar. Sci. 2020, 7, 561. [Google Scholar] [CrossRef]
- Selmi, A.; Khiari, R.; Snoussi, A.; Bouzouita, N. Analysis of Minerals and Heavy Metals Using ICP-OES and FTIR Techniques in Two Red Seaweeds (Gymnogongrus griffithsiae and Asparagopsis taxiformis) from Tunisia. Biol. Trace Elem. Res. 2021, 199, 2342–2350. [Google Scholar] [CrossRef] [PubMed]
- Roque, B.M.; Venegas, M.; Kinley, R.D.; de Nys, R.; Duarte, T.L.; Yang, X.; Kebreab, E. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS ONE 2021, 16, e0247820. [Google Scholar] [CrossRef]
- Schiener, P.; Black, K.D.; Stanley, M.S.; Green, D.H. The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J. Appl. Phycol. 2015, 27, 363–373. [Google Scholar] [CrossRef]
- Machado, L.; Magnusson, M.; Paul, N.A.; Kinley, R.; de Nys, R.; Tomkins, N. Dose-response effects of Asparagopsis taxiformis and Oedogonium sp. on in vitro fermentation and methane production. J. Appl. Phycol. 2016, 28, 1443–1452. [Google Scholar] [CrossRef]
- Machado, L.; Magnusson, M.; Paul, N.A.; Kinley, R.; de Nys, R.; Tomkins, N. Identification of bioactives from the red seaweed Asparagopsis taxiformis that promote antimethanogenic activity in vitro. J. Appl. Phycol. 2016, 28, 3117–3126. [Google Scholar] [CrossRef]
- Wood, J.M.; Kennedy, F.S.; Wolfe, R.S. The reaction of multihalogenated hydrocarbons with free and bound reduced vitamin B 12. Biochemistry 1968, 7, 1707–1713. [Google Scholar] [CrossRef]
- Eugène, M.; Massé, D.; Chiquette, J.; Benchaar, C. Meta-analysis on the effects of lipid supplementation on methane production in lactating dairy cows. Can. J. Anim. Sci. 2008, 88, 331–337. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21. [Google Scholar] [CrossRef]
- Patra, A.K. The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: A meta-analysis. Livest. Sci. 2013, 155, 244–254. [Google Scholar] [CrossRef]
- Wang, S.; Kreuzer, M.; Braun, U.; Schwarm, A. Effect of unconventional oilseeds (safflower, poppy, hemp, camelina) on in vitro ruminal methane production and fermentation. J. Sci. Food Agric. 2017, 97, 3864–3870. [Google Scholar] [CrossRef]
- Zhou, X.; Meile, L.; Kreuzer, M.; Zeitz, J.O. The effect of saturated fatty acids on methanogenesis and cell viability of Methanobrevibacter ruminantium. Archaea 2013, 2013, 106916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergman, E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990, 70, 567–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinley, R.D.; de Nys, R.; Vucko, M.J.; Machado, L.; Tomkins, N.W. The red macroalgae Asparagopsis taxiformis is a potent natural antimethanogenic that reduces methane production during in vitro fermentation with rumen fluid. Anim. Prod. Sci. 2016, 56, 282. [Google Scholar] [CrossRef]
- Chae, S.R.; Hwang, E.J.; Shin, H.S. Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresour. Technol. 2006, 97, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Pengpeng, W.; Tan, Z. Ammonia assimilation in rumen bacteria: A review. Anim. Biotechnol. 2013, 24, 107–128. [Google Scholar] [CrossRef] [PubMed]
% | Kleingrass Hay | Concentrate Mixture | Euglena gracilis | Asparagopsis taxiformis |
---|---|---|---|---|
Organic matter | 89.19 | 93.73 | 95.56 | 41.74 |
Crude ash | 10.81 | 6.27 | 4.44 | 58.26 |
Crude protein | 14.58 | 18.83 | 26.10 | 13.28 |
Ether extract | 3.68 | 4.32 | 17.65 | 2.31 |
Neutral detergent fiber | 62.52 | 31.48 | 0.60 | 21.99 |
Acid detergent fiber | 33.82 | 11.69 | 0.50 | 9.16 |
Acid detergent lignin | 6.22 | 2.54 | 0.00 | 4.59 |
Non-fiber carbohydrates | 8.41 | 39.1 | 51.21 | 4.16 |
Ingredients of the concentrate mixture (%) | ||||
Corn | 41.0 | |||
Wheat | 5.0 | |||
Soybean meal | 14.0 | |||
Rapeseed meal | 11.0 | |||
Corn gluten | 17.0 | |||
Dried distiller’s grains with solubles | 7.0 | |||
Wheat bran | 1.0 | |||
Molasses | 1.5 | |||
Calcium carbonate | 1.5 | |||
Vitamin and mineral complex | 1.0 |
Amino Acid | % In Amino Acid Profile |
---|---|
Arginine | 6.99 |
Lysine | 7.28 |
Histidine | 2.74 |
Phenylalanine | 4.78 |
Tyrosine | 4.20 |
Leucine | 8.69 |
Isoleucine | 4.20 |
Methionine | 2.29 |
Valine | 6.69 |
Alanine | 7.44 |
Glycine | 5.20 |
Proline | 6.32 |
Glutamic acid | 11.98 |
Serine | 4.24 |
Threonine | 4.99 |
Asparagine | 8.48 |
Tryptophan | 1.87 |
Cysteine | 1.62 |
Fatty Acid | % In Fatty Acid Profile |
---|---|
10:0 | 0.5 |
12:0 | 7.4 |
13:0 | 8.0 |
14:0 | 41.0 |
14:1 | 0.4 |
15:0 | 2.5 |
16:0 | 8.8 |
16:1 | 1.7 |
16:3 | 0.9 |
17:0 | 0.5 |
17:1 | 0.8 |
18:0 | 1.5 |
18:1 | 3.9 |
18:2n − 6 | 1.7 |
18:3n − 3 | 1.1 |
20:1 | 0.2 |
20:2n − 6 | 1.6 |
20:3n − 6 | 3.1 |
20:3n − 3 | 0.2 |
20:4n − 6 | 2.9 |
20:4n − 3 | 1.0 |
20:5n − 3 | 0.6 |
22:4n − 6 | 2.6 |
22:5n − 6 | 0.9 |
22:5n − 3 | 0.2 |
unknown | 6.0 |
% | Control | Euglena gracilis | Asparagopsis taxiformis | Euglena gracilis (EG) + Asparagopsis taxiformis (AT) | |||||
---|---|---|---|---|---|---|---|---|---|
0% | 10% | 25% | 1% | 2.5% | EG 10% + AT 1% | EG 10% + AT 2.5% | EG 25% + AT 1% | EG 25% + AT 2.5% | |
Dry matter | 89.24 | 90.03 | 91.23 | 89.24 | 89.26 | 90.03 | 90.04 | 91.22 | 91.20 |
Organic matter | 91.46 | 91.64 | 91.92 | 90.97 | 90.25 | 91.15 | 90.43 | 91.42 | 90.69 |
Crude ash | 8.54 | 8.36 | 8.08 | 9.03 | 9.75 | 8.85 | 9.57 | 8.58 | 9.31 |
Crude protein | 16.71 | 17.43 | 18.52 | 16.67 | 16.62 | 17.39 | 17.33 | 18.47 | 18.39 |
Ether extract | 4.00 | 5.33 | 7.33 | 3.98 | 3.96 | 5.30 | 5.26 | 7.28 | 7.21 |
Neutral detergent fiber | 47.00 | 43.91 | 39.28 | 46.75 | 46.39 | 43.69 | 43.38 | 39.11 | 38.86 |
Acid detergent fiber | 22.76 | 21.64 | 19.96 | 22.62 | 22.42 | 21.51 | 21.33 | 19.85 | 19.69 |
Acid detergent lignin | 4.38 | 4.13 | 3.75 | 4.38 | 4.39 | 4.13 | 4.14 | 3.75 | 3.77 |
Non-fiber carbohydrates | 23.76 | 24.97 | 26.78 | 23.56 | 23.28 | 24.76 | 24.46 | 26.56 | 26.23 |
Treatments 1 | Polynomial Contrast | Contrasts between Treatments | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | Control | AT 1% | AT 2.5% | EG 10% | EG 25% | EG 10% + AT 1% | EG 10% + AT 2.5% | EG 25% + AT 1% | EG 25% + AT 2.5% | SEM | AT | EG | AT × AT + EG | EG × AT + EG | AT 1% × AT 1% + EG (10% and 25%) |
Total Gas/DM 2 (mL/g) | 123.99 ab | 125.32 a | 117.88 abc | 118.91 abc | 109.24 cd | 114.36 bc | 109.21 cd | 102.60 de | 93.15 e | 1.46 | Ns | L | <0.001 | <0.001 | <0.001 |
Total gas/DMD 3 (mL/g) | 217.02 a | 208.32 ab | 201.82 bc | 187.44 cd | 157.41 e | 188.78 cd | 175.13 d | 148.20 ef | 139.57 f | 2.83 | L | L | <0.001 | 0.003 | <0.001 |
CH4 (%) | 7.32 a | 5.69 b | 1.46 c | 7.29 a | 7.38 a | 5.55 b | 1.93 c | 5.27 b | 1.70 c | 0.24 | L Q | Ns | 0.89 | <0.001 | 0.33 |
CO2 (%) | 92.68 c | 94.32 b | 98.54 a | 92.71 c | 92.62 c | 94.45 b | 98.07 a | 94.73 b | 98.30 a | 0.24 | L Q | Ns | 0.89 | <0.001 | 0.33 |
CH4/DM (mL/g) | 9.11 a | 7.17 bc | 1.81 d | 8.71 a | 8.11 ab | 6.39 c | 2.20 d | 5.46 c | 1.66 d | 0.31 | L | Ns | 0.089 | <0.001 | 0.01 |
CH4/DMD (mL/g) | 15.92 a | 11.86 c | 2.97 e | 13.71 b | 11.71 bc | 10.51 c | 3.45 e | 7.88 d | 2.51 e | 0.49 | L | L | 0.004 | <0.001 | <0.001 |
CO2/DM (mL/g) | 114.88 ab | 118.15 a | 116.07 ab | 110.21 abc | 101.13 cd | 107.97 b | 107.00 bc | 97.14 d | 91.49 d | 1.29 | Ns | L | <0.001 | 0.02 | <0.001 |
CO2/DMD (mL/g) | 201.10 a | 196.46 a | 198.85 a | 173.73 b | 145.71 c | 178.26 b | 171.68 b | 140.32 cd | 137.06 d | 2.60 | Ns | L | <0.001 | 0.22 | <0.001 |
Treatments 1 | Polynomial Contrast | Contrasts between Treatments | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | Control | AT 1% | AT 2.5% | EG 10% | EG 25% | EG 10% + AT 1% | EG 10% + AT 2.5% | EG 25% + AT 1% | EG 25% + AT 2.5% | SEM | AT | EG | AT × AT + EG | EG × AT + EG | AT 1% × AT 1% + EG (10% and 25%) |
pH | 6.58 ab | 6.56 bc | 6.53 c | 6.58 ab | 6.60 a | 6.58 ab | 6.56 bc | 6.58 ab | 6.57 ab | 0.01 | Ns | Ns | 0.20 | 0.35 | 0.57 |
IVDMD 2 (%) | 57.05 de | 60.20 cde | 58.28 de | 63.54 bc | 70.27 a | 60.51 cde | 62.39 bcd | 69.23 a | 67.02 ab | 0.60 | Ns | L | <0.001 | 0.03 | 0.001 |
Acetate (mmol/L) | 257.13 a | 255.80 a | 236.84 b | 258.46 a | 255.00 a | 252.30 a | 237.40 b | 248.12 a | 228.37 b | 4.78 | L | Ns | 0.38 | 0.002 | 0.40 |
Propionate (mmol/L) | 59.83 b | 65.85 ac | 68.75 a | 59.54 b | 55.92 d | 63.31 bc | 66.94 a | 60.19 b | 60.64 b | 0.80 | L | L | 0.002 | <0.001 | 0.04 |
Butyrate (mmol/L) | 23.59 bc | 24.73 ac | 25.70 a | 24.29 ab | 23.31 b | 24.52 ab | 25.46 a | 23.24 b | 23.63 bc | 0.29 | Ns | Ns | 0.18 | 0.55 | 0.38 |
Total VFA 3 (mmol/L) | 340.56 ab | 346.38 a | 331.30 b | 342.29 ab | 334.23 ab | 340.13 ab | 329.79 b | 331.55 b | 312.64 c | 5.61 | Ns | Ns | 0.16 | 0.15 | 0.27 |
TVFA / DMD 4 (mol/g) | 1.34 a | 1.29 a | 1.27 ab | 1.20 bc | 1.03 d | 1.24 b | 1.16 c | 1.05 d | 1.02 d | 0.02 | Ns | L | <0.001 | 0.88 | 0.002 |
Acetate (mol/100 mol) | 75.27 b | 73.57 d | 71.13 f | 75.23 bc | 76.03 a | 73.91 cd | 71.68 f | 74.57 c | 72.79 e | 0.26 | L | L Q | <0.001 | <0.001 | 0.01 |
Propionate (mol/100 mol) | 17.71 e | 19.18 cd | 20.99 a | 17.59 e | 16.91 f | 18.78 d | 20.50 a | 18.33 d | 19.59 c | 0.18 | L | L | <0.001 | <0.001 | 0.001 |
Butyrate (mol/100 mol) | 7.03 d | 7.25 bcd | 7.87 a | 7.17 bcd | 7.06 bcd | 7.32 bc | 7.82 a | 7.10 cd | 7.62 a | 0.09 | L | Ns | 0.36 | <0.001 | 0.78 |
A/P 5 ratio | 4.27 b | 3.86 d | 3.42 e | 4.31 b | 4.52 a | 3.96 d | 3.52 e | 4.10 c | 3.76 d | 0.05 | L | L | <0.001 | <0.001 | 0.001 |
NH3-N 6 (mg/dL) | 8.73 c | 8.16 c | 8.54 c | 9.58 bc | 11.52 ab | 8.50 c | 8.48 c | 11.87 a | 10.83 ab | 0.50 | Ns | Ns | 0.18 | 0.59 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, E.; Suzuki, K.; Nishida, T. Micro- and Macro-Algae Combination as a Novel Alternative Ruminant Feed with Methane-Mitigation Potential. Animals 2023, 13, 796. https://doi.org/10.3390/ani13050796
Ahmed E, Suzuki K, Nishida T. Micro- and Macro-Algae Combination as a Novel Alternative Ruminant Feed with Methane-Mitigation Potential. Animals. 2023; 13(5):796. https://doi.org/10.3390/ani13050796
Chicago/Turabian StyleAhmed, Eslam, Kengo Suzuki, and Takehiro Nishida. 2023. "Micro- and Macro-Algae Combination as a Novel Alternative Ruminant Feed with Methane-Mitigation Potential" Animals 13, no. 5: 796. https://doi.org/10.3390/ani13050796
APA StyleAhmed, E., Suzuki, K., & Nishida, T. (2023). Micro- and Macro-Algae Combination as a Novel Alternative Ruminant Feed with Methane-Mitigation Potential. Animals, 13(5), 796. https://doi.org/10.3390/ani13050796