Identification of a Novel Idiopathic Epilepsy Risk Locus and a Variant in the CCDC85A Gene in the Dutch Partridge Dog
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.1.1. Healthy Controls
2.1.2. Epileptic Dogs
2.1.3. Statistical Analysis
2.2. Genome-Wide Association Analysis
2.3. GWAS Candidate Gene
2.4. Whole-Exome Sequencing
2.5. Variant Analysis and ACMG Classification
3. Results
3.1. Study Cohort
3.1.1. Healthy Controls
3.1.2. Diagnostic Examination
3.1.3. Epileptic Cases
3.2. Genome-Wide Association Analysis
3.3. Whole-Exome Sequencing
3.4. Variant Analysis and ACMG Classification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erlen, A.; Potschka, H.; Volk, H.A.; Sauter-Louis, C.; O’Neill, D.G. Seizure occurrence in dogs under primary veterinary care in the UK: Prevalence and risk factors. J. Vet. Intern. Med. 2018, 32, 1665–1676. [Google Scholar] [CrossRef] [PubMed]
- Kearsley-Fleet, L.; O’Neill, D.G.; Volk, H.A.; Church, D.B.; Brodbelt, D.C. Prevalence and risk factors for canine epilepsy of unknown origin in the UK. Vet. Rec. 2013, 172, 338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heske, L.; Nødtvedt, A.; Jäderlund, K.H.; Berendt, M.; Egenvall, A. A cohort study of epilepsy among 665,000 insured dogs: Incidence, mortality and survival after diagnosis. Vet. J. 2014, 202, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Berendt, M.; Farquhar, R.G.; Mandigers, P.J.J.; Pakozdy, A.; Bhatti, S.F.M.; De Risio, L.; Fischer, A.; Long, S.; Matiasek, K.; Muñana, K.; et al. International veterinary epilepsy task force consensus report on epilepsy definition, classification and terminology in companion animals. BMC Vet. Res. 2015, 11, 182. [Google Scholar] [CrossRef] [Green Version]
- Berendt, M.; Gredal, H.; Pedersen, L.G.; Alban, L.; Alving, J. A Cross-Sectional Study of Epilepsy in Danish Labrador Retrievers: Prevalence and Selected Risk Factors. J. Vet. Intern. Med. 2002, 16, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Gulløv, C.; Toft, N.; Baadsager, M.; Berendt, M. Epilepsy in the Petit Basset Griffon Vendeen: Prevalence, Semiology, and Clinical Phenotype. J. Vet. Intern. Med. 2011, 25, 1372–1378. [Google Scholar] [CrossRef]
- Berendt, M.; Gulløv, C.H.; Christensen, S.L.K.; Gudmundsdottir, H.; Gredal, H.; Fredholm, M.; Alban, L. Prevalence and characteristics of epilepsy in the Belgian shepherd variants Groenendael and Tervueren born in Denmark 1995–2004. Acta Vet. Scand. 2008, 50, 51. [Google Scholar] [CrossRef] [Green Version]
- Casal, M.L.; Munuve, R.M.; Janis, M.A.; Werner, P.; Henthorn, P.S. Epilepsy in Irish Wolfhounds. J. Vet. Intern. Med. 2006, 20, 131–135. [Google Scholar] [CrossRef]
- Lohi, H.; Young, E.J.; Fitzmaurice, S.N.; Rusbridge, C.; Chan, E.M.; Vervoort, M.; Turnbull, J.; Zhao, X.-C.; Ianzano, L.; Paterson, A.D.; et al. Expanded Repeat in Canine Epilepsy. Science 2005, 307, 81. [Google Scholar] [CrossRef]
- Seppälä, E.H.; Jokinen, T.S.; Fukata, M.; Fukata, Y.; Webster, M.T.; Karlsson, E.K.; Kilpinen, S.K.; Steffen, F.; Dietschi, E.; Leeb, T.; et al. LGI2 Truncation Causes a Remitting Focal Epilepsy in Dogs. PLoS Genet. 2011, 7, e1002194. [Google Scholar] [CrossRef] [Green Version]
- Wielaender, F.; Sarviaho, R.; James, F.; Hytönen, M.K.; Cortez, M.A.; Kluger, G.; Koskinen, L.L.E.; Arumilli, M.; Kornberg, M.; Bathen-Noethen, A.; et al. Generalized myoclonic epilepsy with photosensitivity in juvenile dogs caused by a defective DIRAS family GTPase 1. Proc. Natl. Acad. Sci. USA 2017, 114, 2669–2674. [Google Scholar] [CrossRef] [Green Version]
- Webb, A.A.; McMillan, C.; Cullen, C.L.; Boston, S.E.; Turnbull, J.; Minassian, B.A. Lafora disease as a cause of visually exacerbated myoclonic attacks in a dog. Can. Vet. J. 2009, 50, 963–967. [Google Scholar]
- Hytönen, M.K.; Sarviaho, R.; Jackson, C.B.; Syrjä, P.; Jokinen, T.; Matiasek, K.; Rosati, M.; Dallabona, C.; Baruffini, E.; Quintero, I.; et al. In-frame deletion in canine PITRM1 is associated with a severe early-onset epilepsy, mitochondrial dysfunction and neurodegeneration. Hum. Genet. 2021, 140, 1593–1609. [Google Scholar] [CrossRef]
- Bobbert, E.; Reekers, S. Epilepsie, Toeval of Erfelijk? Een Onderzoek bij de Drentse Patrijshond; Utrecht University: Utrecht, The Netherlands, 1986. [Google Scholar]
- Mandigers, P.J.J. Het voorkomen van epilepsie bij de Nederlandse hondenrassen. Tijdschr. Voor Diergeneeskd. 2017, 142, 28–31. [Google Scholar]
- De Risio, L.; Bhatti, S.; Muñana, K.; Penderis, J.; Stein, V.; Tipold, A.; Berendt, M.; Farqhuar, R.; Fischer, A.; Long, S.; et al. International veterinary epilepsy task force consensus proposal: Diagnostic approach to epilepsy in dogs. BMC Vet. Res. 2015, 11, 148. [Google Scholar] [CrossRef] [Green Version]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.r-project.org/ (accessed on 22 August 2022).
- Turner, S.D. qqman: An R package for visualizing GWAS results using Q-Q and manhattan plots. J. Open Source Softw. 2018, 3, 731. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012, 44, 821–824. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Boehnke, M.; Wen, X.; Mukherjee, B. Revisiting the genome-wide significance threshold for common variant GWAS. G3 2021, 11, jkaa056. [Google Scholar] [CrossRef]
- Van Poucke, M.; Vandesompele, J.; Mattheeuws, M.; Van Zeveren, A.; Peelman, L.J. A dual fluorescent multiprobe assay for prion protein genotyping in sheep. BMC Infect. Dis. 2005, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Poucke, M.; Martlé, V.; Van Brantegem, L.; Ducatelle, R.; Van Ham, L.; Bhatti, S.; Peelman, L.J. A canine orthologue of the human GFAP c.716G>A (p.Arg239His) variant causes Alexander disease in a Labrador retriever. Eur. J. Hum. Genet. 2015, 24, 852–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perucca, P.; Bahlo, M.; Berkovic, S.F. The Genetics of Epilepsy. Annu. Rev. Genom. Hum. Genet. 2020, 21, 205–230. [Google Scholar] [CrossRef]
- Broeckx, B.J.; Hitte, C.; Coopman, F.; Verhoeven, G.E.; De Keulenaer, S.; De Meester, E.; Derrien, T.; Alfoldi, J.; Lindblad-Toh, K.; Bosmans, T.; et al. Improved canine exome designs, featuring ncRNAs and increased coverage of protein coding genes. Sci. Rep. 2015, 5, 12810. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows—Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Van Der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef] [Green Version]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 112. [Google Scholar] [CrossRef] [Green Version]
- Broeckx, B.J.G.; Peelman, L.; Saunders, J.H.; Deforce, D.; Clement, L. Using variant databases for variant prioritization and to detect erroneous genotype-phenotype associations. BMC Bioinform. 2017, 18, 535. [Google Scholar] [CrossRef] [Green Version]
- Cezard, T.; Cunningham, F.; E Hunt, S.; Koylass, B.; Kumar, N.; Saunders, G.; Shen, A.; Silva, A.F.; Tsukanov, K.; Venkataraman, S.; et al. The European Variation Archive: A FAIR resource of genomic variation for all species. Nucleic Acids Res. 2021, 50, D1216–D1220. [Google Scholar] [CrossRef]
- Choi, Y.; Sims, G.E.; Murphy, S.; Miller, J.R.; Chan, A.P. Predicting the Functional Effect of Amino Acid Substitutions and Indels. PLoS ONE 2012, 7, e46688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adzhubei, I.; Jordan, D.M.; Sunyaev, S.R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. 2013, 76, 7–20. [Google Scholar] [CrossRef] [Green Version]
- Pejaver, V.; Urresti, J.; Lugo-Martinez, J.; Pagel, K.A.; Lin, G.N.; Nam, H.-J.; Mort, M.; Cooper, D.N.; Sebat, J.; Iakoucheva, L.M.; et al. Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nat. Commun. 2020, 11, 5918. [Google Scholar] [CrossRef]
- Pagel, K.A.; Antaki, D.; Lian, A.; Mort, M.; Cooper, D.N.; Sebat, J.; Iakoucheva, L.M.; Mooney, S.D.; Radivojac, P. Pathogenicity and functional impact of non-frameshifting insertion/deletion variation in the human genome. PLoS Comput. Biol. 2019, 15, e1007112. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Anesth. Analg. 2015, 17, 405–424. [Google Scholar] [CrossRef] [Green Version]
- Akaba, Y.; Takeguchi, R.; Tanaka, R.; Takahashi, S. A Complex Phenotype of a Patient with Spastic Paraplegia Type 4 Caused by a Novel Pathogenic Variant in the SPAST Gene. Case Rep. Neurol. 2021, 13, 763–771. [Google Scholar] [CrossRef]
- Dhiman, V. Molecular Genetics of Epilepsy: A Clinician’s Perspective. Ann. Indian Acad. Neurol. 2017, 20, 96–102. [Google Scholar] [CrossRef]
- Sutter, N.B.; Eberle, M.A.; Parker, H.G.; Pullar, B.J.; Kirkness, E.F.; Kruglyak, L.; Ostrander, E.A. Extensive and breed-specific linkage disequilibrium in Canis familiaris. Genome Res. 2004, 14, 2388–2396. [Google Scholar] [CrossRef] [Green Version]
- Hülsmeyer, V.-I.; Fischer, A.; Mandigers, P.J.; DeRisio, L.; Berendt, M.; Rusbridge, C.; Bhatti, S.F.; Pakozdy, A.; Patterson, E.E.; Platt, S.; et al. International Veterinary Epilepsy Task Force’s current understanding of idiopathic epilepsy of genetic or suspected genetic origin in purebred dogs. BMC Vet. Res. 2015, 11, 175. [Google Scholar] [CrossRef] [Green Version]
- Schulze, T.G.; McMahon, F.J. Defining the Phenotype in Human Genetic Studies: Forward Genetics and Reverse Phenotyping. Hum. Hered. 2004, 58, 131–138. [Google Scholar] [CrossRef]
- Ostermann, T.E.; Nessler, J.N.; Urankar, H.; Bachmann, N.; Fechler, C.; Bathen-Nöthen, A.; Tipold, A. Phenotype of Idiopathic Epilepsy in Great Swiss Mountain Dogs in Germany—A Retrospective Study. Front. Vet. Sci. 2022, 9, h921134. [Google Scholar] [CrossRef] [PubMed]
- Santifort, K.M.; Bertijn, E.; Bhatti, S.F.M.; Leegwater, P.; Fischer, A.; Mandigers, P.J.J. Phenotypic Characterization of Idiopathic Epilepsy in Border Collies. Front. Vet. Sci. 2022, 9, 880318. [Google Scholar] [CrossRef] [PubMed]
- Thakran, S.; Guin, D.; Singh, P.; Singh, P.; Kukal, S.; Rawat, C.; Yadav, S.; Kushwaha, S.; Srivastava, A.; Hasija, Y.; et al. Genetic Landscape of Common Epilepsies: Advancing towards Precision in Treatment. Int. J. Mol. Sci. 2020, 21, 7784. [Google Scholar] [CrossRef] [PubMed]
- Seppälä, E.H.; Koskinen, L.L.E.; Gulløv, C.H.; Jokinen, P.; Karlskov-Mortensen, P.; Bergamasco, L.; Körberg, I.B.; Cizinauskas, S.; Oberbauer, A.M.; Berendt, M.; et al. Identification of a Novel Idiopathic Epilepsy Locus in Belgian Shepherd Dogs. PLoS ONE 2012, 7, e33549. [Google Scholar] [CrossRef] [PubMed]
- Koskinen, L.L.E.; Seppälä, E.H.; Belanger, J.M.; Arumilli, M.; Hakosalo, O.; Jokinen, P.; Nevalainen, E.M.; Viitmaa, R.; Jokinen, T.S.; Oberbauer, A.M.; et al. Identification of a common risk haplotype for canine idiopathic epilepsy in the ADAM23 gene. BMC Genom. 2015, 16, 465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koskinen, L.L.E.; Seppälä, E.H.; Weissl, J.; Jokinen, T.S.; Viitmaa, R.; Hänninen, R.L.; Quignon, P.; Fischer, A.; André, C.; Lohi, H. ADAM23 is a common risk gene for canine idiopathic epilepsy. BMC Genet. 2017, 18, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belanger, J.M.; Famula, T.R.; Gershony, L.C.; Palij, M.K.; Oberbauer, A.M. Genome-wide association analysis of idiopathic epilepsy in the Belgian shepherd. Canine Med. Genet. 2020, 7, 12. [Google Scholar] [CrossRef]
- Belanger, J.M.; Heinonen, T.; Famula, T.R.; Mandigers, P.J.J.; Leegwater, P.A.; Hytönen, M.K.; Lohi, H.; Oberbauer, A.M. Validation of a Chromosome 14 Risk Haplotype for Idiopathic Epilepsy in the Belgian Shepherd Dog Found to Be Associated with an Insertion in the RAPGEF5 Gene. Genes 2022, 13, 1124. [Google Scholar] [CrossRef]
- Matute, C. Therapeutic Potential of Kainate Receptors. CNS Neurosci. Ther. 2010, 17, 661–669. [Google Scholar] [CrossRef] [Green Version]
- Epsztein, J.; Represa, A.; Crépel, V. Role of Kainate Receptors in Glutamatergic Synaptic Transmission: Implications for Acute and Chronic Seizure Generation. In Reference Module in Neuroscience and Biobehavioral Psychology; Elsevier: Amsterdam, The Netherlands, 2017; pp. 449–456. [Google Scholar] [CrossRef]
- Sears, S.M.; Hewett, S.J. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp. Biol. Med. 2021, 246, 1069–1083. [Google Scholar] [CrossRef]
- Falcón-Moya, R.; Sihra, T.S.; Rodriguez-Moreno, A. Kainate Receptors: Role in Epilepsy. Front. Mol. Neurosci. 2018, 11, 217. [Google Scholar] [CrossRef]
- Mulle, C.; Sailer, A.; Pérez-Otaño, I.; Dickinson-Anson, H.; Castillo, P.E.; Bureau, I.; Maron, C.; Gage, F.H.; Mann, J.R.; Bettler, B.; et al. Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature 1998, 392, 601–605. [Google Scholar] [CrossRef]
- Telfeian, A.E.; Federoff, H.J.; Leone, P.; During, M.J.; Williamson, A. Overexpression of GluR6 in Rat Hippocampus Produces Seizures and Spontaneous Nonsynaptic Bursting in Vitro. Neurobiol. Dis. 2000, 7, 362–374. [Google Scholar] [CrossRef] [Green Version]
- Heinzen, E.L.; Yoon, W.; Weale, M.E.; Sen, A.; Wood, N.W.; Burke, J.R.; Welsh-Bohmer, K.A.; Hulette, C.M.; Sisodiya, S.M.; Goldstein, D.B. Alternative ion channel splicing in mesial temporal lobe epilepsy and Alzheimer’s disease. Genome Biol. 2007, 8, R32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kortenbruck, G.; Berger, E.; Speckmann, E.-J.; Musshoff, U. RNA Editing at the Q/R Site for the Glutamate Receptor Subunits GLUR2, GLUR5, and GLUR6 in Hippocampus and Temporal Cortex from Epileptic Patients. Neurobiol. Dis. 2001, 8, 459–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Baum, L.W.; Sham, P.C.; Wong, V.; Ng, P.W.; Lui, C.H.T.; Sin, N.C.; Tsoi, T.H.; Tang, C.S.; Kwan, J.S.; et al. Two-stage genome-wide association study identifies variants in CAMSAP1L1 as susceptibility loci for epilepsy in Chinese. Hum. Mol. Genet. 2011, 21, 1184–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, S.; Wang, Y.; Li, H.; Zhang, X. Interaction among GRIK2 gene on epilepsy susceptibility in Chinese children. Acta Neurol. Scand. 2019, 139, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Córdoba, M.; Rodriguez, S.; Morón, D.G.; Medina, N.; Kauffman, M. Expanding the spectrum of Grik2 mutations: Intellectual disability, behavioural disorder, epilepsy and dystonia. Clin. Genet. 2014, 87, 293–295. [Google Scholar] [CrossRef] [PubMed]
- Stolz, J.R.; Foote, K.M.; Veenstra-Knol, H.E.; Pfundt, R.; Broeke, S.W.T.; de Leeuw, N.; Roht, L.; Pajusalu, S.; Part, R.; Rebane, I.; et al. Clustered mutations in the GRIK2 kainate receptor subunit gene underlie diverse neurodevelopmental disorders. Am. J. Hum. Genet. 2021, 108, 1692–1709. [Google Scholar] [CrossRef] [PubMed]
- Pfisterer, U.; Petukhov, V.; Demharter, S.; Meichsner, J.; Thompson, J.J.; Batiuk, M.Y.; Asenjo-Martinez, A.; Vasistha, N.A.; Thakur, A.; Mikkelsen, J.; et al. Identification of epilepsy-associated neuronal subtypes and gene expression underlying epileptogenesis. Nat. Commun. 2020, 11, 5038. [Google Scholar] [CrossRef]
- Sjöstedt, E.; Zhong, W.; Fagerberg, L.; Karlsson, M.; Mitsios, N.; Adori, C.; Oksvold, P.; Edfors, F.; Limiszewska, A.; Hikmet, F.; et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 2020, 367, eaay5947. [Google Scholar] [CrossRef] [PubMed]
- Markham, N.O.; Doll, C.A.; Dohn, M.R.; Miller, R.K.; Yu, H.; Coffey, R.J.; McCrea, P.D.; Gamse, J.T.; Reynolds, A.B. DIPA-family coiled-coils bind conserved isoform-specific head domain of p120-catenin family: Potential roles in hydrocephalus and heterotopia. Mol. Biol. Cell 2014, 25, 2592–2603. [Google Scholar] [CrossRef] [PubMed]
- Accogli, A.; Calabretta, S.; St-Onge, J.; Boudrahem-Addour, N.; Dionne-Laporte, A.; Joset, P.; Azzarello-Burri, S.; Rauch, A.; Krier, J.; Fieg, E.; et al. De Novo Pathogenic Variants in N-cadherin Cause a Syndromic Neurodevelopmental Disorder with Corpus Callosum, Axon, Cardiac, Ocular, and Genital Defects. Am. J. Hum. Genet. 2019, 105, 854–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allison, R.; Edgar, J.R.; Reid, E. Spastin MIT Domain Disease-Associated Mutations Disrupt Lysosomal Function. Front. Neurosci. 2019, 13, 1179. [Google Scholar] [CrossRef] [Green Version]
- Fassio, A.; Falace, A.; Esposito, A.; Aprile, D.; Guerrini, R.; Benfenati, F. Emerging Role of the Autophagy/Lysosomal Degradative Pathway in Neurodevelopmental Disorders with Epilepsy. Front. Cell. Neurosci. 2020, 14, 39. [Google Scholar] [CrossRef] [Green Version]
Absolute | % | ||
---|---|---|---|
Dogs | Total number of dogs | 18 | - |
Sex | Male | 8 | 44% |
Female | 10 | 56% | |
Age of onset (years) | Mean ± s.d. | 3.5 ± 1.4 | - |
Median | 4 | - | |
Maximum | 5 | - | |
Minimum | 0.6 | - | |
Epileptic seizure frequency | Dogs with a known epileptic seizure frequency | 17 | - |
≤1 per year | 3 | 18% | |
1–2 per year | 2 | 12% | |
3–5 per year | 2 | 12% | |
6–11 per year | 2 | 12% | |
1–2 per month | 4 | 24% | |
2–4 per month | 3 | 18% | |
≥1 per week | 1 | 6% | |
Clusters | Occurrence of cluster seizures | 7 | 39% |
Prediction | Owner can predict the epileptic seizure | 12 | 67% |
Triggers | Epileptic seizures can be provoked | 6 | 33% |
Stress | 4 | 67% | |
Sounds | 1 | 17% | |
Excitation | 2 | 33% | |
Getting startled | 1 | 17% | |
Meal | 1 | 17% | |
Exercise | 0 | 0% | |
Light (flashes/TV/sun) | 0 | 0% | |
Epileptic seizure duration | <1 min | 1 | 6% |
1–2 min | 5 | 28% | |
2–5 min | 9 | 50% | |
5–10 min | 2 | 11% | |
10–15 min | 1 | 6% | |
>15 min | 0 | 0% | |
Autonomous symptoms | Dog displays at least one autonomous symptom | 18 | 100% |
Salivating | 17 | 94% | |
Urinating | 13 | 72% | |
Defecation | 3 | 17% | |
Loss of consciousness | 9 | 50% | |
Loss of consciousness possible/unsure | 6 | 33% | |
Semiology | Cycling movements | 16 | 89% |
Generalized epileptic seizure evolved from focal | 12 | 67% | |
Generalized epileptic seizure | 6 | 33% | |
Focal epileptic seizure limited to legs/head | 0 | 0% | |
Unknown epileptic seizure type | 0 | 0% | |
Treatment | Dogs not receiving antiseizure medication | 2 | 11% |
Dogs receiving antiseizure medication | 15 | 83% | |
Dogs responding to treatment | 11 | 73% | |
Single drug | 3 | 20% | |
Phenobarbital | 3 | 100% | |
Imepitoin | 0 | 0% | |
KBr | 0 | 0% | |
Combination | 12 | 80% | |
Phenobarbital, KBr | 4 | 33% | |
Phenobarbital, imepitoin | 1 | 8% | |
Phenobarbital, cannabidiol | 2 | 17% | |
Imepitoin, KBr | 1 | 8% | |
Phenobarbital, KBr, levetiracetam | 1 | 8% | |
Phenobarbital, KBr, cannabidiol | 3 | 25% | |
Phenobarbital, KBr, imepitoin, cannabidiol | 0 | 0% |
Variant no. | Chromosome | CDS | Protein | Gene | Rs | MAF | PROVEAN | PolyPhen-2 | MutPred2/ Indel |
---|---|---|---|---|---|---|---|---|---|
1 * | NC_006589.4: g.38710992_38711006del | XM_022421182.1: c.662_676del | p.(Glu229_Arg233del) | ENAH | rs851038082 | 6.8% | −4.714 | / | 0.271 |
2 | NC_051814.1: g.57941870C > T | XM_038680630.1: c.689C > T | p.(Pro230Leu) | CCDC85A | rs852050632 | 0.5% | −3.165 | 1 | 0.086 |
3 | NC_051814.1: g.64662153A > T | XM_038680741.1: c.51T > A | p.(Asp17Glu) | VPS54 | / | / | −0.470 | 0.993 | 0.09 |
4 ** | NC_051816.1: g.60469829C > T | XM_038684247.1: c.589C > T | p.(Leu197Phe) | GRIK2 | / | / | −1.308 | 0.201 | 0.292 |
5 | NC_051821.1: g.25973635G > A | XM_038691182.1: c.493G > A | p.(Glu165Lys) | SPAST | rs850566951 | 1.6% | −3.165 | 0.997 | 0.643 |
6 | NC_051842.1: g.8412424G > C | XM_038448399.1: c.578G > C | p.(Arg193Pro) | BRINP3 | rs852865827 | 0.7% | −4.929 | 0.999 | 0.813 |
CCDC85A | SPAST | |||||||
---|---|---|---|---|---|---|---|---|
Wt/Wt | Wt/Vt | Vt/Vt | Vt% | Wt/Wt | Wt/Vt | Vt/Vt | Vt% | |
Cases | 11 | 2 | 5 | 33.3% | 11 | 6 | 1 | 22.2% |
Controls | 67 | 27 | 6 | 19.5% | 82 | 16 | 2 | 10.0% |
Tot_pop | 186 | 82 | 24 | 22.3% | 242 | 47 | 3 | 9.1% |
Criterion | Result | Remarks | Conclusion |
---|---|---|---|
Significant OR > 5 (PS4) | OR: 6.0; 95% CI: 1.6–22.6 | PS4 fulfilled | |
Low MAF in population databases (PM2) | 0.5% in EVA database | Homologous variant in humans has an much lower frequency in multiple population studies | PM2 fulfilled |
Multiple lines of computational evidence (PP3/BP3) | 2/4 programs predicted a deleterious effect, and 2/4 predicted a neutral effect. | When in silico predictions disagree, this evidence should not be used to classify a variant | PP3/BP3 cannot be used |
Variant segregation (PP1/BS4) | N/A | Insufficient family material available to investigate cosegregation in multiple affected family members | PP1/BS4 cannot be used |
Functional studies show deleterious (PS3) or no deleterious (BS3) effect | Enhanced expression in the brain; possible interaction with neuron-specific catenin p120-1, which probably plays a critical role in synaptic homeostasis and plasticity | Too few functional studies exist to fulfill these criteria | PS3/PS3 not fulfilled |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beckers, E.; Bhatti, S.F.M.; Van Poucke, M.; Polis, I.; Farnir, F.; Van Nieuwerburgh, F.; Mandigers, P.; Van Ham, L.; Peelman, L.; Broeckx, B.J.G. Identification of a Novel Idiopathic Epilepsy Risk Locus and a Variant in the CCDC85A Gene in the Dutch Partridge Dog. Animals 2023, 13, 810. https://doi.org/10.3390/ani13050810
Beckers E, Bhatti SFM, Van Poucke M, Polis I, Farnir F, Van Nieuwerburgh F, Mandigers P, Van Ham L, Peelman L, Broeckx BJG. Identification of a Novel Idiopathic Epilepsy Risk Locus and a Variant in the CCDC85A Gene in the Dutch Partridge Dog. Animals. 2023; 13(5):810. https://doi.org/10.3390/ani13050810
Chicago/Turabian StyleBeckers, Evy, Sofie F. M. Bhatti, Mario Van Poucke, Ingeborgh Polis, Frédéric Farnir, Filip Van Nieuwerburgh, Paul Mandigers, Luc Van Ham, Luc Peelman, and Bart J. G. Broeckx. 2023. "Identification of a Novel Idiopathic Epilepsy Risk Locus and a Variant in the CCDC85A Gene in the Dutch Partridge Dog" Animals 13, no. 5: 810. https://doi.org/10.3390/ani13050810