The Impact of Biotechnologically Produced Lactobionic Acid in the Diet of Lactating Dairy Cows on Their Performance and Quality Traits of Milk
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Dairy Lactating Cows’ Performances and Quality Traits of Milk Samples
2.3. Chemicals, Standards, and Reagents
2.4. Production of Lactobionic Acid from Pre-Concentrated Whey
2.5. The HPLC-RID-DAD Analytical Conditions for Lactobionic Acid and Lactose Determination
2.6. Acid Hydrolysis of Milk for Amino Acid Determination
2.7. The HPLC-ESI-TQ-MS/MS Analytical Conditions for Amino Acids
2.8. Preparation of Lipid Fraction via Alkaline-Assisted Hydrolysis with Subsequent Liquid–Liquid Extraction
2.9. Preparation of Fatty Acids for GC-MS Analysis
2.10. The GC Conditions for FAMEs Analysis
2.11. Statistical Analysis
3. Results and Discussion
3.1. Animals’ Performances and Quality Traits of Milk
3.2. The Changes in Amino Acids and Their Quality Indices in Relation to Feeding Trial
3.3. The Changes in Fatty Acids and Their Nutritional Indexes of Milk Lipids in Relation to Feeding Trial
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT EU Dairies Increased Production in 2020. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20211118-1 (accessed on 14 December 2022).
- Ozel, B.; McClements, D.J.; Arikan, C.; Kaner, O.; Oztop, M.H. Challenges in dried whey powder production: Quality problems. Food Res. Int. 2022, 160, 111682. [Google Scholar] [CrossRef]
- Marx, M.; Kulozik, U. Thermal denaturation kinetics of whey proteins in reverse osmosis and nanofiltration sweet whey concentrates. Int. Dairy J. 2018, 85, 270–279. [Google Scholar] [CrossRef]
- Meneses, Y.E.; Flores, R.A. Feasibility, safety, and economic implications of whey-recovered water in cleaning-in-place systems: A case study on water conservation for the dairy industry. J. Dairy Sci. 2016, 99, 3396–3407. [Google Scholar] [CrossRef] [Green Version]
- Chegini, G.; HamidiSepehr, A.; Dizaji, M.F.; Mirnezami, S.V. Study of physical and chemical properties of spray drying whey powder. Int. J. Recycl. Org. Waste Agric. 2014, 3, 62. [Google Scholar] [CrossRef] [Green Version]
- Zandona, E.; Blažić, M.; Režek Jambrak, A. Whey utilisation: Sustainable uses and environmental approach. Food Technol. Biotechnol. 2021, 59, 147–161. [Google Scholar] [CrossRef]
- Lievore, P.; Simões, D.R.S.; Silva, K.M.; Drunkler, N.L.; Barana, A.C.; Nogueira, A.; Demiate, I.M. Chemical characterisation and application of acid whey in fermented milk. J. Food Sci. Technol. 2015, 52, 2083–2092. [Google Scholar] [CrossRef] [Green Version]
- Marciniak, A.; Suwal, S.; Touhami, S.; Chamberland, J.; Pouliot, Y.; Doyen, A. Production of highly purified fractions of α-lactalbumin and β-lactoglobulin from cheese whey using high hydrostatic pressure. J. Dairy Sci. 2020, 103, 7939–7950. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Sal, M.H. Separation of casein glycomacropeptide from whey: Methods of potential industrial application*. Int. J. Dairy Sci. 2010, 5, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Tong, T.; Sun, J.; Xu, Y.; Zhao, Z.; Liao, D. Purification and characterization of antioxidative peptides from round scad (Decapterus maruadsi) muscle protein hydrolysate. Food Chem. 2014, 154, 158–163. [Google Scholar] [CrossRef]
- Fischer, E.; Meyer, J. Oxydation des milchzuckers (Oxidation of the milk sugar). In Untersuchungen Über Kohlenhydrate und Fermente (1884–1908); Fischer, E., Ed.; Springer: Berlin/Heidelberg, Germany, 1909; pp. 655–658. [Google Scholar]
- Nakano, H.; Kiryu, T.; Kiso, T.; Murakami, H. Biocatalytic production of lactobionic acid. In Biocatalysis and Biomolecular Engineering; Ching, H., Jei-Fu, S., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; pp. 391–404. ISBN 9780470487594. [Google Scholar]
- Kokoh, K.B.; Alonso-Vante, N. Electrocatalytic oxidation of lactose on gold nanoparticle modified carbon in carbonate buffer. J. Appl. Electrochem. 2006, 36, 147–151. [Google Scholar] [CrossRef]
- Minal, N.; Bharwade; Balakrishnan, S.; Chaudhary, N.N.; Jain, A.K. Lactobionic acid: Significance and application in food and pharmaceutical. Int. J. Fermented Foods 2017, 6, 25. [Google Scholar] [CrossRef]
- Hoogendoorn, K.H.; Crommelin, D.J.A.; Jiskoot, W. Formulation of cell-based medicinal products: A question of life or death? J. Pharm. Sci. 2021, 110, 1885–1894. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, P.; Zheng, Z.; Ouyang, J. Valorization of cheese whey to lactobionic acid by a novel strain Pseudomonas fragi and identification of enzyme involved in lactose oxidation. Microb. Cell Fact. 2022, 21, 184. [Google Scholar] [CrossRef] [PubMed]
- Sarenkova, I.; Sáez-Orviz, S.; Ciprovica, I.; Rendueles, M.; Díaz, M. Lactobionic acid production by Pseudomonas taetrolens in a fed-batch bioreactor using acid whey as substrate. Int. J. Dairy Technol. 2022, 75, 361–371. [Google Scholar] [CrossRef]
- Sarenkova, I.; Sáez-Orviz, S.; Rendueles, M.; Ciprovica, I.; Zagorska, J.; Díaz, M. Downstream approach routes for the purification and recovery of lactobionic acid. Foods 2022, 11, 583. [Google Scholar] [CrossRef] [PubMed]
- Zagorska, J.; Degola, L.; Strazdins, I.; Gramatina, I.; Kince, T.; Galoburda, R. Effects of lactobionic acid on pig growth performance and chemical composition of pork. Animals 2022, 12, 1138. [Google Scholar] [CrossRef]
- Lakstina, J.; Aboltina, I.; Vanaga, L.; Ciprovica, I.; Jonkus, D.; Zagorska, J.; Cinkmanis, I. The novel solution for acid whey permeate application in animal feeding. Rural Sustain. Res. 2020, 44, 1–7. [Google Scholar] [CrossRef]
- Kimura, T.; Donbo, M. Feed Additive for Laying Hens and Feed Containing the Additive. KR101147630B1, 3 February 2005. [Google Scholar]
- Schutz, M.M.; Hansen, L.B.; Steuernagel, G.R.; Reneau, J.K.; Kuck, A.L. Genetic parameters for somatic cells, protein, and fat in milk of Holsteins. J. Dairy Sci. 1990, 73, 494–502. [Google Scholar] [CrossRef]
- Chavan, U.D.; McKenzie, D.B.; Shahidi, F. Functional properties of protein isolates from beach pea (Lathyrus maritimus L.). Food Chem. 2001, 74, 177–187. [Google Scholar] [CrossRef]
- Palmonari, A.; Cavallini, D.; Sniffen, C.J.; Fernandes, L.; Holder, P.; Fagioli, L.; Fusaro, I.; Biagi, G.; Formigoni, A.; Mammi, L. Short communication: Characterization of molasses chemical composition. J. Dairy Sci. 2020, 103, 6244–6249. [Google Scholar] [CrossRef]
- Saric, L.; Filipcev, B.; Simurina, O.; Plavsic, D.; Saric, B.; Lazarevic, J.; Milovanovic, I. Sugar beet molasses: Properties and applications in osmotic dehydration of fruits and vegetables. Food Feed Res. 2016, 43, 135–144. [Google Scholar] [CrossRef]
- Narala, V.R.; Zagorska, J.; Sarenkova, I.; Ciprovica, I.; Majore, K. Acid whey valorization for biotechnological lactobionic acid bio-production. J. Hum. Earth Futur. 2022, 3, 46–55. [Google Scholar] [CrossRef]
- Radenkovs, V.; Juhnevica-Radenkova, K.; Kviesis, J.; Lazdina, D.; Valdovska, A.; Vallejo, F.; Lacis, G. Lignocellulose-degrading enzymes: A biotechnology platform for ferulic acid production from agro-industrial side streams. Foods 2021, 10, 3056. [Google Scholar] [CrossRef]
- Penner, G.B.; Oba, M. Increasing dietary sugar concentration may improve dry matter intake, ruminal fermentation, and productivity of dairy cows in the postpartum phase of the transition period. J. Dairy Sci. 2009, 92, 3341–3353. [Google Scholar] [CrossRef] [Green Version]
- Jonkus, D.; Kairisha, D. Analysis of daily milk productivity change in dairy cows. Vererinarija Zootech. 2004, 27, 60–64. [Google Scholar]
- Ruska, D.; Jonkus, D. Effect of dietary crude protein concentration on milk productivity traits in early lactation dairy cows. Agron. Res. 2021, 19, 1136–1141. [Google Scholar] [CrossRef]
- Vijayakumar, M.; Park, J.H.; Ki, K.S.; Lim, D.H.; Kim, S.B.; Park, S.M.; Jeong, H.Y.; Park, B.Y.; Kim, T. Il The effect of lactation number, stage, length, and milking frequency on milk yield in Korean Holstein dairy cows using automatic milking system. Asian-Australas. J. Anim. Sci. 2017, 30, 1093–1098. [Google Scholar] [CrossRef]
- National Research Council Designing Foods: Animal Product Options in the Marketplace; The National Academies Press: Washington, DC, USA, 1988.
- Lövfors, W.; Ekström, J.; Jönsson, C.; Strålfors, P.; Cedersund, G.; Nyman, E. A systems biology analysis of lipolysis and fatty acid release from adipocytes in vitro and from adipose tissue in vivo. PLoS ONE 2021, 16, e0261681. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.F.; Titgemeyer, E.C.; Nagaraja, T.G.; Watanabe, D.H.M.; Felizari, L.D.; Millen, D.D.; Smith, Z.K.; Johnson, B.J. Influence of cane molasses inclusion to dairy cow diets during the transition period on rumen epithelial development. Animals 2021, 11, 1230. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Denise Beaulieu, A.; Barbano, D.M. Feed and animal factors influencing milk fat composition. J. Dairy Sci. 1993, 76, 1753–1771. [Google Scholar] [CrossRef]
- Abreu, D.; Dubeux, J.C.B.; Queiroz, L.D.; Jaramillo, D.; Rodrigo, E.; Silva, D.S.; Cleef, V.; Vela-Garcia, C.; Dilorenzo, N.; Ruiz-Moreno, M. Supplementation of molasses-based liquid feed for cattle fed on limpograss hay. Animals 2022, 12, 2227. [Google Scholar] [CrossRef]
- Ghizzi, L.G.; Pupo, M.R.; Heinzen Jr., C.; Del Valle, T.A.; Rennó, F.P.; Ferraretto, L.F. Effect of molasses addition at ensiling on ruminal in situ dry matter and nutrient degradation of whole-plant soybean silage harvested at different phenological stages. Agric. Sci. 2022, 13, 268–281. [Google Scholar] [CrossRef]
- Gellrich, K.; Meyer, H.H.D.; Wiedemann, S. Composition of major proteins in cow milk differing in mean protein concentration during the first 155 days of lactation and the influence of season as well as shortterm restricted feeding in early and mid-lactation. Czech J. Anim. Sci. 2014, 59, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Craig, A.L.; Gordon, A.W.; Hamill, G.; Ferris, C.P. Milk composition and production efficiency within feed-to-yield systems on commercial dairy farms in Northern ireland. Animals 2022, 12, 1771. [Google Scholar] [CrossRef] [PubMed]
- Schingoethe, D.J. Dietary influence on protein level in milk and milk yield in dairy cows. Anim. Feed Sci. Technol. 1996, 60, 181–190. [Google Scholar] [CrossRef]
- Jonkus, D.; Kairisa, D.; Paura, L.; Kaukis, J. Analysis of influencing factors for cows’ milk freezing point. In Proceedings of the International Scientific Conference “Implication of Different Production Technologies on Animal Health and Food Products Quality Indices”, Sigulda, Latvia, 4–5 December 2008; pp. 128–135. [Google Scholar]
- Murphy, J.J. The effects of increasing the proportion of molasses in the diet of milking dairy cows on milk production and composition. Anim. Feed Sci. Technol. 1999, 78, 189–198. [Google Scholar] [CrossRef]
- Tari, N.R.; Fan, M.Z.; Archbold, T.; Kristo, E.; Guri, A.; Arranz, E.; Corredig, M. Effect of milk protein composition of a model infant formula on the physicochemical properties of in vivo gastric digestates. J. Dairy Sci. 2018, 101, 2851–2861. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Wang, G. Milk protein polymer and its application in environmentally safe adhesives. Polymers 2016, 8, 324. [Google Scholar] [CrossRef] [Green Version]
- Emery, R.S. Feeding for increased milk protein. J. Dairy Sci. 1978, 61, 825–828. [Google Scholar] [CrossRef]
- Halasa, T.; Kirkeby, C. Differential somatic cell count: Value for udder health management. Front. Vet. Sci. 2020, 7, 609055. [Google Scholar] [CrossRef]
- Shook, G.E.; Schutz, M.M. Selection on somatic cell score to improve resistance to mastitis in the United States. J. Dairy Sci. 1994, 77, 648–658. [Google Scholar] [CrossRef]
- Smith, J.W.; Chapa, A.M.; Gilson, W.D.; Ely, L.O. Somatic Cell Count Benchmarks; Cooperative Extension: Fairbanks, AK, USA, 2012; pp. 1–30. [Google Scholar]
- Roy, B.; Brahma, B.; Ghosh, S.; Pankaj, P.K.; Mandal, G. Evaluation of milk urea concentration as useful indicator for dairy herd management: A review. Asian J. Anim. Vet. Adv. 2011, 6, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Rzewuska, K.; Strabel, T. Genetic parameters for milk urea concentration and milk traits in Polish Holstein-Friesian cows. J. Appl. Genet. 2013, 54, 473–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Duinkerken, G.; Smits, M.C.J.; André, G.; Šebek, L.B.J.; Dijkstra, J. Milk urea concentration as an indicator of ammonia emission from dairy cow barn under restricted grazing. J. Dairy Sci. 2011, 94, 321–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mordenti, A.L.; Giaretta, E.; Campidonico, L.; Parazza, P.; Formigoni, A. A review regarding the use of molasses in animal nutrition. Animals 2021, 11, 115. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.E.; Lee, H.G. Amino acids supplementation for the milk and milk protein production of dairy cows. Animals 2021, 11, 2118. [Google Scholar] [CrossRef]
- Glass, L.; Hedrick, T.I. Nutritional composition of sweet- and acid-type dry wheys. I. Major factors including amino acids. J. Dairy Sci. 1977, 60, 185–189. [Google Scholar] [CrossRef]
- Guinguina, A.; Yan, T.; Bayat, A.R.; Lund, P.; Huhtanen, P. The effects of energy metabolism variables on feed efficiency in respiration chamber studies with lactating dairy cows. J. Dairy Sci. 2020, 103, 7983–7997. [Google Scholar] [CrossRef]
- Fehlberg, L.K.; Guadagnin, A.R.; Thomas, B.L.; Sugimoto, Y.; Shinzato, I.; Cardoso, F.C. Feeding rumen-protected lysine prepartum increases energy-corrected milk and milk component yields in Holstein cows during early lactation. J. Dairy Sci. 2020, 103, 11386–11400. [Google Scholar] [CrossRef]
- Ravelo, A.D.; Calvo Agustinho, B.; Arce-Cordero, J.; Monterio, H.F.; Bennet, S.L.; Sarmikasoglou, E.; Vinyard, J.; Vieira, E.R.Q.; Lobo, R.R.; Ferraretto, L.F.; et al. Effects of partially replacing dietary corn with molasses, condensed whey permeate, or treated condensed whey permeate on ruminal microbial fermentation. J. Dairy Sci. 2022, 105, 2215–2227. [Google Scholar] [CrossRef]
- Wang, C.; Liu, H.Y.; Wang, Y.M.; Yang, Z.Q.; Liu, J.X.; Wu, Y.M.; Yan, T.; Ye, H.W. Effects of dietary supplementation of methionine and lysine on milk production and nitrogen utilization in dairy cows. J. Dairy Sci. 2010, 93, 3661–3670. [Google Scholar] [CrossRef] [PubMed]
- Mazinani, M.; Naserian, A.A.; Rude, B.J.; Tahmasbi, A.M.; Valizadeh, R. Effects of feeding rumen-protected amino acids on the performance of feedlot calves. J. Adv. Vet. Anim. Res. 2020, 7, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Landi, N.; Ragucci, S.; Di Maro, A. Amino acid composition of milk from cow, sheep and goat raised in Ailano and Valle Agricola, two localities of ‘Alto Casertano’ (Campania region). Foods 2021, 10, 2431. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, M. Metabolomic profiles in yak mammary gland tissue during the lactation cycle. PLoS ONE 2019, 14, e0219220. [Google Scholar] [CrossRef]
- Tang, Q.; Tan, P.; Ma, N.; Ma, X. Physiological functions of threonine in animals: Beyond nutrition metabolism. Nutrients 2021, 13, 2592. [Google Scholar] [CrossRef]
- Falavigna, G.; de Araújo Junior, J.A.; Rogero, M.M.; de Pires, I.S.O.; Pedrosa, R.G.; Martins Junior, E.; de Castro, I.A.; Tirapegui, J. Effects of diets supplemented with branched-chain amino acids on the performance and fatigue mechanisms of rats submitted to prolonged physical exercise. Nutrients 2012, 4, 1767–1780. [Google Scholar] [CrossRef] [Green Version]
- Takeshita, Y.; Takamura, T.; Kita, Y.; Ando, H.; Ueda, T.; Kato, K.; Misu, H.; Sunagozaka, H.; Sakai, Y.; Yamashita, T.; et al. Beneficial effect of branched-chain amino acid supplementation on glycemic control in chronic hepatitis C patients with insulin resistance: Implications for type 2 diabetes. Metabolism 2012, 61, 1388–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melnik, B.C.; Schmitz, G.; John, S.M.; Carrera-Bastos, P.; Lindeberg, S.; Cordain, L. Metabolic effects of milk protein intake strongly depend on pre-existing metabolic and exercise status. Nutr. Metab. 2013, 10, 60. [Google Scholar] [CrossRef] [Green Version]
- Hulmi, J.J.; Lockwood, C.M.; Stout, J.R. Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein. Nutr. Metab. 2010, 7, 28–31. [Google Scholar] [CrossRef] [Green Version]
- Phimphilai, S.; Galyean, R.D.; Wardlaw, F.B. Relationship of two in vitro assays in protein efficiency ratio determination on selected agricultural by-products. Songklanakarin J. Sci. Technol. 2006, 28, 81–87. [Google Scholar]
- Friedman, M. Nutritional value of proteins from different food sources. A review. J. Agric. Food Chem. 1996, 44, 6–29. [Google Scholar] [CrossRef]
- Lee, Y.B.; Elliott, J.G.; Rickansrud, D.A.; Hagberg, E.Y.C. Predicting protein efficiency ratio by chemical determination of connective-tissue content. J. Food Sci. 1978, 43, 1359–1362. [Google Scholar] [CrossRef]
- Sarwar, G. The protein digestibility-corrected amino acid score method overestimates quality of proteins containing antinutritional factors and of poorly digestible proteins supplemented with limiting amino acids in rats. J. Nutr. 1997, 127, 758–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupont, D.; Tome, D. Milk proteins: Digestion and absorption in the gastrointestinal tract. In Milk Proteins; Academic Press: New York, NY, USA, 2014; pp. 557–569. [Google Scholar] [CrossRef]
- Nosworthy, M.G.; Franczyk, A.J.; Medina, G.; Neufeld, J.; Appah, P.; Utioh, A.; Frohlich, P.; House, J.D. Effect of processing on the in vitro and in vivo protein quality of yellow and green split peas (Pisum sativum). J. Agric. Food Chem. 2017, 65, 7790–7796. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Kashyap, S.; Calvez, J.; Devi, S.; Azzout-Marniche, D.; Tomé, D.; Kurpad, A.V.; Gaudichon, C. Evaluation of protein quality in humans and insights on stable isotope approaches to measure digestibility—A review. Adv. Nutr. 2022, 13, 1131–1143. [Google Scholar] [CrossRef]
- Pastor-Cavada, E.; Juan, R.; Pastor, J.E.; Alaiz, M.; Vioque, J. Protein and amino acid composition of select wild legume species of tribe Fabeae. Food Chem. 2014, 163, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Mecha, E.; Natalello, S.; Carbas, B.; da Silva, A.B.; Leitão, S.T.; Brites, C.; Veloso, M.M.; Rubiales, D.; Costa, J.; Cabral, M.d.F.; et al. Disclosing the nutritional quality diversity of portuguese common beans−the missing link for their effective use in protein quality breeding programs. Agronomy 2021, 11, 221. [Google Scholar] [CrossRef]
- Holt, L.; Snyderman, S. World Health Organization: Technical Report Series; WHO: Geneva, Switzerland, 1965; Volume 35. [Google Scholar]
- Månsson, H.L. Fatty acids in bovine milk fat. Food Nutr. Res. 2008, 52, 1821. [Google Scholar] [CrossRef] [Green Version]
- de Torres, R.N.S.; Bertoco, J.P.A.; de Arruda, M.C.G.; de Melo Coelho, L.; Paschoaloto, J.R.; de Almeida Júnior, G.A.; Ezequiel, J.M.B.; Almeida, M.T.C. Meta-analysis to evaluate the effect of including molasses in the diet for dairy cows on performance, milk fat synthesis and milk fatty acid. Livest. Sci. 2021, 250, 104551. [Google Scholar] [CrossRef]
- Oba, M. Review: Effects of feeding sugars on productivity of lactating dairy cows. Can. J. Anim. Sci. 2011, 91, 37–46. [Google Scholar] [CrossRef]
- Siverson, A.; Vargas-Rodriguez, C.F.; Bradford, B.J. Short communication: Effects of molasses products on productivity and milk fatty acid profile of cows fed diets high in dried distillers grains with solubles. J. Dairy Sci. 2014, 97, 3860–3865. [Google Scholar] [CrossRef] [Green Version]
- Brito, A.F.; Petit, H.V.; Pereira, A.B.D.; Soder, K.J.; Ross, S. Interactions of corn meal or molasses with a soybean-sunflower meal mix or flaxseed meal on production, milk fatty acid composition, and nutrient utilization in dairy cows fed grass hay-based diets. J. Dairy Sci. 2015, 98, 443–457. [Google Scholar] [CrossRef]
- Gómez-Cortés, P.; Frutos, P.; Mantecón, A.R.; Juárez, M.; De La Fuente, M.A.; Hervás, G. Milk production, conjugated linoleic acid content, and in vitro ruminal fermentation in response to high levels of soybean oil in dairy Ewe diet. J. Dairy Sci. 2008, 91, 1560–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paszczyk, B.; Tońska, E. Fatty acid content, lipid quality indices, and mineral composition of cow milk and yogurts produced with different starter cultures enriched with Bifidobacterium bifidum. Appl. Sci. 2022, 12, 6558. [Google Scholar] [CrossRef]
- Lobos-Ortega, I.; Pizarro-Aránguiz, N.; Subiabre-Riveros, I.; Torres- Püschel, D.; Silva-Lemus, M.; Pavez-Andrades, P.; Urrutia, N.L. Determination of nutritional health indexes of fresh bovine milk using near infrared spectroscopy. Grasas Aceites 2022, 73, 0450211. [Google Scholar] [CrossRef]
- Rojas, M.M.; Villalpando, D.M.; Alexander-Aguilera, A.; Ferrer, M.; García, H.S. Effect of CLA supplementation on factors related to vascular dysfunction in arteries of orchidectomized rats. Prostaglandins Other Lipid Mediat. 2021, 157, 106586. [Google Scholar] [CrossRef]
- Jeung, H.L.; Kyung, H.C.; Lee, K.T.; Mee, R.K. Antiatherogenic effects of structured lipid containing conjugated linoleic acid in C57BL/6J mice. J. Agric. Food Chem. 2005, 53, 7295–7301. [Google Scholar] [CrossRef]
- Silva, D.A.; Júnior, V.R.R.; Ruas, J.R.M.; Santana, P.F.; Borges, L.A.; Caldeira, L.A.; dos Reis, S.T.; de Menezes, J.C.; Lanna, D.P.D. Chemical and fatty acid composition of milk from crossbred cows subjected to feed restriction. Pesqui. Agropecu. Bras. 2019, 54, e000051. [Google Scholar] [CrossRef]
- Sharifi, M.; Taghizadeh, A.; Hosseinkhani, A.; Mohammadzadeh, H.; Palangi, V.; MacIt, M.; Salem, A.Z.M.; Abachi, S. Nitrate supplementation at two forage levels in dairy cows feeding: Milk production and composition, fatty acid profiles, blood metabolites, ruminal fermentation, and hydrogen sink. Ann. Anim. Sci. 2022, 22, 711–722. [Google Scholar] [CrossRef]
- Chen, S.; Bobe, G.; Zimmerman, E.; Hammond, E.G.; Luhman, C.M.; Boylston, T.D.; Freeman, A.E.; Beitz, D.C. Physical and sensory properties of dairy products from cows with various milk fatty acid compositions. J. Agric. Food Chem. 2004, 52, 3422–3428. [Google Scholar] [CrossRef]
- Kasapidou, E.; Basdagianni, Z.; Papadopoulos, V.; Karaiskou, C.; Kesidis, A.; Tsiotsias, A. Effects of intensive and semi-intensive production on sheep milk chemical composition, physicochemical characteristics, fatty acid profile, and nutritional indices. Animals 2021, 11, 2578. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
Quality Trait, % | Lba Rich Whey, 1 kg | Lba Rich Whey, 5 kg | Molasse, 1 kg ** |
---|---|---|---|
Carbohydrates | 15.1 ± 0.7 * | 75.6 ± 3.7 * | 45.5–62.1 |
Crude protein | 3.7 ± 0.1 | 18.7 ± 0.4 | 6.0–13.5 |
Fat | 0.06 ± 0.01 | 0.2 ± 0.0 | 0.2 |
pH | 5.6 ± 0.1 | 5.6 ± 0.1 | 7.1 |
LBA, g L−1 | 11.3 ± 0.3 | 56.5 ± 4.3 | – |
Dry matter | 22.5 ± 1.2 | 22.5 ± 1.2 | 75.1–84.0 |
Indices, g L−1 | Raw Whey |
---|---|
Total solids | 20.7–25.1 |
pH | 5.9–6.2 |
Lactose | 15.3–18.0 |
Salts | 2.2–2.5 |
Quality Trait | Study Group | |||
---|---|---|---|---|
Group A | Group B | |||
Study Phase | ||||
Begin | End | Begin | End | |
Milk yield, kg d−1 | 35.7 ± 2.9 aA | 28.8 ± 2.0 (<19.3) bA | 37.4 ± 2.0 aA | 28.8 ± 2.9 (<23.0) bA |
Fat content, % | 3.4 ± 0.1 bB | 3.9 ± 0.2 (>14.7) aB | 4.2 ± 0.3 aA | 4.5 ± 0.4 (>7.1) aA |
Protein, % | 3.3 ± 0.1 bB | 3.6 ± 0.1 (>9.1) aB | 3.8 ± 0.2 aA | 3.8 ± 0.2 (0)a A |
Casein, % | 2.6 ± 0.1 bB | 2.8 ± 0.2 (>7.7) aB | 3.0 ± 0.1 aA | 3.0 ± 0.1 (0) aA |
SCS | 3.2 ± 0.8 bA | 3.5 ± 0.8 aA | 2.3 ± 0.4 aA | 3.0 ± 0.4 aA |
Urea, mg dL−1 | 23.3 ± 0.7 bA | 15.1 ± 0.9 (<35.2) aB | 23.5 ± 2.0 aA | 18.4 ± 0.9 (<21.7) bA |
ECM, kg d−1 | 32.5 ± 2.4 aB | 28.8 ± 2.0 (<11.4) bA | 39.7 ± 2.8 aA | 30.5 ± 2.2 (>37.8) bB |
Amino Acid | Study Group | |||
---|---|---|---|---|
Group A | Group B | |||
Study Phase | ||||
Begin | End | Begin | End | |
Flavor Amino Acids | ||||
Alanine (Ala) | 3.1 ± 0.0 aA | 3.2 ± 0.0 (>3.2) aA | 3.1 ± 0.0 aA | 3.3 ± 0.0 (>6.5) aA |
Arginine (Arg) | 3.2 ± 0.0 aA | 3.2 ± 0.0 (0) aA | 3.3 ± 0.0 aA | 3.3 ± 0.0 (0) aA |
Asparagine (Asp) | 7.7 ± 0.1 aA | 7.5 ± 0.2 (<2.6) bA | 7.4 ± 0.1 aB | 7.5 ± 0.0 (>1.4) aA |
Cysteine (Cys) | 0.8 ± 0.0 aA | 0.8 ± 0.0 (0) aA | 0.8 ± 0.0 aA | 0.7 ± 0.0 (<12.5) aA |
Glycine (Gly) | 1.9 ± 0.0 aA | 1.7 ± 0.0 (<10.5) bA | 1.9 ± 0.0 aA | 1.8 ± 0.0 (<5.3) aA |
Glutamine (Glu) | 21.7 ± 0.2 aA | 21.3 ± 0.1 (<1.8) aA | 21.3 ± 0.1 aB | 20.7 ± 0.2 (<2.8) bB |
Proline (Pro) | 9.2 ± 0.1 aA | 9.1 ± 0.0 (<1.1) aA | 9.1 ± 0.1 aA | 9.2 ± 0.1 (>1.1) aA |
Serine (Ser) | 5.2 ± 0.0 aA | 5.3 ± 0.0 (>1.9) aA | 5.2 ± 0.0 aA | 5.3 ± 0.0 (>1.9) aA |
∑SUM | 52.8 ± 0.4 aA | 52.1 ± 0.3 (<1.3) aA | 52.1 ± 0.4 aB | 51.8 ± 0.3 (<0.6) bB |
Essential Amino Acids | ||||
Histidine (His) | 2.9 ± 0.0 aA | 3.0 ± 0.0 (>3.4) aA | 2.9 ± 0.0 aA | 2.8 ± 0.0 (<3.4) aA |
Isoleucine (Ile) | 4.9 ± 0.0 bB | 5.1 ± 0.0 (>4.1) aB | 5.1 ± 0.0 bA | 5.4 ± 0.0 (>5.9) aA |
Leucine (Leu) | 9.3 ± 0.1 aB | 9.1 ± 0.1 (<2.2) bB | 9.5 ± 0.1 aA | 9.5 ± 0.1 (0) aA |
Lysine (Lys) | 8.2 ± 0.1 bB | 8.6 ± 0.0 (>4.9) aA | 8.4 ± 0.1 aA | 8.1 ± 0.0 (<3.6) bB |
Tyrosine (Tyr) | 4.6 ± 0.0 bA | 4.9 ± 0.0 (>6.5) aA | 4.7 ± 0.0 bA | 4.9 ± 0.0 (>4.3) aA |
Threonine (Thr) | 4.3 ± 0.0 aA | 4.2 ± 0.0 (<2.3) aA | 4.3 ± 0.0 aA | 4.1 ± 0.0 (<4.7) bA |
Valine (Val) | 6.0 ± 0.0 aA | 5.9 ± 0.0 (<1.7) aB | 6.1 ± 0.0 aA | 6.3 ± 0.1 (>3.3) bA |
∑SUM | 40.2 ± 0.2 aB | 40.8 ± 0.1 (>1.5) aB | 41.0 ± 0.2 aA | 41.1± 0.2 (>0.2) aA |
Flavor and Essential Amino Acids | ||||
Methionine (Met) | 2.3 ± 0.0 aA | 2.4 ± 0.0 (>4.3) aA | 2.3 ± 0.0 aA | 2.3 ± 0.0 (0) aA |
Phenylalanine (Phe) | 4.6 ± 0.0 aA | 4.7 ± 0.0 (>2.2) aA | 4.6 ± 0.0 aA | 4.7 ± 0.0 (>2.2) aA |
∑SUM | 6.9 ± 0.0 aA | 7.0 ± 0.0 (>1.4) aA | 6.9 ± 0.0 aA | 7.0 ± 0.0 (>1.4) aA |
Branched-Chain Amino Acids | ||||
20.2 ± 0.2 aB | 20.1 ± 0.1(<0.5) aA | 20.7 ± 0.2 bA | 21.2 ± 0.2 (>2.4) aA | |
Amino Acids’ Quality Indices | ||||
PER1 | 3.1 aA | 3.0 (<3.2) aB | 3.2 aA | 3.2 (0) aA |
PER2 | 3.3 aA | 3.2 (<3.0) aA | 3.3 aA | 3.3 (0) aA |
PER3 | 2.7 aA | 2.4 (<11.1) bB | 2.7 aA | 2.6 (<3.7) aA |
E/T, % | 44.9 bB | 45.5 (<1.3) aA | 45.6 aA | 45.8 (<0.4) aA |
Fatty Acid | Abbreviation | Study Group | |||
---|---|---|---|---|---|
Group A | Group B | ||||
Study Phase | |||||
Begin | End | Begin | End | ||
Undecanoic acid | C11:0 | n.d. | n.d. | n.d. | n.d. |
Dodecanoic acid | C12:0 | 6.4 aA | 5.5 (<14.1) bA | 6.0 aB | 5.5 (<8.3) bA |
Tridecanoic acid | C13:0 | 2.0 aA | 1.7 (<15.0) aA | 1.8 aA | 1.8 (0) aA |
Tetradecanoic acid | C14:0 | 11.8 bA | 12.8 (>8.5) aB | 11.8 bA | 12.9 (>9.3) aA |
Tetradecenoic acid | C14:1 | 2.5 aA | 2.3 (<8.0) aB | 2.4 aA | 2.4 (0) aA |
Pentadecanoic acid | C15:0 | 3.2 aA | 2.8 (<12.5) aA | 2.8 aB | 2.6 (<7.3) aB |
Pentadecenoic acid | C15:1 | 1.9 aA | 1.7 (<10.5) aA | 1.6 aB | 1.6(0) aA |
Hexadecanoic acid | C16:0 | 31.6 aB | 31.0 (<1.9) aB | 32.9 bA | 34.7 (>5.5) aA |
Heptadecanoic acid | C17:0 | 1.0 aA | 1.0 (0) aA | 0.9 aA | 0.9 (0) aA |
Heptadecenoic acid | C17:1 | 0.8 | BLQ | BLQ | BLQ |
Octadecanoic acid | C18:0 | 9.6 aA | 10.1 (>5.2) aA | 9.5 aA | 8.5 (<10.5) bA |
Octadecenoic acid | C18:1n9t | BLQ | 0.8 (>100) A | 0.9 a | 0.8 (<11.1) bA |
Octadecenoic acid | C18:1n9c | 18.4 bB | 20.5 (>11.4) aA | 20.9 aA | 19.4 (<7.2) bB |
Octadecadienoic acid | C18:2n6t | 2.3 aA | 1.7 (<21.6) bA | 1.5 aB | 1.5 (0) aA |
Octadecadienoic acid | C18:2n6c | 1.8 aA | 1.7 (<5.6) aA | 1.6 aA | 1.6 (0) aA |
Octadecatrienoic acid | C18:3n6c | 0.7 a | 0.7 (0) aA | BLQ | 0.7 (>100) A |
Octadecatrienoic acid | C18:3n3c | 0.8 aA | 0.6 (<25.0) aA | 0.7 aA | 0.7 (0) aA |
Eicosanoic acid | C20:0 | 0.4 a | 0.4 (0) aA | BLQ | 0.2 (>100) B |
CLA, Octadecadienoic acid | C18:2 | 0.7 aA | 0.5 (<28.6) aA | 0.6 aA | 0.6 (0) aA |
CLA, Octadecadienoic acid | C18:2 | 0.3 a | 0.3 (0) aA | BLQ | 0.3 (>100) A |
Eicosenoic acid | C20:1n9c | 0.5 bB | 0.1 (<80.0) aB | 1.7 aA | 0.2 (<88.2) bA |
Heneicosanoic acid | C21:0 | BLQ | BLQ | BLQ | 0.4 (>100) |
Eicosadienoic acid | C20:2n6c | BLQ | 0.5 (>100) | BLQ | BLQ |
Eicosatrienoic acid | C20:3n6c | BLQ | 0.3 (>100) | BLQ | BLQ |
Eicosatetraenoic acid | C20:4n6c | BLQ | 0.3 (>100) | BLQ | BLQ |
Eicosatrienoic acid | C20:3n3c | 0.3 | BLQ (<100) | BLQ | 0.2 (>100) |
Docosanoic acid | C22:0 | 2.1 aA | 1.5 (<21.6) bA | 1.4 bB | 1.7 (>21.4) aA |
Eicosapentaenoic acid | C20:5n3c | BLQ | 0.4 (>100) | BLQ | BLQ |
Docosadienoic acid | C22:2n6c | BLQ | BLQ | 0.1 | BLQ |
Tetracosanoic acid | C24:0 | 0.9 aA | 0.4 (>55.6) bA | 0.6 aB | 0.3 (<50.0) bA |
Tetracosenoic acid | C24:1n9c | BLQ | 0.6 (>100) | 0.2 | BLQ |
Docosahexaenoic acid | C22:6n3c | BLQ | BLQ | BLQ | 0.9 (>100) |
∑SFAs | 68.97 aA | 67.20 (<2.6) bB | 67.65 bB | 69.20 (>2.3) aA | |
∑MUFAs | 24.11 bB | 26.03 (>8.0) aA | 27.80 aA | 24.38 (<12.3) bB | |
∑PUFAs | 6.92 aA | 6.77 (<2.2) aA | 4.55 bB | 6.42 (>41.1) aA | |
CLA | 1.0 aA | 0.7 (<30.0) bB | 0.6 bB | 0.8 (>33.3) aA | |
Cholesterol, mg 100g−1 DW | 390.3 ± 27.1 bA | 421.9 ± 47.7 (>8.1) aA | 359.0 ± 12.1 bB | 394.8 ± 1.8 (>10.0) aB | |
PUFA/SFA | 0.1 aA | 0.1 (0) aA | 0.1 aA | 0.1 (0) aA | |
IA | 2.8 bA | 3.6 (>28.6) aA | 2.4 bB | 3.4 (>41.7) aB | |
IT | 3.2 aA | 3.0 (<6.3) aB | 3.0 bB | 3.5 (>16.7) aA | |
HH | 0.5 aA | 0.5 (0) aA | 0.5 aA | 0.5 (0) aA | |
HPI | 0.4 aA | 0.4 (0) aA | 0.4 aA | 0.3 (<25.0) aA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruska, D.; Radenkovs, V.; Juhnevica-Radenkova, K.; Rubene, D.; Ciprovica, I.; Zagorska, J. The Impact of Biotechnologically Produced Lactobionic Acid in the Diet of Lactating Dairy Cows on Their Performance and Quality Traits of Milk. Animals 2023, 13, 815. https://doi.org/10.3390/ani13050815
Ruska D, Radenkovs V, Juhnevica-Radenkova K, Rubene D, Ciprovica I, Zagorska J. The Impact of Biotechnologically Produced Lactobionic Acid in the Diet of Lactating Dairy Cows on Their Performance and Quality Traits of Milk. Animals. 2023; 13(5):815. https://doi.org/10.3390/ani13050815
Chicago/Turabian StyleRuska, Diana, Vitalijs Radenkovs, Karina Juhnevica-Radenkova, Daina Rubene, Inga Ciprovica, and Jelena Zagorska. 2023. "The Impact of Biotechnologically Produced Lactobionic Acid in the Diet of Lactating Dairy Cows on Their Performance and Quality Traits of Milk" Animals 13, no. 5: 815. https://doi.org/10.3390/ani13050815
APA StyleRuska, D., Radenkovs, V., Juhnevica-Radenkova, K., Rubene, D., Ciprovica, I., & Zagorska, J. (2023). The Impact of Biotechnologically Produced Lactobionic Acid in the Diet of Lactating Dairy Cows on Their Performance and Quality Traits of Milk. Animals, 13(5), 815. https://doi.org/10.3390/ani13050815