Effects of the Level and Composition of Concentrate Supplements before Breeding and in Early Gestation on Production of Different Hair Sheep Breeds
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Treatments and Housing
2.3. Breeding
2.4. Other Measures
2.5. Statistical Analyses
3. Results
3.1. Feed Intake, BW, and ADG
3.2. BCS and BMI
3.3. HR and HE
3.4. Blood Constituent Concentrations
3.5. Reproductive Performance
3.6. BMI Relationships
4. Discussion
4.1. Feed Intake
4.2. BW and ADG
4.3. BCS and BMI
4.4. HR and HE
4.5. Blood Constituent Concentrations
4.6. Reproductive Performance
4.7. BMI and BCS Relationships
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- NRC. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007.
- Cannas, A.; Tedeschi, L.O.; Atzori, A.S.; Lunesu, M.F. How Can Nutrition Models Increase the Production Efficiency of Sheep and Goat Operations? Anim. Front. 2019, 9, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Dupont, J.; Scaramuzzi, R.J.; Reverchon, M. The Effect of Nutrition and Metabolic Status on the Development of Follicles, Oocytes and Embryos in Ruminants. Animal 2014, 8, 1031–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Foren, A.; Sosa, C.; Abecia, J.A.; Vazquez, M.I.; Forcada, F.; Meikle, A. Dietary Restriction in Sheep: Uterine Functionality in Ewes with Different Body Reserves during Early Gestation. Theriogenology 2019, 135, 189–197. [Google Scholar] [CrossRef]
- Sejian, V.; Maurya, V.P.; Naqvi, S.M.K.; Kumar, D.; Joshi, A. Effect of Induced Body Condition Score Differences on Physiological Response, Productive and Reproductive Performance of Malpura Ewes Kept in a Hot, Semi-Arid Environment. J. Anim. Physiol. Anim. Nutr. 2010, 94, 154–161. [Google Scholar] [CrossRef] [PubMed]
- SID. Sheep Production Handbook; American Sheep Industry Association: Englewood, CO, USA, 1992. [Google Scholar]
- Valiente, S.L.; Rodriguez, A.M.; Long, N.M.; Lacau-Mengido, I.M.; Maresca, S.; Pacheco, D. The Degree of Maternal Nutrient Restriction during Late Gestation Influences the Growth and Endocrine Profiles of Offspring from Beef Cows. Anim. Prod. Sci. 2021, 62, 163–172. [Google Scholar] [CrossRef]
- Nascimento, K.B.; Galvão, M.C.; Meneses, J.A.M.; Moreira, G.M.; Ramírez-Zamudio, G.D.; de Souza, S.P.; Prezotto, L.D.; Chalfun, L.H.L.; de Duarte, M.S.; Casagrande, D.R. Effects of Maternal Protein Supplementation at Mid-Gestation of Cows on Intake, Digestibility, and Feeding Behavior of the Offspring. Animals 2022, 12, 2865. [Google Scholar] [CrossRef]
- Thomas, D.L. Hair Sheep Genetic Resource of the Americas. In Proceedings of the Hair Sheep Research Symposium, St. Croix, VI, USA, 28–29 June 1991; Wildeus, S., Ed.; University of the Virgin Islands: St. Croix, VI, USA, 1991; Volume 3, pp. 3–20. [Google Scholar]
- Wildeus, S. Hair Sheep Genetic Resources and Their Contribution to Diversified Small Ruminant Production in the United States. J. Anim. Sci. 1997, 75, 630–640. [Google Scholar] [CrossRef]
- Hussein, A.; Puchala, R.; Portugal, I.; Wilson, B.K.; Gipson, T.A.; Goetsch, A.L. Effects of Restricted Availability of Drinking Water on Body Weight and Feed Intake by Dorper, Katahdin, and St. Croix Sheep from Different Regions of the USA. J. Anim. Sci. 2020, 98, skz367. [Google Scholar]
- Tadesse, D.; Puchala, R.; Gipson, T.A.; Goetsch, A.L. Effects of High Heat Load Conditions on Body Weight, Feed Intake, Temperature, and Respiration of Dorper, Katahdin, and St. Croix Sheep. J. Appl. Anim. Res. 2019, 47, 492–505. [Google Scholar] [CrossRef]
- Tadesse, D.; Puchala, R.; Goetsch, A.L. Effects of Hair Sheep Breed and Region of Origin on Feed Dry Matter Required for Maintenance without and with a Marked Feed Restriction. Livest. Sci. 2019, 226, 114–121. [Google Scholar] [CrossRef]
- Lourencon, R.V.; Patra, A.K.; Puchala, R.; Dawson, L.J.; Ribeiro, L.P.S.; Encinas, F.; Goetsch, A.L. Effects of Nutritional Plane at Breeding on Feed Intake, Body Weight, Condition Score, Mass Indexes, and Chemical Composition, and Reproductive Performance of Hair Sheep. Animals 2023, 13, 735. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Ngwa, A.T.; Dawson, L.J.; Puchala, R.; Detweiler, G.; Merkel, R.C.; Tovar-Luna, I.; Sahlu, T.; Ferrell, C.L.; Goetsch, A.L. Urea Space and Body Condition Score to Predict Body Composition of Meat Goats. Small Rumin. Res. 2007, 73, 27–36. [Google Scholar] [CrossRef]
- Liu, H.; Gipson, T.A.; Puchala, R.; Goetsch, A.L. Relationships among Body Condition Score, Linear Measures, Body Mass Indexes, and Growth Performance of Yearling Alpine Doelings Consuming High-Forage Diets. Appl. Anim. Sci. 2019, 35, 511–520. [Google Scholar] [CrossRef]
- Wang, W.; Patra, A.K.; Puchala, R.; Ribeiro, L.; Gipson, T.A.; Goetsch, A.L. Effects of Dietary Inclusion of Tannin-Rich Sericea Lespedeza Hay on Relationships among Linear Body Measurements, Body Condition Score, Body Mass Indexes, and Performance of Growing Alpine Doelings and Katahdin Ewe Lambs. Animals 2022, 12, 3183. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brassard, M.-E.; Puchala, R.; Gipson, T.A.; Sahlu, T.; Goetsch, A.L. Factors Influencing Estimates of Heat Energy Associated with Activity by Grazing Meat Goats. Livest. Sci. 2016, 193, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Keli, A.; Ribeiro, L.P.S.; Gipson, T.A.; Puchala, R.; Tesfai, K.; Tsukahara, Y.; Sahlu, T.; Goetsch, A.L. Effects of Pasture Access Regime on Performance, Grazing Behavior, and Energy Utilization by Alpine Goats in Early and Mid-Lactation. Small Rumin. Res. 2017, 154, 58–69. [Google Scholar] [CrossRef]
- Silva, N.C.D.; Puchala, R.; Gipson, T.A.; Sahlu, T.; Goetsch, A.L. Effects of Restricted Periods of Feed Access on Feed Intake, Digestion, Behaviour, Heat Energy, and Performance of Alpine Goats. J. Appl. Anim. Res. 2018, 46, 994–1003. [Google Scholar] [CrossRef] [Green Version]
- Puchala, R.; Tovar-Luna, I.; Sahlu, T.; Freetly, H.C.; Goetsch, A.L. The Relationship between Heart Rate and Energy Expenditure in Growing Crossbred Boer and Spanish Wethers. J. Anim. Sci. 2009, 87, 1714–1721. [Google Scholar] [CrossRef] [Green Version]
- Puchala, R.; Tovar-Luna, I.; Goetsch, A.L.; Sahlu, T.; Carstens, G.E.; Freetly, H.C. The Relationship between Heart Rate and Energy Expenditure in Alpine, Angora, Boer and Spanish Goat Wethers Consuming Different Quality Diets at Level of Intake Near Maintenance or Fasting. Small Rumin. Res. 2007, 70, 183–193. [Google Scholar] [CrossRef]
- Brouwer, E. Report of Sub-Committee on Constants and Factors. In Proceedings of the 3rd Symposium on Energy Metabolism of Farm Animals; Blaxter, K.L., Ed.; European Association of Animal Production Publication number 11; Academic Press: London, UK, 1965; Volume 11, pp. 441–443. [Google Scholar]
- SAS. SAS/STAT® 9.4 User’s Guide; SAS Inst. Inc.: Cary, NC, USA, 2011. [Google Scholar]
- Ketelaars, J.; Tolkamp, B.J. Toward a New Theory of Feed Intake Regulation in Ruminants 1. Causes of Differences in Voluntary Feed Intake: Critique of Current Views. Livest. Prod. Sci. 1992, 30, 269–296. [Google Scholar] [CrossRef]
- Mertens, D.R. Predicting Intake and Digestibility Using Mathematical Models of Ruminal Function. J. Anim. Sci. 1987, 64, 1548–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tedeschi, L.O.; Molle, G.; Menendez, H.M.; Cannas, A.; Fonseca, M.A. The Assessment of Supplementation Requirements of Grazing Ruminants Using Nutrition Models. Transl. Anim. Sci. 2019, 3, 811–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DelCurto, T.; Hess, B.W.; Huston, J.E.; Olson, K.C. Optimum Supplementation Strategies for Beef Cattle Consuming Low-Quality Roughages. J. Anim. Sci. 2000, 77, 1–16. [Google Scholar]
- Kaufmann, W.; Hagemeister, H.; Dirksen, G. Adaptation to Changes in Dietary Composition, Level and Frequency of Feeding. In Digestive Physiology and Metabolism in Ruminants; Ruckebusch, Y., Thivend, P., Eds.; Springer: Dordrecht, The Netherlands, 1980; pp. 587–602. [Google Scholar]
- Machado, M.G.; Detmann, E.; Mantovani, H.C.; Valadares Filho, S.C.; Bento, C.B.; Marcondes, M.I.; Assunção, A.S. Evaluation of the Length of Adaptation Period for Changeover and Crossover Nutritional Experiments with Cattle Fed Tropical Forage-Based Diets. Anim. Feed Sci. Technol. 2016, 222, 132–148. [Google Scholar] [CrossRef]
- Allen, M.S.; Bradford, B.J.; Oba, M. Board-Invited Review: The Hepatic Oxidation Theory of the Control of Feed Intake and Its Application to Ruminants. J. Anim. Sci. 2009, 87, 3317–3334. [Google Scholar] [CrossRef] [Green Version]
- Patra, A.K.; Ribeiro, L.P.S.; Hirut, Y.; Askar, A.R.; Hussein, A.H.; Puchala, R.; Goetsch, A.L. Effects of the Concentration and Nature of Total Dissolved Salts in Drinking Water on Feed Intake, Nutrient Digestion, Energy Balance, Methane Emission, Ruminal Fermentation, and Blood Constituents in Different Breeds of Young Goats and Hair Sheep. Anim. Nutr. 2023; submitted. [Google Scholar]
- Ribeiro, L.P.S.; Puchala, R.; Goetsch, A.L. Effects of an Array of Dietary Treatments and Length of Feeding on Ruminal Methane Emission and Other Variables in Hair Sheep. Small Rumin. Res. 2021, 205, 106566. [Google Scholar] [CrossRef]
- Puchala, R.; Patra, A.K.; Animut, G.; Sahlu, T.; Goetsch, A.L. Effects of Feed Restriction and Realimentation on Mohair Fiber Growth and Tissue Gain by Growing Angora Goats. Livest. Sci. 2011, 138, 180–186. [Google Scholar] [CrossRef]
- Teixeira, A.B.; Schuh, B.R.; Daley, V.L.; Fernandes, S.R.; Freitas, J.A. Effect of Refeeding on Growth Performance, Blood Metabolites and Physiological Parameters of Dorper x Santa Ines Lambs Previously Subjected to Feed Restriction. Anim. Prod. Sci. 2022, 62, 1459–1470. [Google Scholar] [CrossRef]
- Murphy, T.A.; Loerch, S.C. Effects of Restricted Feeding of Growing Steers on Performance, Carcass Characteristics, and Composition. J. Anim. Sci. 1994, 72, 2497–2507. [Google Scholar] [CrossRef] [PubMed]
- Yambayamba, E.S.K.; Price, M.A.; Foxcroft, G.R. Hormonal Status, Metabolic Changes, and Resting Metabolic Rate in Beef Heifers Undergoing Compensatory Growth. J. Anim. Sci. 1996, 74, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Carstens, G.E.; Johnson, D.E.; Ellenberger, M.A. Energy Metabolism and Composition of Gain in Beef Steers Exhibiting Normal and Compensatory Growth. In Energy Metabolism of Farm Animals; European Association of Animal Production Publication Number 43: Lunteren, The Netherlands, 1989; pp. 131–134. [Google Scholar]
- Frutos, P.; Mantecón, Á.R.; Rodríguez Revesado, P.; González, J.S. Body Fat Depots and Body Condition Score Relationship: A Comparison of Two Spanish Sheep Breeds (Churra vs Merina). Opttions Méditerranéennes 1995, A-27, 19–23. [Google Scholar]
- Negussie, E.; Rottmann, O.J.; Pirchner, F.; Rege, J.E.O. Patterns of Growth and Partitioning of Fat Depots in Tropical Fat-Tailed Menz and Horro Sheep Breeds. Meat Sci. 2003, 64, 491–498. [Google Scholar] [CrossRef]
- Yousefi, A.R.; Kohram, H.; Shahneh, A.Z.; Nik-Khah, A.; Campbell, A.W. Comparison of the Meat Quality and Fatty Acid Composition of Traditional Fat-Tailed (Chall) and Tailed (Zel) Iranian Sheep Breeds. Meat Sci. 2012, 92, 417–422. [Google Scholar] [CrossRef]
- Posbergh, C.J.; Huson, H.J. All Sheeps and Sizes: A Genetic Investigation of Mature Body Size across Sheep Breeds Reveals a Polygenic Nature. Anim. Genet. 2021, 52, 99–107. [Google Scholar] [CrossRef]
- Wiener, G.; Hayter, S. Body Size and Conformation in Sheep from Birth to Maturity as Affected by Breed, Crossbreeding, Maternal and Other Factors. Anim. Sci. 1974, 19, 47–65. [Google Scholar] [CrossRef]
- Ferrell, C.L.; Koong, L.J.; Nienaber, J.A. Effect of Previous Nutrition on Body Composition and Maintenance Energy Costs of Growing Lambs. Br. J. Nutr. 1986, 56, 595–605. [Google Scholar] [CrossRef] [Green Version]
- Koong, L.J.; Ferrell, C.L.; Nienaber, J.A. Assessment of Interrelationships among Levels of Intake and Production, Organ Size and Fasting Heat Production in Growing Animals. J. Nutr. 1985, 115, 1383–1390. [Google Scholar] [CrossRef]
- Rompala, R.E.; Johnson, D.E.; Rumpler, W.V.; Phetteplace, H.W.; Specht, S.M.; Parker, C.F. Energy Utilization and Organ Mass of Targhee Sheep Selected for Rate and Efficiency of Gain and Receiving High and Low Planes of Nutrition. J. Anim. Sci. 1991, 69, 1760–1765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo, A.R.; Kebreab, E.; Beever, D.E.; Barbi, J.H.; Sutton, J.D.; Kirby, H.C.; France, J. The Effect of Protein Supplementation on Nitrogen Utilization in Lactating Dairy Cows Fed Grass Silage Diets. J. Anim. Sci. 2001, 79, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Hammond, A.C.; Bowers, E.J.; Kunkle, W.E.; Genho, P.C.; Moore, S.A.; Crosby, C.E.; Ramsay, K.H.; Harris, J.H.; Essig, H.W. Use of Blood Urea Nitrogen Concentration to Determine Time and Level of Protein Supplementation in Wintering Cows. Prof. Anim. Sci. 1994, 10, 24–31. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Dai, C.; Li, J.; Huang, P.; Li, Y.; Ding, X.; Huang, J.; Hussain, T.; Yang, H. Effects of Dietary Energy on Growth Performance, Carcass Characteristics, Serum Biochemical Index, and Meat Quality of Female Hu Lambs. Anim. Nutr. 2020, 6, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Churakov, M.; Karlsson, J.; Rasmussen, A.E.; Holtenius, K. Milk Fatty Acids as Indicators of Negative Energy Balance of Dairy Cows in Early Lactation. Animal 2021, 15, 100253. [Google Scholar] [CrossRef] [PubMed]
- Carbone, J.W.; McClung, J.P.; Pasiakos, S.M. Skeletal Muscle Responses to Negative Energy Balance: Effects of Dietary Protein. Adv. Nutr. 2012, 3, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Tadesse, D.; Puchala, R.; Goetsch, A.L. Effects of Restricted Feed Intake on Blood Constituent Concentrations in Dorper, Katahdin, and St. Croix Sheep from Different Regions of the USA. Vet. Anim. Sci. 2021, 14, 100211. [Google Scholar]
- Naqvi, S.M.K.; Sejian, V.; Karim, S.A. Effect of Feed Flushing during Summer Season on Growth, Reproductive Performance and Blood Metabolites in Malpura Ewes under Semiarid Tropical Environment. Trop. Anim. Health Prod. 2012, 45, 143–148. [Google Scholar] [CrossRef]
- Archer, Z.A.; Rhind, S.M.; Findlay, P.A.; Kyle, C.E.; Thomas, L.; Marie, M.; Adam, C.L. Contrasting Effects of Different Levels of Food Intake and Adiposity on LH Secretion and Hypothalamic Gene Expression in Sheep. J. Endocrinol. 2002, 175, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Yıldırır, M.; Çakır, D.Ü.; Yurtman, İ.Y. Effects of Restricted Nutrition and Flushing on Reproductive Performance and Metabolic Profiles in Sheep. Livest. Sci. 2022, 258, 104870. [Google Scholar] [CrossRef]
Wheat Straw | Low Supplement | High Supplement | ||||
---|---|---|---|---|---|---|
Item | Mean | SEM | Mean | SEM | Mean | SEM |
Ash | 6.4 | 0.23 | 8.6 | 0.12 | 3.6 | 0.10 |
Crude protein | 3.9 | 0.11 | 47.8 | 0.19 | 14.5 | 0.67 |
Neutral detergent fiber | 80.2 | 0.52 | 12.1 | 0.55 | 13.5 | 0.38 |
Acid detergent fiber | 53.9 | 0.38 | 8.8 | 0.36 | 5.3 | 0.24 |
Acid detergent lignin | 10.4 | 0.20 |
Effect p Value 2 | Dorper | Katahdin | St. Croix | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Item | Brd | Sup | Brd × Sup | Low | High | Low | High | Low | High | SEM | Brd 3 |
Period 1 | |||||||||||
g/day | |||||||||||
Supplement | 0.266 | <0.001 | 0.332 | 87 | 556 | 83 | 579 | 79 | 494 | 25.6 | |
Wheat straw | 0.648 | 0.337 | 0.907 | 640 | 618 | 626 | 550 | 679 | 616 | 62.8 | |
Total | 0.906 | <0.001 | 0.789 | 727 | 1174 | 709 | 1296 | 758 | 1110 | 70.4 | |
% body weight | |||||||||||
Supplement | 0.588 | <0.001 | 0.290 | 0.15 | 0.99 | 0.14 | 0.99 | 0.15 | 0.98 | 0.007 | |
Wheat straw | 0.211 | 0.461 | 0.916 | 1.13 | 1.10 | 1.07 | 0.94 | 1.32 | 1.22 | 0.131 | |
Total | 0.208 | <0.001 | 0.918 | 1.28 | 2.09 | 1.21 | 1.93 | 1.47 | 2.20 | 0.131 | |
Period 2 | |||||||||||
g/day | |||||||||||
Supplement | 0.266 | <0.001 | 0.332 | 87 | 556 | 83 | 579 | 79 | 494 | 25.6 | |
Wheat straw | 0.410 | 0.045 | 0.927 | 920 | 750 | 801 | 681 | 830 | 700 | 67.9 | |
Total | 0.407 | 0.002 | 0.818 | 1007 | 1306 | 884 | 1261 | 909 | 1193 | 77.0 | |
% body weight | |||||||||||
Supplement | 0.636 | <0.001 | 0.939 | 0.16 | 0.96 | 0.14 | 0.95 | 0.16 | 0.95 | 0.013 | |
Wheat straw | 0.233 | 0.036 | 0.951 | 1.65 | 1.29 | 1.39 | 1.12 | 1.64 | 1.35 | 0.139 | |
Total | 0.214 | 0.005 | 0.954 | 1.80 | 2.25 | 1.53 | 2.06 | 1.80 | 2.30 | 0.140 | |
Period 3 | |||||||||||
g/day | |||||||||||
Supplement | 0.266 | <0.001 | 0.332 | 87 | 556 | 83 | 579 | 79 | 494 | 25.6 | |
Wheat straw | 0.410 | 0.006 | 0.338 | 1031 | 752 | 879 | 773 | 902 | 739 | 54.6 | |
Total | 0.312 | 0.002 | 0.329 | 1117 | 1308 | 962 | 1353 | 981 | 1233 | 62.6 | |
% body weight | |||||||||||
Supplement | 0.063 | <0.001 | 0.076 | 0.16 | 0.94 | 0.15 | 0.92 | 0.16 | 0.93 | 0.009 | |
Wheat straw | 0.321 | 0.005 | 0.638 | 1.89 | 1.27 | 1.59 | 1.24 | 1.88 | 1.39 | 0.135 | |
Total | 0.292 | 0.039 | 0.648 | 2.04 | 2.21 | 1.74 | 2.17 | 2.04 | 2.32 | 0.135 | |
Period 4 | |||||||||||
g/day | |||||||||||
Supplement | 0.266 | <0.001 | 0.332 | 87 | 556 | 83 | 579 | 79 | 494 | 25.6 | |
Wheat straw | 0.061 | 0.002 | 0.507 | 1111 | 870 | 990 | 800 | 938 | 801 | 42.1 | |
Total | 0.040 | <0.001 | 0.711 | 1198 | 1426 | 1073 | 1379 | 1017 | 1295 | 46.2 | S < D |
% body weight | |||||||||||
Supplement | 0.063 | <0.001 | 0.117 | 0.17 | 0.95 | 0.16 | 0.91 | 0.17 | 0.91 | 0.009 | |
Wheat straw | 0.253 | 0.001 | 0.986 | 2.12 | 1.49 | 1.89 | 1.27 | 2.07 | 1.48 | 0.130 | |
Total | 0.213 | 0.227 | 0.988 | 2.29 | 2.45 | 2.05 | 2.18 | 2.24 | 2.39 | 0.133 | |
Period 5 | |||||||||||
g/day | |||||||||||
Supplement | 0.281 | <0.001 | 0.315 | 87 | 556 | 83 | 579 | 81 | 494 | 25.6 | |
Wheat straw | 0.441 | 0.001 | 0.365 | 989 | 814 | 974 | 795 | 910 | 813 | 29.5 | |
Total | 0.298 | <0.001 | 0.963 | 1076 | 1370 | 1056 | 1375 | 992 | 1306 | 47.2 | |
% body weight | |||||||||||
Supplement | 0.063 | <0.001 | 0.117 | 0.17 | 0.93 | 0.16 | 0.86 | 0.18 | 0.88 | 0.011 | |
Wheat straw | 0.115 | <0.001 | 0.789 | 1.96 | 1.35 | 1.91 | 1.18 | 2.08 | 1.45 | 0.088 | |
Total | 0.088 | 0.425 | 0.643 | 2.13 | 2.28 | 2.07 | 2.04 | 2.27 | 2.33 | 0.091 | |
Average | |||||||||||
g/day | |||||||||||
Supplement | 0.269 | <0.001 | 0.328 | 87 | 556 | 83 | 579 | 80 | 494 | 25.6 | |
Wheat straw | 0.350 | 0.007 | 0.789 | 938 | 761 | 854 | 720 | 852 | 734 | 43.7 | |
Total | 0.306 | <0.001 | 0.771 | 1025 | 1317 | 937 | 1299 | 931 | 1227 | 53.9 | |
% body weight | |||||||||||
Supplement | 0.020 | <0.001 | 0.058 | 0.16 | 0.96 | 0.15 | 0.92 | 0.17 | 0.93 | 0.005 | K < D |
Wheat straw | 0.191 | 0.003 | 0.992 | 1.75 | 1.30 | 1.57 | 1.15 | 1.80 | 1.38 | 0.112 | |
Total | 0.165 | 0.009 | 0.999 | 1.91 | 2.26 | 1.72 | 2.07 | 1.96 | 2.31 | 0.113 |
Effect p-Value 2 | Dorper | Katahdin | St. Croix | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Item 3 | Brd | Sup | Brd × Sup | Low | High | Low | High | Low | High | SEM | Brd 4 |
BW (kg), day | |||||||||||
−7 | 0.106 | 0.583 | 0.969 | 57.7 | 55.6 | 58.5 | 57.9 | 51.3 | 49.4 | 3.31 | |
14 | 0.082 | 0.865 | 0.974 | 56.4 | 56.6 | 58.2 | 59.3 | 51.7 | 51.6 | 2.71 | |
49 | 0.046 | 0.144 | 0.838 | 55.7 | 59.4 | 57.1 | 63.1 | 49.7 | 52.3 | 2.98 | S < K |
73 | 0.128 | 0.039 | 0.869 | 53.8 | 58.8 | 53.4 | 62.0 | 46.7 | 54.2 | 3.25 | |
120 | 0.140 | 0.020 | 0.625 | 51.1 | 57.6 | 51.3 | 65.9 | 44.2 | 54.1 | 3.38 | |
162 | 0.092 | 0.002 | 0.730 | 50.1 | 62.7 | 51.2 | 69.7 | 43.5 | 57.9 | 3.69 | |
198 | 0.088 | 0.004 | 0.688 | 55.9 | 67.3 | 53.8 | 67.6 | 49.8 | 58.4 | 3.03 | |
225 | 0.029 | 0.004 | 0.681 | 63.9 | 73.7 | 60.1 | 75.5 | 52.6 | 63.6 | 3.27 | S < D & K |
ADG (g), period | |||||||||||
1 | 0.279 | 0.022 | 0.901 | −62 | 51 | −16 | 64 | 18 | 105 | 37.1 | |
2 | 0.039 | 0.001 | 0.273 | −22 | 76 | −32 | 110 | −59 | 19 | 19.3 | S < K |
3 | 0.247 | 0.014 | 0.321 | −79 | −22 | −154 | −46 | −123 | 79 | 43.7 | |
4 | 0.250 | 0.046 | 0.373 | −57 | −29 | −46 | 83 | −56 | −1 | 34.6 | |
5 | 0.957 | 0.006 | 0.739 | −24 | 120 | −1 | 90 | −14 | 90 | 33.3 | |
6 | 0.022 | 0.017 | 0.258 | 130 | 113 | 48 | −59 | 153 | 12 | 33.1 | K < D & S |
7 | 0.067 | 0.501 | 0.307 | 295 | 238 | 232 | 273 | 102 | 195 | 43.8 | |
1 to 5 | 0.175 | <0.001 | 0.256 | −46 | 42 | −44 | 70 | −47 | 51 | 7.3 | |
6 to 7 | 0.086 | 0.172 | 0.990 | 200 | 166 | 126 | 84 | 131 | 90 | 30.8 | |
1 to 7 | 0.221 | <0.001 | 0.770 | 20 | 76 | 6 | 73 | 2 | 62 | 7.7 |
Effect p Value 2 | Dorper | Katahdin | St. Croix | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Item 3 | Brd | Sup | Brd × Sup | Low | High | Low | High | Low | High | SEM | Brd 4 |
Day | |||||||||||
−7 | 0.022 | 0.014 | 0.678 | 3.20 | 2.90 | 3.43 | 3.25 | 3.16 | 2.81 | 0.098 | K > D & S |
14 | 0.108 | 0.398 | 0.908 | 3.14 | 3.11 | 3.36 | 3.26 | 3.16 | 3.09 | 0.085 | |
49 | 0.003 | 0.031 | 0.703 | 2.97 | 3.15 | 3.23 | 3.31 | 2.89 | 3.02 | 0.056 | K > D & S |
73 | 0.019 | 0.018 | 0.579 | 3.11 | 3.27 | 3.26 | 3.56 | 2.90 | 3.21 | 0.092 | K > D & S |
120 | 0.006 | 0.001 | 0.852 | 2.76 | 3.19 | 2.98 | 3.49 | 2.55 | 3.05 | 0.086 | K > D & S |
162 | 0.028 | <0.001 | 0.286 | 2.59 | 3.25 | 2.89 | 3.52 | 2.77 | 3.16 | 0.083 | K > D & S |
198 | 0.007 | <0.001 | 0.598 | 3.01 | 3.41 | 2.67 | 3.15 | 2.78 | 3.15 | 0.059 | D > K & S |
225 | 0.008 | <0.001 | 0.012 | 3.04 bc | 3.23 cd | 2.73 a | 3.37 d | 2.74 a | 2.98 b | 0.057 | |
Change, day | |||||||||||
−7 to 14 | 0.159 | 0.015 | 0.375 | −0.07 | 0.22 | −0.07 | 0.01 | 0.00 | 0.28 | 0.077 | |
14 to 49 | 0.061 | 0.003 | 0.962 | −0.16 | 0.03 | −0.13 | 0.05 | −0.26 | −0.07 | 0.046 | |
49 to 73 | 0.749 | 0.049 | 0.126 | 0.14 | 0.09 | 0.03 | 0.25 | 0.01 | 0.19 | 0.058 | |
73 to 120 | 0.481 | 0.004 | 0.725 | −0.35 | −0.05 | −0.29 | −0.06 | −0.35 | −0.16 | 0.065 | |
120 to 162 | 0.007 | 0.082 | 0.029 | −0.17 a | 0.07 bc | −0.08 ab | 0.03 ab | 0.22 c | 0.11 bc | 0.047 | |
162 to 198 | <0.001 | 0.151 | 0.345 | 0.30 | 0.15 | −0.25 | −0.37 | −0.04 | −0.01 | 0.059 | K < S < D |
198 to 225 | 0.003 | 0.115 | 0.021 | 0.02 b | −0.18 a | 0.07 bc | 0.20 c | −0.03 ab | −0.17 a | 0.047 | |
−7 to 162 | 0.334 | <0.001 | 0.384 | −0.61 | 0.36 | −0.53 | 0.27 | −0.39 | 0.34 | 0.077 | |
162 to 225 | 0.003 | 0.020 | 0.049 | 0.33 b | −0.03 a | −0.19 a | −0.16 a | −0.07 a | −0.18 a | 0.058 | |
−7 to 225 | 0.059 | <0.001 | 0.481 | −0.28 | 0.31 | −0.71 | 0.10 | −0.42 | 0.18 | 0.102 |
Effect p Value 2 | Dorper | Katahdin | St. Croix | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Item 3 | Brd | Sup | Brd × Sup | Low | High | Low | High | Low | High | SEM | Brd 4 |
Initial, day −7 | |||||||||||
BMI–WH | 0.023 | 0.396 | 0.809 | 14.30 | 14.33 | 14.73 | 14.16 | 13.06 | 12.49 | 0.495 | S < D & K |
BMI–WP | 0.044 | 0.293 | 0.986 | 11.62 | 11.29 | 11.63 | 11.16 | 10.40 | 9.94 | 0.443 | S < D & K |
BMI–GH | 0.034 | 0.343 | 0.695 | 10.10 | 10.16 | 10.62 | 10.26 | 9.74 | 9.34 | 0.271 | S < K |
BMI–GP | 0.069 | 0.219 | 0.968 | 8.20 | 8.01 | 8.38 | 8.09 | 7.76 | 7.44 | 0.234 | |
Day 14 | |||||||||||
BMI–WH | 0.015 | 0.763 | 0.643 | 14.02 | 13.64 | 13.55 | 13.83 | 12.04 | 12.46 | 0.414 | S < D & K |
BMI–WP | 0.010 | 0.964 | 0.648 | 11.12 | 10.80 | 10.61 | 10.66 | 9.42 | 9.72 | 0.307 | S < D & K |
BMI–GH | 0.031 | 0.764 | 0.453 | 10.42 | 10.12 | 10.30 | 10.56 | 9.60 | 9.82 | 0.218 | S < K |
BMI–GP | 0.035 | 0.943 | 0.561 | 8.26 | 8.01 | 8.06 | 8.14 | 7.52 | 7.67 | 0.176 | S < D & K |
Day 49 | |||||||||||
BMI–WH | 0.004 | 0.087 | 0.721 | 13.85 | 14.16 | 13.26 | 14.31 | 11.51 | 12.29 | 0.426 | S < D & K |
BMI–WP | 0.005 | 0.157 | 0.810 | 10.99 | 11.18 | 10.40 | 11.04 | 9.13 | 9.61 | 0.330 | S < D & K |
BMI–GH | 0.011 | 0.436 | 0.565 | 10.63 | 10.51 | 10.32 | 10.81 | 9.43 | 9.62 | 0.266 | S < D & K |
BMI–GP | 0.021 | 0.802 | 0.734 | 8.43 | 8.30 | 8.10 | 8.35 | 7.48 | 7.52 | 0.234 | S < D & K |
Day 73 | |||||||||||
BMI–WH | 0.057 | 0.039 | 0.940 | 13.33 | 14.70 | 12.60 | 13.92 | 11.01 | 12.77 | 0.690 | |
BMI–WP | 0.092 | 0.048 | 0.922 | 10.34 | 11.27 | 9.81 | 10.74 | 8.76 | 10.05 | 0.517 | |
BMI–GH | 0.064 | 0.083 | 0.752 | 10.07 | 10.64 | 10.02 | 10.43 | 8.81 | 9.79 | 0.384 | |
BMI–GP | 0.117 | 0.115 | 0.677 | 7.82 | 8.15 | 7.82 | 8.04 | 7.02 | 7.71 | 0.277 | |
Day 162 | |||||||||||
BMI–WH | 0.034 | 0.001 | 0.748 | 10.94 | 14.54 | 12.06 | 15.09 | 10.02 | 12.57 | 0.663 | S < K |
BMI–WP | 0.004 | <0.001 | 0.694 | 9.63 | 11.35 | 9.44 | 11.71 | 8.04 | 10.11 | 0.305 | S < D & K |
BMI–GH | 0.079 | 0.015 | 0.810 | 8.52 | 10.14 | 9.34 | 10.53 | 8.14 | 9.16 | 0.451 | |
BMI–GP | 0.006 | 0.003 | 0.442 | 7.50 | 7.92 | 7.31 | 8.18 | 6.53 | 7.38 | 0.176 | S < D & K |
Change, day −7 to 14 | |||||||||||
BMI–WH | 0.647 | 0.065 | 0.088 | −0.28 | −0.70 | −1.18 | −0.33 | −1.14 | −0.02 | 0.280 | |
BMI–WP | 0.624 | 0.077 | 0.356 | −0.50 | −0.49 | −1.02 | −0.51 | −1.07 | −0.22 | 0.262 | |
BMI–GH | 0.672 | 0.096 | 0.074 | 0.33 | −0.04 | −0.32 | 0.30 | −0.21 | 0.48 | 0.192 | |
BMI–GP | 0.599 | 0.086 | 0.294 | 0.066 | 0.01 | −0.31 | 0.04 | −0.29 | 0.22 | 0.161 | |
Change, day 14 to 49 | |||||||||||
BMI–WH | 0.155 | 0.026 | 0.682 | −0.17 | 0.53 | −0.29 | 0.48 | −0.53 | −0.17 | 0.252 | |
BMI–WP | 0.217 | 0.029 | 0.504 | −0.13 | 0.38 | −0.21 | 0.38 | −0.29 | −0.11 | 0.181 | |
BMI–GH | 0.111 | 0.446 | 0.759 | 0.21 | 0.39 | 0.02 | 0.25 | −0.17 | −0.20 | 0.191 | |
BMI–GP | 0.149 | 0.601 | 0.580 | 0.17 | 0.28 | 0.03 | 0.21 | −0.05 | −0.14 | 0.140 | |
Change, day 49 to 73 | |||||||||||
BMI–WH | 0.358 | 0.052 | 0.592 | −0.52 | 0.52 | −0.68 | −0.38 | −0.51 | 0.47 | 0.392 | |
BMI–WP | 0.241 | 0.033 | 0.624 | −0.65 | 0.07 | −0.61 | −0.30 | −0.37 | 0.44 | 0.270 | |
BMI–GH | 0.836 | 0.051 | 0.209 | −0.57 | 0.12 | −0.32 | −0.38 | −0.63 | 0.17 | 0.237 | |
BMI–GP | 0.407 | 0.066 | 0.320 | −0.009 | 0.004 | −0.005 | −0.005 | −0.007 | 0.003 | 0.0039 | |
Change, day 73 to 162 | |||||||||||
BMI–WH | 0.048 | 0.007 | 0.390 | −2.38 | −0.16 | −0.55 | 1.17 | −0.99 | −0.19 | 0.486 | D < K |
BMI–WP | 0.051 | 0.002 | 0.448 | −0.71 | 0.11 | −0.36 | 0.97 | −0.72 | 0.06 | 0.233 | |
BMI–GH | 0.151 | 0.053 | 0.335 | −1.55 | −0.50 | −0.68 | 0.10 | −0.68 | −0.63 | 0.318 | |
BMI–GP | 0.356 | 0.063 | 0.223 | −0.32 | −0.22 | −0.50 | 0.13 | −0.48 | −0.33 | 0.176 | |
Change, day −7 to 162 | |||||||||||
BMI–WH | 0.462 | <0.001 | 0.910 | −3.36 | 0.20 | −2.70 | 0.93 | −3.08 | 0.09 | 0.579 | |
BMI–WP | 0.629 | <0.001 | 0.546 | −1.99 | 0.07 | −2.19 | −0.55 | −2.39 | 0.17 | 0.297 | |
BMI–GH | 0.709 | 0.009 | 0.991 | −1.58 | −0.03 | −1.28 | 0.27 | −1.62 | −0.18 | 0.493 | |
BMI–GP | 0.446 | 0.001 | 0.345 | −0.70 | −0.09 | −1.06 | 0.08 | −1.24 | −0.07 | 0.189 |
Effect p Value 2 | Dorper | Katahdin | St. Croix | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Item 3 | Brd | Sup | Brd × Sup | Low | High | Low | High | Low | High | SEM |
HE:HR (kJ/kg BW0.75/beat) | 0.493 | 0.778 | 0.886 | 6.39 | 6.16 | 6.79 | 6.65 | 6.52 | 6.63 | 0.352 |
Day 14 | ||||||||||
HR (beats/min) | 0.786 | 0.043 | 0.722 | 72.2 | 85.8 | 69.9 | 85.9 | 71.5 | 78.6 | 5.85 |
HE (kJ/kg BW0.75) | 0.995 | 0.219 | 0.959 | 468 | 523 | 458 | 545 | 468 | 526 | 59.4 |
HE (MJ/day) | 0.729 | 0.276 | 0.885 | 9.87 | 10.74 | 9.51 | 11.65 | 9.02 | 10.03 | 1.610 |
Day 49 | ||||||||||
HR (beats/min) | 0.282 | 0.005 | 0.326 | 66.8 | 92.1 | 63.9 | 78.4 | 68.3 | 77.8 | 4.67 |
HE (kJ/kg BW0.75) | 0.858 | 0.023 | 0.647 | 423 | 569 | 428 | 519 | 445 | 511 | 40.8 |
HE (MJ/day) | 0.220 | 0.004 | 0.302 | 63.0 | 84.4 | 65.3 | 79.5 | 81.2 | 82.6 | 5.83 |
Day 73 | ||||||||||
HR (beats/min) | 0.272 | 0.041 | 0.302 | 63.0 | 84.4 | 65.3 | 79.5 | 81.2 | 82.6 | 5.83 |
HE (kJ/kg BW0.75) | 0.287 | 0.120 | 0.650 | 394 | 510 | 439 | 524 | 528 | 549 | 49.8 |
HE (MJ/day) | 0.763 | 0.039 | 0.803 | 7.94 | 10.83 | 8.67 | 11.51 | 9.39 | 10.95 | 1.127 |
Source of Variation 2 | |||||||
---|---|---|---|---|---|---|---|
Item | Brd | Sup | Brd × Sup | Day | Brd × Day | Sup × Day | Brd × Sup × Day |
Total protein (g/dL) | 0.009 | 0.056 | 0.351 | <0.001 | 0.516 | 0.012 | 0.585 |
Albumin (g/dL) | 0.213 | 0.396 | 0.665 | 0.046 | 0.433 | <0.001 | 0.822 |
Urea nitrogen (mg/dL) | 0.034 | <0.001 | 0.383 | <0.001 | 0.106 | <0.001 | 0.327 |
Cholesterol (mg/dL) | 0.478 | 0.441 | 0.934 | <0.001 | 0.569 | <0.001 | 0.872 |
Triglycerides (mg/dL) | 0.004 | <0.001 | 0.021 | <0.001 | 0.323 | <0.001 | 0.761 |
Glucose (mg/dL) | 0.610 | 0.475 | 0.644 | <0.001 | <0.001 | 0.008 | 0.056 |
Lactate (mg/dL) | 0.282 | 0.129 | 0.205 | 0.016 | 0.036 | 0.011 | 0.349 |
Nonesterified fatty acids (mEq/L) | 0.002 | <0.001 | 0.072 | <0.001 | 0.800 | <0.001 | 0.330 |
Total antioxidant activity (µM) | 0.350 | 0.270 | 0.743 | <0.001 | 0.035 | 0.007 | 0.695 |
Interaction 2 | Breed 3 | Sup | Day 4 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Item 5 | Brd | Sup | DOR | KAT | STC | SEM | Low | High | SEM | −7 | 14 | 49 | 73 | 162 | SEM |
TP (g/dL) | 6.66 a | 6.95 b | 6.99 b | 0.052 | |||||||||||
Low | 7.09 e | 6.92 c–e | 6.91 c–e | 6.64 b | 6.41 a | 0.074 | |||||||||
High | 7.01 de | 7.02 de | 7.01 de | 6.86 bc | 6.79 bc | ||||||||||
ALB (g/dL) | 2.66 | 2.74 | 2.66 | 0.034 | |||||||||||
Low | 2.79 c | 2.78 c | 2.79 c | 2.63 b | 2.54 a | 0.039 | |||||||||
High | 2.64 b | 2.64 b | 2.63 b | 2.71 bc | 2.73 bc | ||||||||||
UN (mg/dL) | 18.4 ab | 17.6 a | 19.3 b | 0.36 | |||||||||||
Low | 20.7 c | 15.6 a | 15.7 a | 15.3 a | 15.4 a | 0.52 | |||||||||
High | 20.2 c | 22.4 d | 22.5 d | 19.3 c | 17.1 b | ||||||||||
TG (mg/dL) | 26.5 a | 27.5 a | 27.6 a | 28.8 a | 34.9 b | 0.89 | |||||||||
Low | 25.3 a | 26.5 a | 23.9 a | 1.06 | 26.4 a | 24.2 a | 24.3 a | 25.2 a | 26.2 a | 5.94 | |||||
High | 37.6 c | 33.7 b | 27.4 a | 26.6 a | 30.8 b | 30.9 b | 32.4 b | 43.7 c | |||||||
CHOL (mg/dL) | 71.3 | 67.3 | 68.8 | 2.89 | 70.1 | 68.1 | 1.76 | ||||||||
Low | 71.5 c | 80.0 d | 80.1 d | 62.0 b | 57.1 a | 2.20 | |||||||||
High | 70.8 c | 64.6 b | 64.5 b | 70.5 c | 69.9 c | ||||||||||
Glucose (mg/dL) | 55.8 | 48.4 | 57.6 | 6.89 | 50.9 | 57.0 | 5.63 | ||||||||
Low | 62.3 cd | 48.7 b | 44.3 a | 51.0 b | 48.4 b | 5.69 | |||||||||
High | 65.0 d | 55.4 bc | 53.4 bc | 55.5 bc | 55.6 bc | ||||||||||
DOR | 69.9 f | 53.9 d–f | 49.3 bc | 53.8 d–f | 52.2 b–e | 6.97 | |||||||||
KAT | 53.3 c–f | 47.0 ab | 45.7 a | 49.1 b | 46.8 ab | ||||||||||
STC | 67.7 ef | 55.2 ef | 51.6 b–d | 56.8 ef | 56.9 ef | ||||||||||
Lactate (mg/dL) | |||||||||||||||
Low | 18.5 cd | 10.9 a | 11.3 a | 14.3 ab | 14.0 ab | 1.69 | |||||||||
High | 15.2 a–d | 16.4 b–d | 14.9 a–c | 17.8 b–d | 18.8 d | ||||||||||
DOR | 21.5 e | 14.9 a–d | 14.4 a–c | 15.2 a–d | 20.3 de | 2.06 | |||||||||
KAT | 11.8 ab | 13.1 a–c | 13.7 a–c | 16.5 a–e | 14.5 a–d | ||||||||||
STC | 17.3 c–e | 12.9 ab | 11.3 a | 16.6 b–e | 14.4 a–d | ||||||||||
NEFA (mEq/L) | 0.244 a | 0.374 b | 0.354 b | 0.0185 | |||||||||||
Low | 0.312 c | 0.656 e | 0.469 d | 0.418 d | 0.407 d | 0.0266 | |||||||||
High | 0.293 c | 0.171 ab | 0.132 a | 0.173 ab | 0.207 b | ||||||||||
TAC (µM) | 251 | 253 | 264 | 6.3 | 260 | 252 | 5.2 | ||||||||
Low | 264 bc | 240 ab | 283 c | 281 c | 234 ab | 8.8 | |||||||||
High | 260 bc | 265 bc | 263 bc | 246 b | 225 a | ||||||||||
DOR | 264 cd | 223 a | 276 cd | 258 b–d | 235 ab | 11.1 | |||||||||
KAT | 244 a–c | 268 cd | 263 cd | 259 cd | 231 ab | ||||||||||
STC | 279 d | 267 cd | 281 d | 272 cd | 221 a |
Effect p Value 2 | Dorper | Katahdin | St. Croix | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Item 3 | Brd | Sup | Brd × Sup | Low | High | Low | High | Low | High | SEM | Brd 4 |
Birth rate (%) | 0.520 | 0.063 | 0.738 | 66.7 | 93.5 | 84.6 | 95.5 | 82.8 | 100.0 | 9.83 | |
Litter size | 0.190 | 0.046 | 0.184 | 1.38 | 1.29 | 1.38 | 1.95 | 1.36 | 1.82 | 0.152 | |
Fecundity | 0.174 | 0.021 | 0.619 | 0.92 | 1.21 | 1.17 | 1.86 | 1.12 | 1.82 | 0.221 | |
Birth weight (kg) | |||||||||||
Individual lamb | 0.035 | 0.787 | 0.329 | 4.50 | 4.61 | 4.38 | 3.98 | 3.73 | 3.88 | 0.201 | S < D |
Total litter | 0.221 | 0.049 | 0.294 | 5.84 | 5.74 | 5.92 | 7.52 | 5.04 | 6.78 | 0.529 | |
Gestation length (days) | 0.228 | 0.739 | 0.661 | 145.4 | 144.6 | 146.2 | 147.0 | 144.9 | 145.7 | 0.88 |
Body Mass Index 2 | |||||||
---|---|---|---|---|---|---|---|
Day | Item 3 | Parameter | WH | WP | GH | GP | BCS 3 |
−7 | BW | r | 0.89 | 0.91 | 0.82 | 0.87 | 0.42 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
BCS | r | 0.48 | 0.50 | 0.43 | 0.45 | ||
p | <0.001 | <0.001 | <0.001 | <0.001 | |||
14 | BW | r | 0.88 | 0.88 | 0.83 | 0.82 | 0.50 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
BCS | r | 0.45 | 0.47 | 0.41 | 0.42 | ||
p | <0.001 | <0.001 | <0.001 | <0.001 | |||
49 | BW | r | 0.88 | 0.88 | 0.77 | 0.75 | 0.59 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
BCS | r | 0.58 | 0.55 | 0.55 | 0.52 | ||
p | <0.001 | <0.001 | <0.001 | <0.001 | |||
73 | BW | r | 0.84 | 0.84 | 0.77 | 0.71 | 0.62 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
BCS | r | 0.57 | 0.54 | 0.53 | 0.44 | ||
p | <0.001 | <0.001 | <0.001 | <0.001 | |||
162 | BW | r | 0.88 | 0.92 | 0.78 | 0.82 | 0.77 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
BCS | r | 0.70 | 0.70 | 0.58 | 0.56 | ||
p | <0.001 | <0.001 | <0.001 | <0.001 | |||
−7 to 162 3 | BW | r | 0.88 | 0.90 | 0.74 | 0.77 | 0.75 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
BCS | r | 0.63 | 0.67 | 0.45 | 0.48 | ||
p | <0.001 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belkasmi, F.; Patra, A.K.; Lourencon, R.V.; Puchala, R.; Dawson, L.J.; dos Santos Ribeiro, L.P.; Encinas, F.; Goetsch, A.L. Effects of the Level and Composition of Concentrate Supplements before Breeding and in Early Gestation on Production of Different Hair Sheep Breeds. Animals 2023, 13, 814. https://doi.org/10.3390/ani13050814
Belkasmi F, Patra AK, Lourencon RV, Puchala R, Dawson LJ, dos Santos Ribeiro LP, Encinas F, Goetsch AL. Effects of the Level and Composition of Concentrate Supplements before Breeding and in Early Gestation on Production of Different Hair Sheep Breeds. Animals. 2023; 13(5):814. https://doi.org/10.3390/ani13050814
Chicago/Turabian StyleBelkasmi, Farida, Amlan Kumar Patra, Raquel Vasconcelos Lourencon, Ryszard Puchala, Lionel James Dawson, Luana Paula dos Santos Ribeiro, Fabiola Encinas, and Arthur Louis Goetsch. 2023. "Effects of the Level and Composition of Concentrate Supplements before Breeding and in Early Gestation on Production of Different Hair Sheep Breeds" Animals 13, no. 5: 814. https://doi.org/10.3390/ani13050814
APA StyleBelkasmi, F., Patra, A. K., Lourencon, R. V., Puchala, R., Dawson, L. J., dos Santos Ribeiro, L. P., Encinas, F., & Goetsch, A. L. (2023). Effects of the Level and Composition of Concentrate Supplements before Breeding and in Early Gestation on Production of Different Hair Sheep Breeds. Animals, 13(5), 814. https://doi.org/10.3390/ani13050814