Amino Acid Requirements for Nile Tilapia: An Update
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methodology
3. Results
3.1. Amino Acid Composition of Tilapia Tissues
3.2. Dietary Amino Acid Recommendations for Nile Tilapia
3.3. Importance of Amino Acids in Nile Tilapia
3.3.1. Lysine
3.3.2. Sulfur-Containing Amino Acids
3.3.3. Threonine
3.3.4. Tryptophan
3.3.5. Branched-Chain Amino Acids
3.3.6. Arginine
3.3.7. Histidine
3.3.8. Total Aromatic Amino Acids
3.3.9. Non-Essential Amino Acids
4. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Fishery and Aquaculture Statistics 2019/FAO Annuaire. Statistiques Des Pêches et de l’aquaculture 2019/FAO Anuario. Estadísticas de Pesca y Acuicultura 2019; FAO: Rome, Italy, 2021. [Google Scholar]
- Hardy, R.W. Utilization of Plant Proteins in Fish Diets: Effects of Global Demand and Supplies of Fishmeal. Aquac. Res. 2010, 41, 770–776. [Google Scholar] [CrossRef]
- Gatlin, D.M.; Barrows, F.T.; Brown, P.; Dabrowski, K.; Gaylord, T.G.; Hardy, R.W.; Herman, E.; Hu, G.; Krogdahl, Å.; Nelson, R.; et al. Expanding the Utilization of Sustainable Plant Products in Aquafeeds: A Review. Aquac. Res. 2007, 38, 551–579. [Google Scholar] [CrossRef]
- Ghosh, K.; Ray, A.K.; Ringø, E. Applications of Plant Ingredients for Tropical and Subtropical Freshwater Finfish: Possibilities and Challenges. Rev. Aquac. 2019, 11, 793–815. [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Metian, M.; McNevin, A.A. Future Feeds: Suggested Guidelines for Sustainable Development. Rev. Fish. Sci. Aquac. 2022, 30, 271–279. [Google Scholar] [CrossRef]
- Vidal, L.V.O.; Xavier, T.O.T.; Michelato, M.; Martins, E.N.; Pezzato, L.E.; Furuya, W.M. Apparent Protein and Energy Digestibility and Amino Acid Availability of Corn and Co-Products in Extruded Diets for Nile Tilapia, Oreochromis Niloticus. J. World Aquac. Soc. 2015, 46, 183–190. [Google Scholar] [CrossRef]
- Vidal, L.V.O.; Xavier, T.O.; de Moura, L.B.; Graciano, T.S.; Martins, E.N.; Furuya, W.M. Apparent Digestibility of Soybean Coproducts in Extruded Diets for Nile Tilapia, Oreochromis niloticus. Aquac. Nutr. 2017, 23, 228–235. [Google Scholar] [CrossRef]
- Krogdahl, Å.; Penn, M.; Thorsen, J.; Refstie, S.; Bakke, A.M. Important Antinutrients in Plant Feedstuffs for Aquaculture: An Update on Recent Findings Regarding Responses in Salmonids. Aquac. Re.s 2010, 41, 333–344. [Google Scholar] [CrossRef]
- Kokou, F.; Fountoulaki, E. Aquaculture Waste Production Associated with Antinutrient Presence in Common Fish Feed Plant Ingredients. Aquaculture 2018, 495, 295–310. [Google Scholar] [CrossRef]
- Rodrigues, A.; Mansano, C.; Khan, K.; Nascimento, T.; Boaratti, A.; Sakomura, N.; Fernandes, J. Ideal Profile of Essential Amino Acids for Nile Tilapia (Oreochromis niloticus) in the Finishing Growth Phase. Aquac. Res. 2020, 51, 4724–4735. [Google Scholar] [CrossRef]
- Do Nascimento, T.M.T.; Mansano, C.; Peres, H.; Rodrigues, F.H.F.; Khan, K.U.; Romaneli, R.S.; Sakomura, N.K.; Fernandes, J.B.K. Determination of the Optimum Dietary Essential Amino Acid Profile for Growing Phase of Nile Tilapia by Deletion Method. Aquaculture 2020, 523, 735204. [Google Scholar] [CrossRef]
- Diógenes, A.F.; Fernandes, J.B.K.K.; Dorigam, J.C.P.P.; Sakomura, N.K.; Rodrigues, F.H.F.F.; Lima, B.T.M.M.; Gonçalves, F.H. Establishing the Optimal Essential Amino Acid Ratios in Juveniles of Nile Tilapia (Oreochromis niloticus) by the Deletion Method. Aquac. Nutr. 2016, 22, 435–443. [Google Scholar] [CrossRef]
- Araújo, F.E.; Michelato, M.; Schemberger, M.O.; Salaro, A.L.; Vidal, L.V.O.; da Cruz, T.P.; Furuya, V.R.B.; Furuya, W.M. Assessment of Isoleucine Requirement of Fast-Growing Nile Tilapia Fingerlings Based on Growth Performance, Amino Acid Retention, and Expression of Muscle Growth-Related and MTOR Genes. Aquaculture 2021, 539, 736645. [Google Scholar] [CrossRef]
- Gaye-Siessegger, J.; Focken, U.; Abel, H.; Becker, K. Influence of Dietary Non-Essential Amino Acid Profile on Growth Performance and Amino Acid Metabolism of Nile Tilapia, Oreochromis niloticus (L.). Comp. Biochem. Physiol. Part A 2007, 146, 71–77. [Google Scholar] [CrossRef]
- Li, L.Y.; Lu, D.L.; Jiang, Z.Y.; Limbu, S.M.; Qiao, F.; Chen, L.Q.; Zhang, M.L.; Du, Z.Y. Dietary L-Carnitine Improves Glycogen and Protein Accumulation in Nile Tilapia via Increasing Lipid-Sourced Energy Supply: An Isotope-Based Metabolic Tracking. Aquac. Rep. 2020, 17, 100302. [Google Scholar] [CrossRef]
- Hou, Y.; Yin, Y.; Wu, G. Dietary Essentiality of “Nutritionally Non-Essential Amino Acids” for Animals and Humans. Exp. Biol. Med. 2015, 240, 997–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Zheng, S.; Wu, G. Nutrition and Functions of Amino Acids in Fish. In Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2021; Volume 1285, pp. 133–168. [Google Scholar]
- Michelato, M.; Furuya, W.M.; Gatlin III, D.M. Metabolic Responses of Nile Tilapia Oreochromis niloticus to Methionine and Taurine Supplementation. Aquaculture 2018, 485, 66–72. [Google Scholar] [CrossRef]
- Nguyen, L.; Salem, S.M.R.; Davis, D.A. Indispensable and Dispensable Amino Acid Supplementation in Diets Offered to Nile Tilapia Oreochromis niloticus. Anim. Feed Sci. Technol. 2022, 290, 115361. [Google Scholar] [CrossRef]
- Al-Feky, S.S.A.; El-Sayed, A.F.M.-F.M.; Ezzat, A.A. Dietary Taurine Improves Reproductive Performance of Nile Tilapia (Oreochromis niloticus) Broodstock. Aquac. Nutr. 2016, 22, 392–399. [Google Scholar] [CrossRef]
- Pereira, R.T.; Rosa, P.V.; Gatlin, D.M., III. Glutamine and Arginine in Diets for Nile Tilapia: Effects on Growth, Innate Immune Response, Plasma Amino Acid Profiles and Whole-Body Composition. Aquaculture 2017, 473, 135–144. [Google Scholar] [CrossRef]
- Carvalho, P.L.P.F.; Yamamoto, F.Y.; Barros, M.M.; Gatlin, D.M. L-Glutamine in Vitro Supplementation Enhances Nile Tilapia Oreochromis niloticus (Linnaeus, 1758) Leukocyte Function. Fish Shellfish Immunol. 2018, 80, 592–599. [Google Scholar] [CrossRef] [Green Version]
- Urbich, A.V.; Furuya, W.M.; Michelato, M.; Panaczevicz, P.A.P.; da Cruz, T.P.; Furuya, L.B.; Marinho, M.T.; Gonçalves, G.S.; Furuya, V.R.B. Synergistic Effects of Dietary Methionine and Taurine on Growth Performance, Blood Parameters, Expression in Hepatic Sulfur-Metabolism Genes, and Flesh Quality of Large Nile Tilapia. Anim. Feed. Sci. Technol. 2022, 288, 115291. [Google Scholar] [CrossRef]
- Wu, G. Functional Amino Acids in Growth, Reproduction, and Health. Adv. Nutr. 2010, 1, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Bazer, F.W.; Dai, Z.; Li, D.; Wang, J.; Wu, Z. Amino Acid Nutrition in Animals: Protein Synthesis and Beyond. Annu. Rev. Anim. Biosci. 2014, 2, 387–417. [Google Scholar] [CrossRef]
- Li, P.; Mai, K.; Trushenski, J.; Wu, G. New Developments in Fish Amino Acid Nutrition: Towards Functional and Environmentally Oriented Aquafeeds. Amino Acids 2009, 37, 43–53. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Fish and Shrimp; National Research Council, Ed.; National Academy Press: Washington, DC, USA, 2011. [Google Scholar]
- Wang, T.C.; Fuller, M.F. The Optimum Dietary Amino Acid Pattern for Growing Pigs. Br. J. Nutr. 1989, 62, 77–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rollin, X.; Mambrini, M.; Abboudi, T.; Larondelle, Y.; Kaushik, S.J. The Optimum Dietary Indispensable Amino Acid Pattern for Growing Atlantic Salmon (Salmo salar L.) Fry. Br. J. Nutr. 2003, 90, 865–876. [Google Scholar] [CrossRef] [Green Version]
- Fuller, M.F.; McWilliam, R.; Wang, T.C.; Giles, L.R. The Optimum Dietary Amino Acid Pattern for Growing Pigs. Br. J. Nutr. 1989, 62, 255–267. [Google Scholar] [CrossRef]
- Gunasekera, R.M.; Shim, K.F.; Lam, T.J. Effect of Dietary Protein Level on Spawning Performance and Amino Acid Composition of Eggs of Nile Tilapia, Oreochromis niloticus. Aquaculture 1996, 146, 121–134. [Google Scholar] [CrossRef]
- Gunasekera, R.M.; Shim, K.F.; Lam, T.J. Influence of Protein Content of Broodstock Diets on Larval Quality and Performance in Nile Tilapia, Oreochromis niloticus (L.). Aquaculture 1996, 146, 245–259. [Google Scholar] [CrossRef]
- Graciano, T.S.; Michelato, M.; Neu, D.H.; Vitor, L.; Vidal, O.; Xavier, T.O.; Moura, L.B.; Furuya, W.M. Desempenho Produtivo e Composição Corporal de Tilápias Do Nilo Alimentadas Com AminoGut® no período de reversão sexual. Semin. Cienc. Agrar. 2014, 35, 2779–2789. [Google Scholar] [CrossRef] [Green Version]
- Michelato, M.; Vidal, L.V.O.O.; Xavier, T.O.; Graciano, T.S.; de Moura, L.B.; Furuya, V.R.B.B.; Furuya, W.M.; Moura, L.B.; Furuya, V.R.B.B.; Furuya, W.M. Dietary Threonine Requirement to Optimize Protein Retention and Fillet Production of Fast-Growing Nile Tilapia. Aquac. Nutr. 2016, 22, 759–766. [Google Scholar] [CrossRef]
- Michelato, M.; Vidal, L.V.O.V.O.; Xavier, T.O.O.; Moura, L.B.B.; Almeida, F.L.A.L.A.; Pedrosa, V.B.B.; Furuya, V.R.B.R.B.; Furuya, W.M.M. Dietary Lysine Requirement to Enhance Muscle Development and Fillet Yield of Finishing Nile Tilapia. Aquaculture 2016, 457, 124–130. [Google Scholar] [CrossRef]
- Da Cruz, T.P.; Michelato, M.; Dal-Pai-Silva, M.; Paula, T.G.; Macedo, A.A.; Peres, H.; Oliva-Teles, A.; Urbich, A.v.; Furuya, V.R.B.; Furuya, W.M. Growth Performance, Amino Acid Retention and MRNA Levels of MTORC1 Signaling Pathway Genes in Nile Tilapia Fingerlings Fed Protein-Bound and Crystalline Amino Acids. Aquaculture 2021, 543, 736953. [Google Scholar] [CrossRef]
- Zaminhan, M.; Michelato, M.; Furuya, V.R.B.B.; Boscolo, W.R.; Araújo, F.E.; Cruz, T.P.; Urbich, A.V.; Furuya, W.M. Total and Available Tryptophan Requirement of Nile Tilapia, Oreochromis niloticus, Fingerlings. Aquac. Nutr. 2018, 24, 1553–1562. [Google Scholar] [CrossRef]
- Santiago, C.B.; Lovell, R.T. Amino Acid Requirements for Growth of Nile Tilapia. J. Nutr. 1988, 118, 1540–1546. [Google Scholar] [CrossRef]
- Yue, Y.; Zou, Z.; Zhu, J.; Li, D.; Xiao, W.; Han, J.; Yang, H. Effects of Dietary Arginine on Growth Performance, Feed Utilization, Haematological Parameters and Non-Specific Immune Responses of Juvenile Nile Tilapia (Oreochromis niloticus L.). Aquac. Res. 2015, 46, 1801–1809. [Google Scholar] [CrossRef]
- Neu, D. Growth Performance, Biochemical Responses, and Skeletal Muscle Development of Juvenile Nile Tilapia, Oreochromis niloticus, Fed with Increasing Levels of Arginine. J. Word Aquac. Soc. 2016, 47, 248–259. [Google Scholar] [CrossRef]
- Prabu, E.; Felix, N.; Uma, A. Dietary Arginine Requirement in Diets of GIFT Strain of Nile Tilapia, Oreochromis niloticus: Effects on Growth Performance, Whole-Body Composition, Growth-Related Gene Expression and Haemato-Biochemical Responses. Aquac. Res. 2021, 52, 4816–4828. [Google Scholar] [CrossRef]
- Michelato, M.; Zaminhan, M.; Rogério, W.R.; Nogaroto, V.; Vicari, M.; Ferreira, R.A.; Furuya, V.R.B.; Furuya, W.M. Dietary Histidine Requirement of Nile Tilapia Juveniles Based on Growth Performance, Expression of Muscle-Growth-Related Genes and Haematological Responses. Aquaculture 2017, 467, 63–70. [Google Scholar] [CrossRef]
- Zaminhan-Hassemer, M.; Michelato, M.; Boscolo, W.R.; Urbich, A.V.; da Cruz, T.P.; de Almeida, F.L.A.; Furuya, V.R.B.; Furuya, W.M. Dietary Histidine Requirement of Grow-out Nile Tilapia (Oreochromis niloticus), Based on Growth Performance, Muscle Development, Expression of Muscle-Growth-Related Genes, and Blood Parameters. Rev. Bras. Zootec. 2020, 49, e20180210. [Google Scholar] [CrossRef] [Green Version]
- Gan, L.; Zhou, L.L.; Li, X.X.; Yue, Y.R. Dietary Leucine Requirement of Juvenile Nile Tilapia, Oreochromis niloticus. Aquac. Nutr. 2016, 22, 1010–1046. [Google Scholar] [CrossRef]
- Prabu, E.; Felix, N.; Uma, A.; Praveenraj, J. Effects of Dietary L-Lysine Supplementation on Growth, Body Composition and Muscle-Growth-Related Gene Expression with an Estimation of Lysine Requirement of GIFT Tilapia. Aquac. Nutr. 2020, 26, 568–578. [Google Scholar] [CrossRef]
- Michelato, M.; Furuya, W.M.; Graciano, T.S.; Vítor, L.; Vidal, L.V.O.; Xavier, T.O.; Moura, L.B.; Furuya, V.R.B.; Vidal, O.; Xavier, T.O.; et al. Digestible Methionine + Cystine Requirement for Nile Tilapia from 550 to 700 g. Rev. Bras. Zootec. 2013, 42, 7–12. [Google Scholar] [CrossRef] [Green Version]
- He, J.Y.; Long, W.Q.; Han, B.; Tian, L.X.; Yang, H.J.; Zeng, S.L. Effect of Dietary L -Methionine Concentrations on Growth Performance, Serum Immune and Antioxidative Responses of Juvenile Nile Tilapia, Oreochromis niloticus. Aquac. Res. 2017, 48, 665–674. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Davis, D.A. Re-evaluation of Total Sulphur Amino Acid Requirement and Determination of Replacement Value of Cystine for Methionine in Semi-purified Diets of Juvenile Nile Tilapia, Oreochromis niloticus. Aquac. Rep. 2009, 15, 247–253. [Google Scholar] [CrossRef]
- Xiao, W.; Zou, Z.; Li, D.; Zhu, J.; Yue, Y.; Yang, H. Effect of Dietary Phenylalanine Level on Growth Performance, Body Composition, and Biochemical Parameters in Plasma of Juvenile Hybrid Tilapia, Oreochromis niloticus × Oreochromis aureus. J. World Aquac. Soc. 2020, 51, 437–451. [Google Scholar] [CrossRef]
- Zehra, S.; Yousif, R.A. Dietary Total Aromatic Amino Acid Requirement and Tyrosine Replacement Value for Phenylalanine for Fingerling Oreochromis niloticus (Linnaeus). Aquac. Nutr. 2021, 27, 1009–1018. [Google Scholar] [CrossRef]
- Yue, Y.; Zou, Z.; Zhu, J.; Li, D.; Xiao, W.; Han, J.; Yang, H. Dietary Threonine Requirement of Juvenile Nile Tilapia, Oreochromis niloticus. Aquac. Int. 2014, 22, 1457–1467. [Google Scholar] [CrossRef]
- Zaminhan, M.; Boscolo, W.R.; Neu, D.H.; Feiden, A.; Furuya, V.R.B.; Furuya, W.M. Dietary Tryptophan Requirements of Juvenile Nile Tilapia Fed Corn-Soybean Meal-Based Diets. Anim. Feed Sci. Technol. 2017, 227, 62–67. [Google Scholar] [CrossRef]
- Prabu, E.; Felix, N.; Uma, A.; Ahilan, B.; Antony, C. Metabolic Responses of Juvenile GIFT Strain of Nile Tilapia (Oreochromis niloticus) to Dietary L-Tryptophan Supplementation. Aquac. Nutr. 2020, 26, 1713–1723. [Google Scholar] [CrossRef]
- Nguyen, L.; Salem, S.M.R.; Salze, G.P.; Dinh, H.; Davis, D.A. Tryptophan Requirement in Semi-Purified Diets of Juvenile Nile Tilapia Oreochromis niloticus. Aquaculture 2019, 502, 258–267. [Google Scholar] [CrossRef]
- Xiao, W.; Li, D.Y.; Zhu, J.L.; Zou, Z.Y.; Yue, Y.R.; Yang, H. Dietary Valine Requirement of Juvenile Nile Tilapia, Oreochromis niloticus. Aquac. Nutr. 2018, 24, 315–323. [Google Scholar] [CrossRef]
- Chowdhury, M.A.K.; Siddiqui, S.; Hua, K.; Bureau, D.P. Bioenergetics-Based Factorial Model to Determine Feed Requirement and Waste Output of Tilapia Produced under Commercial Conditions. Aquaculture 2013, 410–411, 138–147. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Ahmad, M.H.; Khattab, Y.A.E.; Shalaby, A.M.E. Effect of Dietary Protein Level, Initial Body Weight, and Their Interaction on the Growth, Feed Utilization, and Physiological Alterations of Nile Tilapia, Oreochromis niloticus (L.). Aquaculture 2010, 298, 267–274. [Google Scholar] [CrossRef]
- El-Sayed, A.-F.M.; Teshima, S.-I. Protein and Energy of Nile Tilapia Oreochromis niloticus. Aquaculture 1992, 103, 55–63. [Google Scholar] [CrossRef]
- Fernandes, A.C., Jr.; Carvalho, P.L.P.F.C.; Pezzato, L.E.; Koch, J.F.A.; Teixeira, C.P.; Cintra, F.T.; Damasceno, F.M.; Amorin, R.L.; Padovani, C.R.; Barros, M.M. The Effect of Digestible Protein to Digestible Energy Ratio and Choline Supplementation on Growth, Hematological Parameters, Liver Steatosis and Size-Sorting Stress Response in Nile Tilapia under Field Condition. Aquaculture 2016, 456, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Freccia, A.; Sousa, S.M.d.N.; Meurer, F.; Butzge, A.J.; Mewes, J.K.; Bombardelli, R.A. Essential Oils in the Initial Phase of Broodstock Diets of Nile Tilapia. Rev. Bras. Zootec. 2014, 43, 1–7. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, M.M.; Ribeiro, T.; Orlando, T.M.; de Oliveira, D.G.S.; Drumond, M.M.; de Freitas, R.T.F.; Rosa, P.v. Effects Crude Protein Levels on Female Nile Tilapia (Oreochromis niloticus) Reproductive Performance Parameters. Anim. Reprod. Sci. 2014, 150, 62–69. [Google Scholar] [CrossRef]
- El-Sayed, A.-F.M.; Kawanna, M. Effects of Dietary Protein and Energy Levels on Spawning Performance of Nile Tilapia (Oreochromis niloticus) Broodstock in a Recycling System. Aquaculture 2008, 280, 179–184. [Google Scholar] [CrossRef]
- Mitchel, H.H. Comparative Nutrition of Man and Domestic Animals, 1st ed.; Mitchell, M.M., Ed.; Academic Press: New York, NY, USA, 1962. [Google Scholar]
- Marín-García, P.J.; Llobat, L.; López-Lujan, M.C.; Cambra-López, M.; Blas, E.; Pascual, J.J. Urea Nitrogen Metabolite Can Contribute to Implementing the Ideal Protein Concept in Monogastric Animals. Animals 2022, 12, 2344. [Google Scholar] [CrossRef]
- van Milgen, J.; Dourmad, J.Y. Concept and Application of Ideal Protein for Pigs. J. Anim. Sci. Biotechnol. 2015, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Emmer, J.L.; Baker, D.H. Use of the Ideal Protein Concept for Precision Formulation of Amino Acid Levels in Broiler Diets’ Description of Problem. J. Appl. Poult. Res. 1997, 6, 462–470. [Google Scholar] [CrossRef]
- Furuya, W.M.; Rossetto, V.; Furuya, B. Nutritional Innovations on Amino Acids Supplementation in Nile Tilapia Diets. Rev. Bras. Zootec. 2010, 39, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Furuya, W.M.M.; Pezzato, L.E.; Barros, M.M.; Pezzato, A.C.; Furuya, V.R.B.; Miranda, E.C. Use of Ideal Protein Concept for Precision Formulation of Amino Acid Levels in Fish-Meal-Free Diets for Juvenile Nile Tilapia (Oreochromis niloticus L.). Aquac. Res. 2004, 35, 1110–1116. [Google Scholar] [CrossRef]
- Nguyen, L.; Dinh, H.; Davis, D.A. Efficacy of Reduced Protein Diets and the Effects of Indispensable Amino Acid Supplements for Nile Tilapia Oreochromis niloticus. Anim. Feed Sci. Technol. 2020, 268, 114593. [Google Scholar] [CrossRef]
- Koch, J.F.; Rawles, S.D.; Webster, C.D.; Cummins, V.; Kobayashi, Y.; Thompson, K.R.; Gannam, A.L.; Twibell, R.G.; Hyde, N.M. Optimizing Fish Meal-Free Commercial Diets for Nile Tilapia, Oreochromis niloticus. Aquaculture 2016, 452, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.; Davis, D.A. Comparison of Crystalline Lysine and Intact Lysine Used as a Supplement in Practical Diets of Channel Catfish (Ictalurus punctatus) and Nile Tilapia (Oreochromis niloticus). Aquaculture 2016, 464, 331–339. [Google Scholar] [CrossRef]
- Furuya, W.M.; dos Santos, V.G.; Silva, L.C.R.; Furuya, V.R.B.; Sakaguti, E.S. Digestible Lysine Requirements of Nile Tilapia Juveniles. Rev. Bras. Zootec. 2006, 35, 937–942. [Google Scholar] [CrossRef] [Green Version]
- Hua, K.; Suwendi, E.; Bureau, D.P. Effect of Body Weight on Lysine Utilization Efficiency in Nile Tilapia (Oreochromis niloticus). Aquaculture 2019, 505, 47–53. [Google Scholar] [CrossRef]
- Romaneli, R.d.S.; do Nascimento, T.M.T.; Gous, R.M.; Reis, M.d.P.; Mansano, C.F.M.; Khan, K.U.; Sakomura, N.K.; Fernandes, J.B.K. Response of Nile Tilapia (Oreochromis niloticus) to Lysine: Performance, Body Composition, Maintenance and Efficiency of Utilization. Aquaculture 2021, 538, 736522. [Google Scholar] [CrossRef]
- Richter, B.L.; Silva, T.S.d.C.; Michelato, M.; Marinho, M.T.; Gonçalves, G.S.; Furuya, W.M. Combination of Lysine and Histidine Improves Growth Performance, Expression of Muscle Growth-Related Genes and Fillet Quality of Grow-out Nile Tilapia. Aquac. Nutr. 2020, 27, 568–580. [Google Scholar] [CrossRef]
- Garg, C.K.; Sardar, P.; Sahu, N.P.; Maiti, M.K.; Shamna, N.; Varghese, T.; Deo, A.D.; Harikrishna, V. Dietary Lysine Requirement of Genetically Improved Farmed Tilapia (GIFT) Juvenile Reared in Inland Saline Water of 10 Ppt Salinity. Aquaculture 2022, 555, 738223. [Google Scholar] [CrossRef]
- Shao, M.; Xu, H.; Ge, X.; Zhu, J.; Huang, D.; Ren, M.; Liang, H. Salinity Levels Affect the Lysine Nutrient Requirements and Nutrient Metabolism of Juvenile Genetically Improved Farmed Tilapia (Oreochromis niloticus). Br. J. Nutr. 2022, 129, 564–575. [Google Scholar] [CrossRef]
- He, J.Y.; Tian, L.X.; Lemme, A.; Gao, W.; Yang, H.J.; Niu, J.; Liang, G.Y.; Chen, P.F.; Liu, Y.J. Methionine and Lysine Requirements for Maintenance and Efficiency of Utilization for Growth of Two Sizes of Tilapia (Oreochromis niloticus). Aquac. Nutr. 2013, 19, 629–640. [Google Scholar] [CrossRef]
- Dong, Y.-W.; Jiang, W.-D.; Wu, P.; Liu, Y.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhou, X.-Q.; Feng, L. Nutritional Digestion and Absorption, Metabolism Fates Alteration Was Associated with Intestinal Function Improvement by Dietary Threonine in Juvenile Grass Carp (Ctenopharyngodon idella). Aquaculture 2022, 555, 738194. [Google Scholar] [CrossRef]
- Hong, Y.; Jiang, W.; Kuang, S.; Hu, K.; Tang, L.; Liu, Y.; Jiang, J.; Zhang, Y.; Zhou, X.; Feng, L. Growth, Digestive and Absorptive Capacity and Antioxidant Status in Intestine and Hepatopancreas of Sub-Adult Grass Carp Ctenopharyngodon idella Fed Graded Levels of Dietary Threonine. J. Anim. Sci. Biotechnol. 2015, 6, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoseini, S.M.; Pérez-Jiménez, A.; Costas, B.; Azeredo, R.; Gesto, M. Physiological Roles of Tryptophan in Teleosts: Current Knowledge and Perspectives for Future Studies. Rev. Aquac. 2019, 11, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Sahu, S.; Ngasotter, S.; Mog, M.; Tesia, S.; Sharma, S.; Dayakar, B.; Waikhom, D. A Review on Physiological, Behavioral and Metabolic Role of Dietary Tryptophan in Fish. Int. J. Chem. Stud. 2020, 8, 2411–2417. [Google Scholar] [CrossRef]
- Vieira, B.R.M.; Guermandi, I.I.; Bellot, M.S.; Camargo-dos-Santos, B.; Favero-Neto, J.; Giaquinto, P.C. The Effects of Tryptophan Supplementation on Stress and Aggression in Nile Tilapia. J. Appl. Ichthyol. 2021, 37, 578–584. [Google Scholar] [CrossRef]
- Prabu, E.; Rajagopalsamy, C.B.T.; Ahilan, B.; Jeevagan, I.J.M.A.; Renuhadevi, M. Effect of Dietary Supplementation of Biofloc Meal with Tryptophan on Growth and Survival of GIFT Tilapia. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 3426–3434. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Huang, X.P.; Guan, J.F.; Chen, Z.M.; Ma, Y.C.; Xie, D.Z.; Ning, L.J.; Li, Y.Y. Effects of Dietary Leucine and Valine Levels on Growth Performance, Glycolipid Metabolism and Immune Response in Tilapia GIFT Oreochromis niloticus. Fish Shellfish. Immunol. 2022, 121, 395–403. [Google Scholar] [CrossRef]
- Vianna, R.A.; Chideroli, R.T.; da Costa, A.R.; Ribeiro Filho, O.P.; de Oliveira, L.L.; Donzele, J.L.; Lanna, E.A.T.; Gonçalves, D.D.; de Pereira, U.P. Effect of Experimental Arginine Supplementation on the Growth, Immunity and Resistance of Tilapia Fingerlings to Streptococcus agalactiae. Aquac. Res. 2020, 51, 1276–1283. [Google Scholar] [CrossRef]
- Li, S.; Wang, C.; Wu, Z. Dietary L-Arginine Supplementation of Tilapia (Oreochromis niloticus) Alters the Microbial Population and Activates Intestinal Fatty Acid Oxidation. Amino Acids 2022, 54, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, R.Y.; Santos, R.F.B.; Pala, G.; Gallani, S.U.; Valladão, G.M.R.; Morais, G.C.; Lee, J.T.; da Costa Sousa, N.; dos Santos Cunha, F.; Maria, A.N.; et al. Supplementation with Arginine in the Diet of Nile Tilapia Reared in Net Cages. Pesqui Agropecu Bras. 2019, 54. [Google Scholar] [CrossRef]
- Chen, G.; Feng, L.; Kuang, S.; Liu, Y.; Jiang, J.; Hu, K.; Jiang, W.; Li, S.; Tang, L.; Zhou, X. Effect of Dietary Arginine on Growth, Intestinal Enzyme Activities and Gene Expression in Muscle, Hepatopancreas and Intestine of Juvenile Jian Carp (Cyprinus carpio Var. Jian). Br. J. Nutr. 2012, 108, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Vidal, L.V.O.L.O.; Xavier, T.O.; Moura, L.B.; Michelato, M.; Martins, E.N.; Furuya, W.M.; de Moura, L.B.; Graciano, T.S.; Martins, E.N.; Furuya, W.M.; et al. Apparent Digestibility of Wheat and Coproducts in Extruded Diets for the Nile Tilapia, Oreochromis niloticus. Rev. Bras. Saúde Prod. Anim. 2017, 18, 479–491. [Google Scholar] [CrossRef]
- Wu, P.; Qu, B.; Feng, L.; Jiang, W.D.; Kuang, S.Y.; Jiang, J.; Tang, L.; Zhou, X.Q.; Liu, Y. Dietary Histidine Deficiency Induced Flesh Quality Loss Associated with Changes in Muscle Nutritive Composition, Antioxidant Capacity, Nrf2 and TOR Signaling Molecules in on-Growing Grass Carp (Ctenopharyngodon idella). Aquaculture 2020, 526, 735399. [Google Scholar] [CrossRef]
- Clarke, J.T.R.; Bier, D.M. The Conversion of Phenylalanine to Tyrosine in Man. Direct Measurement by Continuous Intravenous Tracer Infusions of L-[Ring-2H5]Phenylalanine and L-[1-13C] Tyrosine in the Postabsorptive State. Metabolism 1982, 31, 999–1005. [Google Scholar] [CrossRef]
- Maas, R.M.; Verdegem, M.C.J.; Wiegertjes, G.F.; Schrama, J.W. Carbohydrate Utilisation by Tilapia: A Meta-Analytical Approach. Rev. Aquac. 2020, 12, 1851–1866. [Google Scholar] [CrossRef]
- Francis, G.; Makkar, H.P.S.; Becker, K. Anti-nutritional Factors Present in Plant-Derived Alternate Fish Feed Ingredients and Their Effects in Fish. Aquaculture 2001, 199, 197–227. [Google Scholar] [CrossRef]
- Carvalho, P.L.P.F.; Xavier, W.D.S.; Guimarães, M.G.; Rodrigues, E.J.D.; Furuya, W.M.; Yamamoto, F.Y.; Pezzato, L.E.; Gatlin, D.M.; Barros, M.M. Dietary Glutamine Improves Growth and Intestinal Morphology of Juvenile GIFT Tilapia (Oreochromis niloticus) but Has Limited Effects on Innate Immunity and Antioxidant Capacity. Aquaculture 2023, 563, 738976. [Google Scholar] [CrossRef]
- Xie, S.; Zhou, W.; Tian, L.; Niu, J.; Liu, Y. Effect of N-Acetyl Cysteine and Glycine Supplementation on Growth Performance, Glutathione Synthesis, Anti-Oxidative and Immune Ability of Nile Tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 2016, 55, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.P.; Ding, Z.N.; Dai, T.; Feng, J.H.; Dong, J.Y.; Xia, F.; Xu, J.J.; Ye, J.D. Effect of Dietary Taurine Supplementation on Metabolome Variation in Plasma of Nile Tilapia. Animal 2021, 15, 100167. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.A.R.; Rahman, A.N.A.; Salem, G.A.; el Deib, M.M.; Nassan, M.A.; Rhouma, N.R.; Khater, S.I. The Antioxidant Role of a Taurine-Enriched Diet in Combating the Immunotoxic and Inflammatory Effects of Pyrethroids and/or Carbamates in Oreochromis niloticus. Animals 2021, 11, 1318. [Google Scholar] [CrossRef] [PubMed]
- Li, J.M.; Li, L.Y.; Qin, X.; Ning, L.J.; Lu, D.L.; Li, D.L.; Zhang, M.L.; Wang, X.; Du, Z.Y. Systemic Regulation of L-Carnitine in Nutritional Metabolism in Zebrafish, Danio rerio. Sci. Rep. 2017, 7, 40815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Der Yang, S.; Wen, Y.C.; Liou, C.H.; Liu, F.G. Influence of Dietary L-Carnitine on Growth, Biological Traits and Meat Quality in Tilapia. Aquac. Res. 2009, 40, 1374–1382. [Google Scholar] [CrossRef]
- Guzmán-Guillén, R.; Prieto Ortega, A.I.; Moyano, R.; Blanco, A.; Vasconcelos, V.; Cameán, A.M. Dietary L-Carnitine Prevents Histopathological Changes in Tilapia (Oreochromis niloticus) Exposed to Cylindrospermopsin. Environ. Toxicol. 2017, 32, 241–254. [Google Scholar] [CrossRef]
AA | Egg 1 | Fry 2 | Nursery 3 | Pre-growout 4 | Growout 5 | Mean ± SD |
---|---|---|---|---|---|---|
EAA | ||||||
Arg | 4.7 | 3.7 | 4.2 | 5.4 | 6.3 | 4.9 ± 1.0 |
His | 1.9 | 5.2 | 2.3 | 2.1 | 1.5 | 2.6 ± 1.5 |
Ile | 2.8 | 3.2 | 3.9 | 3.9 | 4.3 | 3.6 ± 0.6 |
Leu | 5.9 | 6.8 | 6.0 | 6.5 | 7.1 | 6.5 ± 0.5 |
Lys | 5.8 | 6.0 | 7.2 | 6.7 | 7.4 | 6.6 ± 0.7 |
Met | 2.9 | 5.3 | 2.0 | 2.3 | 2.5 | 3.0 ± 1.3 |
Phe | 2.2 | 3.5 | 3.2 | 3.7 | 3.5 | 3.2 ± 0.6 |
Thr | 4.5 | 3.7 | 3.3 | 3.9 | 4.1 | 3.9 ± 0.4 |
Trp | n.d. | n.d. | 0.9 | 0.9 | 0.8 | 0.9 ± 0.1 |
Val | 4.4 | 4.4 | 4.4 | 4.6 | 4.7 | 4.5 ± 0.1 |
NEAA | ||||||
Ala | 8.4 | 7.1 | 5.6 | 6.1 | 7.0 | 6.8± 1.1 |
Asp | 8.1 | 7.0. | 8.2 | 8.2 | 8.1 | 8.2 ± 0.1 |
Cys | n.d. | n.d. | 0.9 | 0.7 | 0.7 | 0.8 ± 0.1 |
Glu | 9.4 | 11.8 | 12.1 | 12.0 | 14.5 | 12.0 ± 1.8 |
Gly | 4.3 | n.d. | 6.8 | 7.3 | 9.5 | 7.0 ± 2.1 |
Pro | 7.2 | 7.2 | n.d | n.d | n.d | 7.2 ±0.0 |
Ser | 8.8 | 5.2 | 3.2 | 3.6 | 3.6 | 4.9 ± 2.3 |
Tyr | 2.7 | 3.4 | 2.9 | 3.0 | 2.8 | 3.0 ± 0.3 |
Amino Acid | Fish Stage | Dietary Requirement | Response | P:E | Reference | |
---|---|---|---|---|---|---|
g/kg Diet (DM) | % Protein | |||||
Arg | 1 | 11.8 | 4.2 | WG | 26.8 | [38] |
1 | 18.2 | 6.2 | WG | n.p. | [39] | |
1 | 13.6 | 4.9 | WG | 21.4 | [40] | |
2 | 16.7 | 5.2 | WG | 18.5 | [41] | |
2 | 13.7 | 4.9 | NR | 16.1 | [11] | |
Mean ± SD | 14.8 ± 2.6 | 5.1 ± 0.7 | 18.7 ± 2.7 | |||
His | 1 | 4.8 | 1.7 | WG | 26.8 | [38] |
2 | 4.8 | 1.8 | NR | 16.1 | [11] | |
2 | 8.2 | 3.1 | WG | 15.4 | [42] | |
3 | 8.8 | 2.8 | WG | 19.4 | [43] | |
Mean ± SD | 6.7 ± 2.2 | 2.4 ± 0.7 | 19.4 ± 5.2 | |||
Ile | 1 | 8.7 | 3.1 | WG | 26.8 | [38] |
2 | 9.1 | 3.3 | NR | 16.1 | [11] | |
1 | 13.7 | 5.0 | WG | 19.6 | [13] | |
Mean ± SD | 10.5 ± 2.8 | 3.8 ± 1.0 | 20.8 ± 5.5 | |||
Leu | 1 | 9.5 | 0.34 | WG | 26.8 | [38] |
2 | 13.5 | 0.48 | NR | 16.1 | [11] | |
1 | 12.5 | 0.43 | WG | n.p. | [44] | |
Mean ± SD | 11.8 ± 2.1 | 4.2 ± 007 | 21.5 ± 7.6 | |||
Lys | 1 | 14.3 | 5.1 | WG | 26.8 | [38] |
2 | 16.5 | 5.9 | NR | 16.1 | [11] | |
3 | 15.1 | 6.0 | WG | 19.2 | [35] | |
2 | 18.0 | 5.6 | WG | 18.5 | [45] | |
Mean ± SD | 16.0 ± 1.6 | 5.7 ± 0.4 | 20.2 ± 4.6 | |||
Met | 1 | 7.5 | 2.7 | WG | 26.8 | [38] |
3 | 6.8 | 2.3 | WG | 20.6 | [46] | |
1 | 9.1 | 3.2 | WG | n.p. | [47] | |
1 | 8.1 | 2.9 | WG | 19.1 | [48] | |
Mean ± SD | 7.9 ± 1.0 | 2.8 ± 0.4 | 22.2 ± 4.1 | |||
Met +Cys | 1 | 9.0 | 3.2 | WG | 26.8 | [38] |
3 | 11.2 | 3.8 | WG, FY | 20.6 | [46] | |
1 | 10.0 | 3.5 | WG | n.p. | [47] | |
1 | 8.5 | 3.0 | WG | 19.1 | [48] | |
Mean ± SD | 9.7 ± 1.2 | 3.4 ± 0.4 | 22.2 ± 4.1 | |||
Phe | 1 | 10.5 | 3.8 | WG | 26.8 | [38] |
1 1 | 8.8 | 3.0 | WG | 21.4 | [49] | |
1 | 12.1 | 3.5 | WG | 20.9 | [50] | |
Mean ± SD | 10.5 ± 1.2 | 3.4 ± 0.4 | 23.0 ± 3.3 | |||
Phe + Tyr | 1 | 15.5 | 5.6 | WG | 26.8 | [38] |
1 1 | 18.6 | 6.4 | WG | [49] | ||
1 | 20.6 | 5.9 | WG | [50] | ||
Mean ± SD | 18.2 ± 2.6 | 6.0 ± 0.4 | 23.0 ± 3.3 | |||
Thr | 1 | 10.5 | 3.8 | WG | 26.8 | [38] |
1 | 13.3 | 4.7 | WG | [51] | ||
2 | 13.5 | 4.8 | NR | 16.1 | [11] | |
3 | 11.5 | 4.0 | WG, FY | 22.7 | [34] | |
Mean ± SD | 12.2 ± 1.4 | 4.3 ± 0.5 | 21.9 ± 5.4 | |||
Trp | 1 | 2.8 | 1.0 | WG | 26.8 | [38] |
2 | 2.4 | 0.9 | NR | 16.1 | [11] | |
1 | 3.4 | 1.1 | WG | 19.3 | [52] | |
1 | 3.8 | 1.2 | WG | 18.5 | [53] | |
1 | 3.1 | 1.0 | WG | n.p. | [54] | |
Mean ± SD | 3.1 ± 0.5 | 1.0 ± 0.1 | 20.2 ± 4.6 | |||
Val | 1 | 7.8 | 2.8 | WG | 26.8 | [38] |
2 | 9.7 | 3.5 | NR | 16.1 | [11] | |
1 | 12.7 | 4.5 | WG | 17.4 | [55] | |
Mean ± SD | 10.1 ± 2.5 | 3.6 ± 0.9 | 20.1 ± 5.8 |
Amino Acid | Production Stage 2 | ||
---|---|---|---|
Fry | Nursery/Pre-Growout | Growout | |
Crude Protein (g/kg Diet) 3 | |||
460 | 350 | 320 | |
Arg | 23.5 | 17.9 | 16.3 |
His | 11.0 | 8.4 | 7.7 |
Ile | 17.5 | 13.3 | 12.2 |
Leu | 19.3 | 14.7 | 13.4 |
Lys | 26.2 | 20.0 | 18.2 |
Met | 12.9 | 9.8 | 9.0 |
Met + Cys | 15.6 | 11.9 | 10.9 |
Phe | 15.6 | 11.9 | 10.9 |
Phe + Tyr | 27.6 | 21.0 | 19.2 |
Thr | 19.8 | 15.1 | 13.8 |
Trp | 0.5 | 0.4 | 0.3 |
Val | 16.1 | 12.3 | 11.2 |
Amino Acid | Crude Protein (g/kg Diet; Dry Matter) | ||
---|---|---|---|
350 2 | 380 3 | 400 4 | |
Arg | 17.9 | 19.4 | 20.4 |
His | 8.4 | 9.1 | 9.6 |
Ile | 13.3 | 14.4 | 15.2 |
Leu | 14.7 | 16.0 | 16.8 |
Lys | 20.0 | 21.7 | 22.8 |
Met | 9.8 | 10.6 | 11.2 |
Met + Cys | 11.9 | 12.9 | 13.6 |
Phe | 11.9 | 12.9 | 13.6 |
Phe + Tyr | 21.0 | 22.8 | 24.0 |
Thr | 15.1 | 16.3 | 17.2 |
Trp | 0.4 | 0.4 | 0.4 |
Val | 12.3 | 13.3 | 14.0 |
Amino Acid | Fish Production Stage 1 | Mean ± SD | ||
---|---|---|---|---|
Nursery 2 | Pre-Growout 2 | Growout 2 | ||
Lysine | 100 | 100 | 100 | 10 0 ± 0 |
Arginine | 86 | 125 | 81 | 97 ± 24 |
Histidine | 30 | 34 | 34 | 33 ± 2 |
Isoleucine | 56 | 57 | 51 | 55 ± 3 |
Leucine | 84 | 96 | 66 | 82 ± 15 |
Methionine | 41 | 64 3 | 41 3 | 49 ± 13 |
Phenylalanine | 64 | 101 4 | 70 4 | 78 ± 20 |
Threonine | 103 | 93 | 89 | 95 ± 7 |
Tryptophan | 16 | 24 | 23 | 21 ± 4 |
Valine | 60 | 76 | 73 | 70 ± 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furuya, W.M.; Cruz, T.P.d.; Gatlin, D.M., III. Amino Acid Requirements for Nile Tilapia: An Update. Animals 2023, 13, 900. https://doi.org/10.3390/ani13050900
Furuya WM, Cruz TPd, Gatlin DM III. Amino Acid Requirements for Nile Tilapia: An Update. Animals. 2023; 13(5):900. https://doi.org/10.3390/ani13050900
Chicago/Turabian StyleFuruya, Wilson Massamitu, Thais Pereira da Cruz, and Delbert Monroe Gatlin, III. 2023. "Amino Acid Requirements for Nile Tilapia: An Update" Animals 13, no. 5: 900. https://doi.org/10.3390/ani13050900
APA StyleFuruya, W. M., Cruz, T. P. d., & Gatlin, D. M., III. (2023). Amino Acid Requirements for Nile Tilapia: An Update. Animals, 13(5), 900. https://doi.org/10.3390/ani13050900