Effect of Selected Micro- and Macroelements and Vitamins on the Genome Stability of Bovine Embryo Transfer Recipients following In Vitro Fertilization
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Cell Culture
2.3. Sister Chromatid Exchange Assay
2.4. Fragile Site Assay
2.5. Comet Assay
2.6. Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- McGranahan, N.; Burrell, R.A.; Endesfelder, D.; Novelli, M.R.; Swanton, C. Cancer chromosomal instability: Therapeutic and diagnostic challenges. EMBO Rep. 2012, 13, 528–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerlach, S.U.; Herranz, H. Genomic instability and cancer: Lessons from Drosophila. Open Biol. 2020, 10, 200060. [Google Scholar] [CrossRef] [PubMed]
- Gollin, S.M. Mechanisms leading to chromosomal instability. Semin. Cancer Biol. 2005, 15, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Murnane, J.P. Telomere dysfunction and chromosome instability. Mutat. Res. 2012, 730, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Ebisch, I.M.W.; Thomas, C.M.G.; Peters, W.H.M.; Braat, D.D.M.; Steegers-Theunissen, R.P.M. The importance of folate, zinc and antioxidants in the pathogenesis and prevention of subfertility. Hum. Reprod. 2007, 13, 163–174. [Google Scholar] [CrossRef]
- Heng, H.H.; Bremer, S.W.; Stevens, J.B.; Horne, S.D.; Liu, G.; Abdallah, B.Y.; Ye, K.J.; Ye, C.J. Chromosomal instability (CIN): What it is and why it is crucial to cancer evolution. Cancer Metastasis Rev. 2013, 32, 325–340. [Google Scholar] [CrossRef]
- Zalega, J.; Szostak-Węgierek, D. Nutrition in cancer prevention. Part II. Minerals, vitamins, polyunsaturated fatty acids, probiotics, prebiotics. Prob. Hig. Epidem. 2013, 94, 50–58. [Google Scholar]
- Koziołkiewicz, M. Nutrigenomics concepts. Biotechnologia 2009, 4, 9–34. [Google Scholar]
- Gressley, T.F. Zinc, cooper, manganese, and selenium in dairy cattle rations. In Proceedings of the 7th Annual Mid-Atlantic Nutrition Conference, Timonium, MD, USA, 25–26 March 2009; University of Maryland: College Park, MD, USA, 2009; pp. 65–71. [Google Scholar]
- Lutnicki, K.; Kaczmarek, B.; Kurek, Ł. Selected minerals deficiencies in dairy cows. Życie Weter. 2015, 90, 802–805. [Google Scholar]
- Hernández-Castellano, L.E.; Hernandez, L.L.; Bruckmaier, R.M. Review: Endocrine pathways to regulate calcium homeostasis around parturition and the prevention of hypocalcemia in periparturient dairy cows. Animal 2020, 14, 330–338. [Google Scholar] [CrossRef] [Green Version]
- Olejnik, A.; Tomczyk, J.; Kowalska, K.; Grajek, W. The role of natural dietary compounds in colorectal cancer chemoprevention. Postepy Hig. Med. Dosw. 2010, 64, 175–187. [Google Scholar]
- Kośla, T.; Cieślik, L.; Skibniewski, M.; Wrzesień, R.; Skibniewska, E.M.; Michalik, P. Hepcidin—A hormone in iron metabolizm in man and animals. Part I. The role hepcidin in absorption of iron of digestive tract and iron transport. Rocz. Panstw. Zakl. Hig. 2004, 55, 1–6. [Google Scholar]
- Aisen, P.; Enns, C.; Wessling-Resnick, M. Chemistry and biology of eukaryotic iron metabolism. Int. J. Biochem. Cell Biol. 2001, 33, 940–959. [Google Scholar] [CrossRef]
- Artym, J.; Zimecki, M. Host’s organism against pathogens in combat for iron. The role of iron in infections. Kosmos 2014, 63, 345–366. [Google Scholar]
- Oliński, R.; Jurgowiak, M. Iron metabolism, oxidative DNA damage and atherosclerosis. Acta Angiol. 2002, 8, 37–44. [Google Scholar]
- Marques, R.S.; Cooke, R.F.; Rodrigues, M.C.; Cappellozza, B.I.; Mills, R.R.; Larson, C.K.; Moriel, P.; Bohnert, D.W. Effects of organic or inorganic cobalt, copper, manganese, and zinc supplementation to late-gestating beef cows on productive and physiological responses of the offspring. J. Anim. Sci. 2016, 94, 1215–1226. [Google Scholar] [CrossRef] [Green Version]
- Seyrek, K.; Yaylak, E.; Akşit, H. Serum sialic acid, malondialdehyde, retinol, zinc, and copper concentrations in dairy cows with lameness. Bull. Vet. Inst. Pulawy 2008, 52, 281–284. [Google Scholar]
- Mirowski, A. Zinc in cattle nutrition. Part I. Zinc content in the body. Życie Weter. 2016, 91, 42–44. [Google Scholar]
- Omur, A.; Kirbas, A.; Aksu, E.; Kandemir, F.; Dorman, E.; Kaynar, O.; Ucar, O. Effects of antioxidant vitamins (A, D, E) and trace elements (Cu, Mn, Se, Zn) on some metabolic and reproductive profiles in dairy cows during transition period. Pol. J. Vet. Sci. 2016, 19, 697–706. [Google Scholar] [CrossRef] [Green Version]
- Meglia, G.E.; Johannisson, A.; Petersson, L.; Persson Waller, K. Changes in some blood micronutrients, leukocytes and neutrophil expression of adhesion molecules in periparturient dairy cows. Acta Vet. Scand. 2001, 42, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Kojouri, G.A.; Ebrahimi, A.; Zaheri, M. Zinc and selenium status in cows with dermatophytosis. Comp. Clin. Pathol. 2009, 18, 283–286. [Google Scholar] [CrossRef]
- Zyba, S.J.; Shenvi, S.V.; Killilea, D.W.; Holland, T.C.; Kim, E.; Moy, A.; Sutherland, B.; Gildengorin, V.; Shigenaga, M.K.; King, J.C. A moderate increase in dietary zinc reduces DNA strand breaks in leukocytes and alters plasma proteins without changing plasma zinc concentrations. Am. J. Clin. Nutr. 2017, 105, 343–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Wu, X. Common fragile sites: Protection and repair. Cell Biosci. 2020, 10, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, G.; Zhang, B.; Luo, Z.; Lu, B.; Luo, Z.; Zhang, J.; Wang, Y.; Luo, Y.; Yang, Z.; Shen, L.; et al. Molecular typing and prevalence of antibiotic resistance and virulence genes in Streptococcus agalactiae isolated from Chinese dairy cows with clinical mastitis. PLoS ONE 2022, 17, e0268262. [Google Scholar] [CrossRef]
- Khan, M.Z.; Zhang, Z.; Liu, L.; Mi, S.; Liu, X.; Liu, G.; Guo, G.; Wang, Y.; Yu, Y. Folic acid supplementation regulates key immunity-associated genes and pathways during the periparturient period in dairy cows. Asian-Australas J. Anim. Sci. 2020, 33, 1507–1519. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.Z.; Khan, A.; Xiao, J.; Dou, J.; Liu, L.; Yu, Y. Overview of folic acid supplementation alone or in combination with vitamin B12 in dairy cattle during periparturient period. Metabolites 2020, 10, 263. [Google Scholar] [CrossRef]
- Khan, M.T.; Ahmed, S.; Shah, A.A. Regulatory role of folic acid in biomass production and physiological activities of Coriandrum sativum L. under irrigation regimes. Int. J. Phytoremediat. 2022, 24, 1025–1038. [Google Scholar] [CrossRef]
- Bontekoe, C.J.M.; Bakker, C.E.; Nieuwenhuizen, I.M.; van der Linde, H.; Lans, H.; de Lange, D.; Hirst, M.C.; Ostra, B.A. Instability of a (CGG)98 repeat in the Fmr1 promoter. Hum. Mol. Genet. 2001, 10, 1693–1699. [Google Scholar] [CrossRef] [Green Version]
- Bjerregaard, V.A.; Garribba, L.; McMurray, C.T.; Liu, Y. Folate deficiency drives mitotic missegregation of the human FRAXA locus. Proc. Natl. Acad. Sci. USA 2018, 115, 13003–13008. [Google Scholar] [CrossRef] [Green Version]
- Girard, C.L.; Matte, J.J. Impact of B-vitamin supply on major metabolic pathways of lactating dairy cows. Can. J. Anim. Sci. 2006, 86, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Akins, M.S.; Bertics, S.J.; Socha, M.T.; Shaver, R.D. Effects of cobalt supplementation and vitamin B12 injections on lactation performance and metabolism of Holstein dairy cows. J. Dairy Sci. 2012, 96, 1755–1768. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, L. The metabolic processes of folic acid and vitamin B12 deficiency. J. Health Res. Rev. 2014, 1, 5–9. [Google Scholar] [CrossRef]
- Boxmeer, J.C.; Smit, M.; Utomo, E.; Romijn, J.C.; Eijkemans, M.J.C.; Lindemans, J.; Laven, J.S.E.; Macklon, N.S.; Steegers, E.A.P.; Steegers-Theunissen, R.P.M. Low folate in seminal plasma is associated with increased sperm DNA damage. Fertil. Steril. 2009, 92, 548–556. [Google Scholar] [CrossRef]
- Salawu, A.; Wright, K.; Al-Kathiri, A.; Wyld, L.; Reed, M.; Sisley, K. Sister chromatid exchange and genomic instability in soft tissue sarcomas: Potential implications for response to DNA-damaging treatments. Sarcoma 2018, 2018, 3082526. [Google Scholar] [CrossRef] [Green Version]
- Wójcik, E.; Sokół, A. Assessment of chromosome stability in boars. PLoS ONE 2020, 15, e0231928. [Google Scholar] [CrossRef]
- Wilson, D.M.; Thompson, L.H. Molecular mechanisms of sister chromatid exchange. Mutat. Res. 2007, 616, 11–23. [Google Scholar] [CrossRef]
- Wójcik, E.; Smalec, E. Sister chromatid exchange in chromosomes. Kosmos 2010, 59, 513–526. [Google Scholar]
- Sarni, D.; Sasaki, T.; Tur-Sinai, M.I.; Miron, K.; Rivera-Mulia, J.C.; Magnuson, B.; Ljungman, M.; Gilbert, D.M.; Kerem, B. 3D genome organization contributes to genome instability at fragile sites. Nat. Commun. 2020, 11, 3613. [Google Scholar] [CrossRef]
- Zlotorynski, E.; Rahat, A.; Skaug, J.; Ben-Porat, N.; Ozeri, E.; Hershberg, R.; Levi, A.; Scherer, S.W.; Margalit, H.; Kerem, B. Molecular basis for expression of common and rare fragile sites. Mol. Cell. Biol. 2003, 23, 7143–7151. [Google Scholar] [CrossRef] [Green Version]
- Łaczmańska, I.; Ślęzak, R. The aetiology and clinical significance of the fragile sites in human chromosomes. Diagn. Lab. 2010, 46, 81–86. [Google Scholar]
- Durkin, S.G.; Glover, T.W. Chromosome fragile sites. Annu. Rev. Genet. 2007, 41, 169–192. [Google Scholar] [CrossRef] [PubMed]
- Lukusa, T.; Fryns, J.P. Human chromosome fragility. Biochim. Biophys. Acta. 2008, 1779, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, E.; Smalec, E.; Góral, K. Chromosome fragile sites. Kosmos 2009, 58, 135–142. [Google Scholar]
- Glover, T.W. Common fragile sites. Cancer Lett. 2006, 232, 4–12. [Google Scholar] [CrossRef]
- Franchitto, A.; Pichierri, P. Understanding the molecular basis of common fragile sites instability: Role of the proteins involved in the recovery of stalled replication forks. Cell Cycle 2011, 10, 4039–4046. [Google Scholar] [CrossRef] [Green Version]
- Debacker, K.; Kooy, R.F. Fragile sites and human disease. Hum. Mol. Genet. 2007, 16, R150–R158. [Google Scholar] [CrossRef] [Green Version]
- Czubaszek, M.; Szostek, M.; Wójcik, E.; Andraszek, K. The comet assay as a method of identifying chromosomes instability. Postepy Hig. Med. Dosw. 2014, 68, 695–700. [Google Scholar] [CrossRef]
- Kucharova, M.; Hronek, M.; Rybakova, K.; Zadak, Z.; Stetina, R.; Joskova, V.; Patkova, A. Comet assay and its use for evaluating oxidative DNA damage in some pathological states. Physiol. Res. 2019, 68, 1–15. [Google Scholar] [CrossRef]
- Panek, A.; Błażewicz, M.; Frączek-Szczypta, A.; Adamczyk, J.; Wiltowska-Zuber, J.; Paluszkiewicz, C. Applications of comet assay for the evaluation of genotoxicity and DNA repair efficiency in nanomaterials research. Acta Phys. Pol. A 2018, 133, 280–282. [Google Scholar] [CrossRef]
- Sykora, P.; Witt, K.L.; Revanna, P.; Smith-Roe, S.L.; Dismukes, J.; Lloyd, D.G.; Engelward, B.P.; Sobol, R.W. Next generation high throughput DNA damage detection platform for genotoxic compound screening. Sci. Rep. 2018, 8, 2771. [Google Scholar] [CrossRef] [Green Version]
- Kirkland, D.; Levy, D.D.; LeBaron, M.J.; Aardema, M.J.; Beevers, C.; Bhalli, J.; Douglas, G.R.; Escobar, P.A.; Farabaugh, C.S.; Guerard, M.; et al. A comparison of transgenic rodent mutation and vivo comet assay responeses for 91 chemicals. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019, 839, 21–35. [Google Scholar] [CrossRef]
- Azqueta, A.; Slyskova, J.; Langie, S.A.S.; O’Neill Gaivão, I.; Collins, A. Comet assay to measure DNA repair: Approach and applications. Front. Genet. 2014, 5, 288. [Google Scholar] [CrossRef] [Green Version]
- Seremak-Mrozikiewicz, A. Mechanisms of epigenetic modulation in intrauterine programming proces. Gin. Perinat. Prakt. 2016, 1, 66–72. [Google Scholar]
- Max, A. The biological point of view on the in vitro fertilization proces. Życie Weter. 2016, 91, 83–88. [Google Scholar]
- Weterynaryjne Centrum In Vitro Bovisvet. Available online: https://www.facebook.com/bovisvet/ (accessed on 5 April 2022).
- Lamb, G.C.; Fonted, P.; Oosthuizen, N. In Vitro Feritizaltion (IVF) Versus Multiple Ovulation Embryo Tranfer (MOET): Making the Decision to Use One or Both. Proceedings; Applied Reproductive Strategies in Beef Cattle; Beef Reproduction Task Force: Knoxville, TN, USA, 2019. [Google Scholar]
- Preś, J.; Mordak, R. Selected Elements of Nutrition and Health Problems of Dairy Cows; MedPharm: Wrocław, Poland, 2010; pp. 73–114. [Google Scholar]
- Wolff, S.; Perry, P. Differential Giemsa staining of sister chromatids and the study of sister chromatyd exchanges without autoradiography. Chromosoma 1974, 48, 341–353. [Google Scholar] [CrossRef]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of damage in individual cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Gedik, C.M.; Ewen, S.W.B.; Collins, A.R. Single-cell gel electrophoresis applied to the analysis of UV-C damage and its repair in human cells. Int. J. Radiat. Biol. 1992, 62, 313–320. [Google Scholar] [CrossRef]
- CASP 1.2.2 Software. Available online: http://www.casp.of.pl (accessed on 1 June 2022).
- Available online: http://www.vetlab.pl (accessed on 24 May 2022).
- Kołacz, R.; Jaśkowski, J.M.; Ciorga, M. Effects of health disorders, genetic modifications and new technologies on the welfare of dairy cattle. Med. Weter. 2020, 76, 675–683. [Google Scholar] [CrossRef]
- Mebratu, B.; Fesseha, H.; Goa, E. Embryo transfer in cattle production and its principle and applications. Int. J. Phar. Biomedi. Rese. 2020, 7, 40–54. [Google Scholar] [CrossRef]
- Duszewska, A.M.; Reklewski, Z. Obtaining in vitro embryos from farm animals. Med. Weter. 2007, 63, 1522–1525. [Google Scholar]
- Bó, G.A.; Cedeño, A.; Mapletoft, R.J. Strategies to increment in vivo and in vitro embryo production and transfer in cattle. Animal Rep. 2019, 16, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Bayani, J.; Selvarajah, S.; Maire, G.; Vukovic, B.; Al-Romaih, K.; Zielenska, M.; Squire, J.A. Genomic mechanisms and measurement of structural and numerical instability in cancer cells. Semin. Cancer Biol. 2007, 17, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi, L. Cytogenetics in animal production. Ital. J. Anim. Sci. 2007, 6, 713–715. [Google Scholar] [CrossRef]
- Dzitsiuk, V.V.; Tipilo, H.T. Chromosomal anomalies in dairy cattle as reasons of impaired fertility. Agric. Sci. Pract. 2019, 6, 60–66. [Google Scholar] [CrossRef]
- Peretti, V.; Ciotola, F.; Albarella, S.; Russo, V.; Di Meo, G.P.; Iannuzzi, L.; Roperto, F.; Barbieri, V. Chromosome fragility in cattle with chronic enzootic haematuria. Mutagenesis 2007, 22, 317–320. [Google Scholar] [CrossRef] [Green Version]
- Danielak-Czech, B.; Słota, E. Unstable chromosomal regions in subfertile animals. Ann. Anim. Sci. 2002, 2, 4–14. [Google Scholar]
- Nino-Soto, M.I.; King, W.A. Genetic factors that affect normal reproduction and fertility in domestic cattle. In Proceedings of the 23rd WBC Congress, Québec City, QC, Canada, 16 July 2004. [Google Scholar]
- Danielak-Czech, B.; Babicz, M.; Rejduch, B.; Kozubska-Sobocińska, A. Cytogenetic and molecular analysis of chromosome instability in cattle with reproductive problems. Annales UMCS Sec. EE Zootechnica 2012, 30, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Luna, H.S.; Ferrari, I.; Luna, H.; McManus, C.; Padovani, C.R.; Rumpf, R. Differential susceptibility to chromatid breaks induced by bleomycin in sub-fertile and fertile bovines. Reprod. Toxicol. 2004, 19, 97–101. [Google Scholar] [CrossRef]
- Krumrych, W. Gońttibution of chromosomal abelrations to feilility disolderc in heilers. Med. Weter. 2003, 59, 1119–1121. [Google Scholar]
- Khatun, M.R.; Arifuzzaman, M.D.; Ashraf, A. Karyotype for identification of genetic abnormalities in cattle. Asian J. Anim. Vet. Adv. 2011, 6, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Pal, A.K.; Ambulkar, P.S.; Waghmare, J.E.; Wankhede, V.; Shende, M.R.; Tarnekar, A.M. Chromosomal aberrations in couples with pregnancy loss: A retrospective study. J. H. Rep. Sci. 2018, 11, 247–253. [Google Scholar] [CrossRef]
- Łazarczyk, E.; Pasińska, M.; Osmańska-Załuska, K.; Haus, O. Selected genetic causes of miscarriages. Postepy Hig. Med. Dosw. 2021, 75, 116–121. [Google Scholar] [CrossRef]
- Iannuzzi, L.; Di Meo, G.P.; Perucatti, A.; Ferrara, L.; Gustavsson, I. Sister chromatid exchange in chromosomes of cattle from three different breeds reared under similar conditions. Hereditas 1991, 114, 201–205. [Google Scholar] [CrossRef]
- Catalan, J.; Moreno, C.; Arruga, M.V. Sister-chromatid exchanges in cattle: Breed, sex and BrdU dose effects. Mutat. Res. 1995, 331, 205–211. [Google Scholar] [CrossRef]
- Ciotola, F.; Peretti, V.; Di Meo, P.; Perucatti, A.; Iannuzzi, L.; Barbieri, V. Sister chromatid exchanges (SCE) in the Agerolese cattle population. Vet. Res. Commun. 2005, 29, 359–361. [Google Scholar] [CrossRef]
- Wójcik, E.; Smalec, E.; Danielewicz, A. Sister chromatid exchange in selected horse breeds (Equus caballus). Arch. Anim. Breed. 2011, 54, 107–114. [Google Scholar] [CrossRef]
- Wójcik, E.; Smalec, E. The effect of environmental factors on sister chromatid exchange incidence in domestic horse (Equus caballus) chromosomes. Folia Biol. 2013, 61, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Wójcik, E.; Szostek, M. Assessment of genome stability in various breeds of cattle. PLoS ONE 2019, 14, e0217799. [Google Scholar] [CrossRef]
- Azimi, D.S.M. Sister chromatid exchange analysis in some Holstein bulls. Iran. J. Vet. Res. 2012, 13, 161–163. [Google Scholar]
- Wójcik, E.; Andraszek, K.; Ciszewska, M.; Smalec, E. Sister chromatid exchange as an index of chromosome insatbility in chondrodystrophic chickens (Gallus domesticus). Poult. Sci. 2013, 92, 84–89. [Google Scholar] [CrossRef]
- Di Meo, G.P.; Iannuzzi, L.; Perucatti, A.; Ferrara, L.; Pizzillo, M.; Rubino, R. Sister chromatid exchange in the goat (Capra hircus). Hereditas 1993, 118, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Di Meo, G.P.; Perucatti, A.; Fornataro, D.; Incarnato, D.; Ferrara, L.; Matassino, D.; Iannuzzi, L. Sister chromatid exchange in chromosomes of sheep (Ovis aries). Cytobios 2000, 101, 71–78. [Google Scholar] [PubMed]
- Peretti, V.; Ciotola, F.; Dario, C.; Albarella, S.; Di Meo, G.P.; Perucatti, L.; Barbieri, V.; Iannuzzi, L. Sister chromatid exchange (SCE) for the first time in Casertana pig breed. Hereditas 2006, 14, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, E.; Andraszek, K.; Smalec, E.; Knaga, S.; Witkowski, A. Identification of chromosome instability in Japanese quail (Coturnix japonica). Br. Poult. Sci. 2014, 55, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Rangel-Figueiredo, M.T.; Di Meo, G.P.; Iannuzzi, L. Sister chromatid exchange (SCE) in cattle: A comparison between normal and rob (1;29)-carrying karyotypes. Hereditas 1995, 123, 25–29. [Google Scholar] [CrossRef]
- Danielak-Czech, B.; Słota, E. Mutagen-induced chromosome instability in farm animals. J. Anim. Feed Sci. 2004, 13, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Di Meo, G.P.; Perucatti, A.; Genualdo, V.; Caputi-Jambrenghi, A.; Rasero, R.; Nebbia, C.; Iannuzzi, L. Chromosome fragility in dairy cows exposed to dioxins and dioxin-like PCBs. Mutagenesis 2011, 26, 269–272. [Google Scholar] [CrossRef]
- Genualdo, V.; Perucatti, A.; Marletta, D.; Castiglioni, B.; Bordonaro, S.; Iannaccone, M.; Ciotola, F.; Perettie, V.; Iannuzzi, A. Cytogenetic investigation in two endangered pig breeds raised in Southern-Italy: Clinical and environmental aspects. Livest. Sci. 2018, 216, 36–43. [Google Scholar] [CrossRef]
- Rodriguez, V.; Llambí, S.; Postiglioni, A.; Guevara, K.; Rincón, G.; Fernández, G.; Mernies, B.; Arruga, M.V. Localisation of aphidicolin-induced break points in Holstein-Friesian cattle (Bos taurus) using RBG-banding. Genet. Sel. Evol. 2002, 34, 649–656. [Google Scholar] [CrossRef] [Green Version]
- Montes-Vergara, D.; De la Ossa, V.J.; Pérez-Cordero, A. Determinación mediante prueba cometa del daño genético causado por uso de ivermectina en vacas cebú (Bos taurus indicus). Rev. MVZ Córdoba 2017, 22, 5959–5965. [Google Scholar] [CrossRef] [Green Version]
- Picco, S.J.; Abba, M.C.; Mattioli, G.A.; Fazzio, L.E.; Rosa, D.; De Luca, J.C.; Dulout, F.N. Association between copper deficiency and DNA damage in cattle. Mutagenesis 2004, 19, 453–456. [Google Scholar] [CrossRef] [Green Version]
- Picco, S.J.; De Luca, J.C.; Mattioli, G.; Dulou, F.N. DNA damage induced by copper deficiency in cattle assessed by the comet assay. Mut. Res. 2001, 498, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Sanders, T.; Liu, Y.-M.P.; Tchounwou, B. Cytotoxic, genotoxic, and neurotoxic effects of Mg, Pb, and Fe on pheochromocytoma (PC-12) cells. Environ. Toxicol. 2015, 30, 1445–1458. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, M.; Keicho, K.; Takahashi, H.; Ogawa, H.; Schulte, R.M.; Okano, A. Effect of oxidative stress on development and DNA damage in in vitro cultured bovine embryos by comet assay. Theriogenology 2000, 54, 137–145. [Google Scholar] [CrossRef]
- Araldi, R.P.; Melo, T.C.; Diniz, N.; Mazzuchelli-de-Souza, J.; Carvalho, R.F.; Beçak, W.; Stoccol, R.C. Bovine Papillomavirus clastogenic effect analyzed in comet assay. Biomed. Res. Int. 2013, 2013, 630683. [Google Scholar] [CrossRef] [Green Version]
- Tharwat, M.; Endoh, D.; Oikawa, S. DNA damage in peripheral blood mononuclear cells and neutrophils of dairy cows during the transition period. Open Vet. J. 2012, 2, 65–68. [Google Scholar] [CrossRef]
- Mirowski, A. Supplementation of some microelements in cow nutrition. Życie Weter. 2019, 94, 352–354. [Google Scholar]
- Kaczmarowski, M. Primary causes of embryo/fetus death and abortion in cows. Życie Weter. 2006, 81, 657–661. [Google Scholar]
- Jaśkowski, J. Factors affecting pregnancy in the embryos of recipient cows. Med. Weter. 1998, 54, 236–238. [Google Scholar]
- Vanroose, G.; Kruif, A.; Soom, A. Embryonic mortality and embryo-pathogen interactions. Ann. Reprod. Sci. 2000, 60, 131–143. [Google Scholar] [CrossRef]
- Regmi, G.; Dhakal, I.P. Systemic levels of iron, phosphorus, and total protein in normocyclic versus repeat breeder Holstein Friesian crossbred cows of Kesharbag. Vet. World 2020, 13, 2353–2357. [Google Scholar] [CrossRef] [PubMed]
- Górski, K.; Saba, L.; Bombik, T.; Bombik, E. Effect of additional mineral nutrion on the level of the selected parameters of metabolic profile in blood of dairy cows from the southern Podlasie region. Rocz. Nauk. PTZ 2006, 4, 45–53. [Google Scholar]
- Szcześniak, M.; Grimling, B.; Meler, J. Zinc-element of health. Farm. Pol. 2014, 70, 363–366. [Google Scholar]
- Girard, C.L.; Matte, J.J. Effects of intramuscular injections of vitamin B12 on lactation performance of dairy cows fed dietary supplements of folic acid and rumen-protected methionine. J. Dairy Sci. 2005, 88, 671–676. [Google Scholar] [CrossRef]
- Mirowski, A. Vitamin B12 in dairy cows nutrition. Życie Weter. 2022, 97, 28–29. [Google Scholar]
- Kincaid, R.L.; Socha, M.T. Effect of cobalt supplementation during late gestation and early lactation on milk and serum measures. J. Dairy Sci. 2007, 90, 1880–1886. [Google Scholar] [CrossRef]
Cow | SCE | FS | SCGE |
---|---|---|---|
Mean ± SD | |||
1. | 4.6 ab ± 1.1 | 2.8 a ± 0.7 | 2.1 ab ± 4.6 |
2. | 5.4 bc ± 1.1 | 3.5 ab ± 1.1 | 5.7 bcd ± 11.9 |
3. | 5.5 bc ± 1.4 | 3.3 ab ± 0.8 | 7.1 cd ± 11.8 |
4. | 5.3 abc ± 1.3 | 3.4 ab ± 0.9 | 4.7 abcd ± 10.9 |
5. | 5.1 abc ± 1.4 | 3.3 ab ± 0.9 | 3.6 abcd ± 8.3 |
6. | 4.1 a ± 1.3 | 2.6 a ± 0.9 | 0.8 a ± 2.8 |
7. | 4.0 a ± 1.2 | 2.5 a ± 1.0 | 0.6 a ± 2.3 |
8. | 5.4 bc ± 1.5 | 3.3 ab ± 1.0 | 5.3 abcd ± 10.5 |
9. | 5.4 bc ± 1.2 | 3.4 ab ± 1.2 | 6.7 bcd ± 8.4 |
10. | 5.2 abc ± 1.3 | 3.0 ab ± 0.7 | 4.6 abcd ± 10.9 |
11. | 5.8 bc ± 1.5 | 4.0 bc ± 1.3 | 8.3 cd ± 6.7 |
12. | 4.6 ab ± 1.1 | 3.0 ab ± 0.8 | 1.7 abc ± 4.7 |
13. | 5.0 abc ± 1.3 | 3.2 ab ± 1.0 | 3.3 abcd ± 7.6 |
14. | 4.4 ab ± 1.3 | 3.0 ab ± 1.0 | 1.7 ab ± 4.9 |
15. | 4.7 ab ± 1.3 | 2.9 a ± 0.9 | 2.1 ab ± 6.4 |
16. | 6.4 c ± 1.1 | 4.8 c ± 0.8 | 9.1 d ± 12.0 |
17. | 3.9 a ± 1.3 | 2.8 a ± 0.8 | 0.5 a ± 2.5 |
18. | 4.7 ab ± 1.4 | 3.1 ab ± 1.1 | 2.9 abcd ± 6.2 |
19. | 4.8 ab ± 1.5 | 3.2 ab ± 1.1 | 2.4 ab ± 6.0 |
20. | 5.1 abc ± 1.2 | 3.2 ab ± 0.8 | 3.3 abcd ± 9.3 |
Cow | Ca | Fe | Zn | B9 | B12 |
---|---|---|---|---|---|
[mmol/L] | [µmol/L] | [µmol/L] | [ng/mL] | [pg/mL] | |
1. | 2.3 | 29.2 | >26.5 | >24.0 | <150 |
2. | 2.5 | >45.9 | 18.7 | >24.0 | <150 |
3. | 2.4 | 31.6 | >24.4 | <5.3 | <150 |
4. | 2.5 | >40.1 | 14.6 | <9.4 | <150 |
5. | 2.4 | 29.7 | >22.7 | <6.5 | <150 |
6. | 2.5 | 33.2 | 13.3 | >24.0 | <150 |
7. | 2.5 | 33.4 | 11.1 | >24.0 | <150 |
8. | 2.5 | >36.1 | 16.6 | <12.2 | 160 |
9. | 2.4 | >45.9 | 11.8 | <6.1 | 161 |
10. | 2.4 | >40.7 | 12.3 | <10.6 | <150 |
11. | 2.4 | >44.7 | <9.9 | <6.2 | <150 |
12. | 2.6 | 28.3 | 12.0 | <12.0 | <150 |
13. | 2.4 | >42.5 | <9.2 | <9.9 | <150 |
14. | 2.6 | 28.2 | 10.3 | <12.2 | <150 |
15. | 2.5 | 29.8 | 11.8 | <8.1 | <150 |
16. | 2.5 | 31.5 | <9.3 | <5.6 | <150 |
17. | 2.5 | 28.9 | 12.4 | 19.4 | <150 |
18. | 2.5 | 30.3 | <10.6 | <7.0 | <150 |
19. | 2.5 | 28.1 | 11.1 | <14.9 | <150 |
20. | 2.5 | >37.7 | 12.3 | <6.2 | <150 |
Test | B9 | Ca | Fe | Zn |
---|---|---|---|---|
SCE | −0.612732 | −0.020744 | 0.476745 | 0.191529 |
FS | −0.530984 | 0.089813 | 0.305435 | −0.025100 |
SCGE | −0.560572 | −0.035294 | 0.534740 | 0.227794 |
Test | B9 | Fe |
---|---|---|
SCE | y = 5.65 − 0.06x (p = 0.00) | y = 3.34 + 0.046x (p = 0.03) |
FS | y = 3.69 − 0.038x (p = 0.011) | |
SCGE | y = 6.38 − 0.206x (p = 0.010) | y = −3.59 + 0.21x (p = 0.015) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójcik, E.; Kępka, K.; Skup, M. Effect of Selected Micro- and Macroelements and Vitamins on the Genome Stability of Bovine Embryo Transfer Recipients following In Vitro Fertilization. Animals 2023, 13, 1056. https://doi.org/10.3390/ani13061056
Wójcik E, Kępka K, Skup M. Effect of Selected Micro- and Macroelements and Vitamins on the Genome Stability of Bovine Embryo Transfer Recipients following In Vitro Fertilization. Animals. 2023; 13(6):1056. https://doi.org/10.3390/ani13061056
Chicago/Turabian StyleWójcik, Ewa, Katarzyna Kępka, and Mateusz Skup. 2023. "Effect of Selected Micro- and Macroelements and Vitamins on the Genome Stability of Bovine Embryo Transfer Recipients following In Vitro Fertilization" Animals 13, no. 6: 1056. https://doi.org/10.3390/ani13061056
APA StyleWójcik, E., Kępka, K., & Skup, M. (2023). Effect of Selected Micro- and Macroelements and Vitamins on the Genome Stability of Bovine Embryo Transfer Recipients following In Vitro Fertilization. Animals, 13(6), 1056. https://doi.org/10.3390/ani13061056