Going, Going, Gone The Diminishing Capacity of Museum Specimen Collections to Address Global Change Research: A Case Study on Urban Reptiles
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen Source
2.2. Study Species and Location
2.3. Temporal and Spatial Analyses
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farber, P.L. The transformation of natural history in the nineteenth century. J. Hist. Biol. 1982, 15, 145–152. [Google Scholar]
- Farrington, O.C. The rise of Natural History Museums. Science 1915, 42, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.E. The evolution of natural history collections. BioScience 2019, 69, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Holmes, M.W.; Hammond, T.T.; Wogan, G.O.; Walsh, R.E.; LaBarbera, K.; Wommack, E.A.; Martins, F.M.; Crawford, J.C.; Mack, K.L.; Bloch, L.M.; et al. Natural history collections as windows on evolutionary processes. Mol. Ecol. 2016, 25, 864–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suarez, A.V.; Tsutsui, N.D. The value of museum collections for research and Society. BioScience 2004, 54, 66–74. [Google Scholar] [CrossRef]
- Winker, K. Natural history museums in a postbiodiversity era. BioScience 2004, 54, 455–459. [Google Scholar] [CrossRef] [Green Version]
- Funk, V.A. Collections-based science in the 21st Century. J. Syst. Evol. 2018, 56, 175–193. [Google Scholar] [CrossRef] [Green Version]
- Shochat, E.; Warren, P.; Faeth, S.; Mcintyre, N.; Hope, D.; Hope, D.; Mcintyre, N.; Faeth, S.; Warren, P.; Shochat, E. From patterns to emerging processes in mechanistic urban ecology. Trends Ecol. Evol. 2006, 21, 186–191. [Google Scholar] [CrossRef]
- Ward, D.F.; Leschen, R.A.B.; Buckley, T.R. More from ecologists to support natural history museums. Trends Ecol. Evol. 2015, 30, 373–374. [Google Scholar] [CrossRef]
- Lister, A.M. Natural history collections as sources of long-term datasets. Trends Ecol. Evol. 2011, 26, 153–154. [Google Scholar] [CrossRef] [Green Version]
- Lewis, S.L.; Maslin, M.A. Defining the anthropocene. Nature 2015, 519, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, C.J.; Cook, J.A.; Zamudio, K.R.; Edwards, S.V. Museum specimens of terrestrial vertebrates are sensitive indicators of environmental change in the anthropocene. Philos. Trans. R. Soc. B Biol. Sci. 2018, 374, 20170387. [Google Scholar] [CrossRef] [Green Version]
- Meineke, E.K.; Davies, T.J.; Daru, B.H.; Davis, C.C. Biological collections for understanding biodiversity in the anthropocene. Philos. Trans. R. Soc. B Biol. Sci. 2018, 374, 20170386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malaney, J.L.; Cook, J.A. A perfect storm for mammalogy: Declining sample availability in a period of rapid environmental degradation. J. Mammal. 2018, 99, 773–788. [Google Scholar] [CrossRef] [Green Version]
- Shultz, A.J.; Adams, B.J.; Bell, K.C.; Ludt, W.B.; Pauly, G.B.; Vendetti, J.E. Natural history collections are critical resources for contemporary and future studies of Urban Evolution. Evol. Appl. 2020, 14, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, C. Biological collections in an ever changing world: Herbaria as tools for biogeographical and environmental studies. Perspect. Plant Ecol. Evol. Syst. 2013, 15, 68–76. [Google Scholar] [CrossRef]
- Heberling, J.M.; Isaac, B.L. Herbarium specimens as exaptations: New uses for Old Collections. Am. J. Bot. 2017, 104, 963–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meineke, E.K.; Davis, C.C.; Davies, T.J. The unrealized potential of herbaria for Global Change Biology. Ecol. Monogr. 2018, 88, 505–525. [Google Scholar] [CrossRef]
- Yates, T.L.; Mills, J.N.; Parmenter, C.A.; Ksiazek, T.G.; Parmenter, R.R.; Vande-Castle, J.R.; Calisher, C.H.; Nichol, S.T.; Abbott, K.D.; Young, J.C.; et al. The ecology and evolutionary history of an emergent disease: Hantavirus pulmonary syndrome. BioScience 2002, 52, 989–998. [Google Scholar] [CrossRef] [Green Version]
- Nelson, R.; Cañate, R.; Pascale, J.M.; Dragoo, J.W.; Armien, B.; Armien, A.G.; Koster, F. Confirmation of choclo virus as the cause of hantavirus cardiopulmonary syndrome and high serum antibody prevalence in Panama. J. Med. Virol. 2010, 82, 1586–1593. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, D.; Becker, C.G.; Pupin, N.C.; Haddad, C.F.; Zamudio, K.R. Long-term endemism of two highly divergent lineages of the amphibian-killing fungus in the Atlantic Forest of Brazil. Mol. Ecol. 2014, 23, 774–787. [Google Scholar] [CrossRef]
- Burrowes, P.A.; De la Riva, I. Unraveling the historical prevalence of the invasive chytrid fungus in the Bolivian andes: Implications in recent amphibian declines. Biol. Invasions 2017, 19, 1781–1794. [Google Scholar] [CrossRef]
- Vo, A.-T.E.; Bank, M.S.; Shine, J.P.; Edwards, S.V. Temporal increase in organic mercury in an endangered pelagic seabird assessed by Century-old museum specimens. Proc. Natl. Acad. Sci. USA 2011, 108, 7466–7471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DuBay, S.G.; Fuldner, C.C. Bird specimens track 135 years of Atmospheric Black Carbon and Environmental policy. Proc. Natl. Acad. Sci. USA 2017, 114, 11321–11326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaffer, H.B.; Fisher, R.N.; Davidson, C. The role of natural history collections in documenting species declines. Trends Ecol. Evol. 1998, 13, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.A.; Watson, D.M. Vagrants as vanguards of range shifts in a dynamic world. Biol. Conserv. 2018, 224, 238–241. [Google Scholar] [CrossRef]
- Martin, P.R.; Bonier, F. Species interactions limit the occurrence of urban-adapted birds in cities. Proc. Natl. Acad. Sci. USA 2018, 115, E11495–E11504. [Google Scholar] [CrossRef] [Green Version]
- Putman, B.J.; Gasca, M.; Blumstein, D.T.; Pauly, G.B. Downsizing for downtown: Limb lengths, toe lengths, and scale counts decrease with urbanization in western fence lizards (Sceloporus occidentalis). Urban Ecosyst. 2019, 22, 1071–1081. [Google Scholar] [CrossRef]
- Castillo-Contreras, R.; Mentaberre, G.; Fernandez Aguilar, X.; Conejero, C.; Colom-Cadena, A.; Ráez-Bravo, A.; González-Crespo, C.; Espunyes, J.; Lavín, S.; López-Olvera, J.R. Wild boar in the city: Phenotypic responses to urbanisation. Sci. Total Environ. 2021, 773, 145593. [Google Scholar] [CrossRef]
- Vaughn, P.L.; Mcqueen, W.; Gangloff, E.J. Moving to the city: Testing the implications of morphological shifts on locomotor performance in introduced urban lizards. Biol. J. Linn. Soc. 2021, 134, 141–153. [Google Scholar] [CrossRef]
- Lapiedra, O.; Chejanovski, Z.; Kolbe, J.J. Urbanization and biological invasion shape animal personalities. Glob. Chang. Biol. 2016, 23, 592–603. [Google Scholar] [CrossRef]
- Gaynor, K.M.; Hojnowski, C.E.; Carter, N.H.; Brashares, J.S. The influence of human disturbance on Wildlife Nocturnality. Science 2018, 360, 1232–1235. [Google Scholar] [CrossRef] [Green Version]
- Martinson, H.M.; Raupp, M.J. A meta-analysis of the effects of urbanization on ground beetle communities. Ecosphere 2013, 4, 1–24. [Google Scholar] [CrossRef]
- Putman, B.J.; Tippie, Z.A. Big City Living: A Global Meta-Analysis Reveals Positive Impact of Urbanization on Body Size in Lizards. Front. Ecol. Evol. 2020, 8, 580745. [Google Scholar] [CrossRef]
- Neil, K.L.; Landrum, L.; Wu, J. Effects of urbanization on flowering phenology in the metropolitan phoenix region of USA: Findings from herbarium records. J.Arid Environ. 2010, 74, 440–444. [Google Scholar] [CrossRef]
- Bush, B.; Maryan, B.; Browne-Cooper, R.; Robinson, D. Field Guide to the Reptiles and Frogs of the Perth Region; Western Australian Museum: Perth, Australia, 2010.
- Ritchie, A.L.; Svejcar, L.N.; Ayre, B.M.; Bolleter, J.; Brace, A.; Craig, M.D.; Davis, B.; Davis, R.A.; van Etten Eddie, J.B.; Fontaine Joseph, B.; et al. A threatened ecological community: Research advances and priorities for Banksia woodlands. Aust. J. Bot. 2021, 69, 53–84. [Google Scholar] [CrossRef]
- Esri Inc. ArcGIS ProVersion (2.9). Available online: https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (accessed on 14 March 2023).
- Morton, S.R.; James, C.D. The diversity and abundance of lizards in arid Australia: A new hypothesis. Am. Nat. 1988, 132, 237–256. [Google Scholar] [CrossRef]
- Cogger, H.G. Reptiles & Amphibians of Australia; CSIRO Publishing: Melbourne, Australia, 2018. [Google Scholar]
- Rosauer, D.F.; Catullo, R.A.; VanDerWal, J.; Moussalli, A.; Hoskin, C.J.; Moritz, C. Correction: Lineage range estimation method reveals fine-scale endemism linked to pleistocene stability in Australian rainforest herpetofauna. PLoS ONE 2017, 12, e0169726. [Google Scholar] [CrossRef] [Green Version]
- Doughty, P.; Maryan, B.; Melville, J.; Austin, J. A new species of Ctenophorus (Lacertilia: Agamidae) from Lake Disappointment, Western Australia. Herpetologica 2007, 63, 72–86. [Google Scholar] [CrossRef] [Green Version]
- Mecke, S.; Doughty, P.; Donnellan, S.C. A new species of eremiascincus (Reptilia: Squamata: Scincidae) from the Great Sandy Desert and Pilbara coast, Western Australia and reassignment of eight species from Glaphyromorphus to eremiascincus. Zootaxa 2009, 2246, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Sistrom, M.J.; Hutchinson, M.N.; Hutchinson, R.G.; Donnellan, S.C. Molecular Phylogeny of Australian Gehyra (Squamata: Gekkonidae) and taxonomic revision of Gehyra variegata in south-eastern Australia. Zootaxa 2009, 2277, 14–32. [Google Scholar] [CrossRef] [Green Version]
- Doughty, P.; Pepper, M.; Keogh, J.S. Morphological and molecular assessment of the Diplodactylus savagei species complex in the Pilbara region, Western Australia, with a description of a new species. Zootaxa 2010, 2393, 33–45. [Google Scholar] [CrossRef]
- Doughty, P.; Oliver, P.M. A new species of Underwoodisaurus (squamata: Gekkota: Carphodactylidae) from the Pilbara region of Western Australia. Zootaxa 2011, 3010, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Sadlier, R.A.; Colgan, D.J.; Beatson, C.A.; Cogger, H.G. Ctenophorus spinodomus sp. nov., a new species of dragon lizard (squamata: Agamidae) from Triodia Mallee habitat of Southeast Australia. Rec. Aust. Mus. 2019, 71, 199–215. [Google Scholar] [CrossRef]
- Kaiser, H.; Kaiser, C.M.; Mecke, S.; O’Shea, M. A new species of stegonotus (serpentes: Colubridae) from the remnant coastal forests of southern Timor-Leste. Zootaxa 2021, 5027, 489–514. [Google Scholar] [CrossRef] [PubMed]
- How, R.A.; Dell, J. Ground vertebrate fauna of Perth’s vegetation remnants: Impact of 170 years of urbanisation. Pac. Conserv. Biol. 2000, 6, 198–217. [Google Scholar] [CrossRef]
- Krawiec, J.; Krauss, S.L.; Davis, R.A.; Spencer, P.B. Weak genetic structuring suggests historically high genetic connectivity among recently fragmented urban populations of the scincid lizard, Ctenotus fallens. Aust. J. Zool. 2015, 63, 279–286. [Google Scholar] [CrossRef]
- Davis, R.A.; Doherty, T.S. Rapid recovery of an urban remnant reptile community following summer wildfire. PLoS ONE 2015, 10, e0127925. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, T.P.; Sullivan, D.S. Influence of removal sampling of small mammals on abundance and diversity attributes: Scientific implications. Hum. Wildl. Interact. 2013, 7, 85–98. [Google Scholar]
- Hope, A.G.; Sandercock, B.K.; Malaney, J.L. Collection of scientific specimens: Benefits for Biodiversity Sciences and limited impacts on communities of small mammals. BioScience 2018, 68, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Poe, S.; Armijo, B. Lack of effect of herpetological collecting on the population structure of a community of anolis (squamata: Dactyloidae) in a disturbed habitat. Herpetol. Notes 2014, 7, 153–157. [Google Scholar]
- Ang, J.Y.; Gabbe, B.; Cameron, P.; Beck, B. Animal–vehicle collisions in Victoria, Australia: An under-recognised cause of Road traffic crashes. Emerg. Med. Australas. 2019, 31, 851–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, B.P.; Woolley, L.-A.; Geyle, H.M.; Legge, S.M.; Palmer, R.; Dickman, C.R.; Augusteyn, J.; Brown, S.C.; Comer, S.; Doherty, T.S.; et al. Introduced cats (Felis catus) eating a continental fauna: The number of mammals killed in Australia. Biol. Conserv. 2019, 237, 28–40. [Google Scholar] [CrossRef]
- Stobo-Wilson, A.M.; Murphy, B.P.; Crawford, H.M.; Dawson, S.J.; Dickman, C.R.; Doherty, T.S.; Fleming, P.A.; Gentle, M.N.; Legge, S.M.; Newsome, T.M.; et al. Sharing meals: Predation on Australian mammals by the introduced European red fox compounds and complements predation by feral cats. Biol. Conserv. 2021, 261, 109284. [Google Scholar] [CrossRef]
- Bamford, M.J.; Calver, M.C. A comparison of measures of abundance of reptiles in Kwongan vegetation of the South-West of Australia, determined through systematic searching and pitfall trapping. Aust. Zool. 2015, 37, 472–484. [Google Scholar] [CrossRef]
- Geyle, H.M.; Tingley, R.; Amey, A.P.; Cogger, H.; Couper, P.J.; Cowan, M.; Craig, M.D.; Doughty, P.; Driscoll, D.A.; Ellis, R.J.; et al. Reptiles on the brink: Identifying the Australian terrestrial snake and lizard species most at risk of extinction. Pac. Conserv. Biol. 2021, 27, 3. [Google Scholar] [CrossRef]
- Santos, M.J.; Smith, A.B.; Thorne, J.H.; Moritz, C. The relative influence of change in habitat and climate on elevation range limits in small mammals in Yosemite National Park, California, USA. Clim. Chang. Responses 2017, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, A.K.; Fleming, P.A.; Bateman, P.W. Surveying Attitudes toward Reptiles on Roads: Questionnaire Responses Do Not Directly Translate to Behavioral Action. Anthrozoos 2019, 32, 333–346. [Google Scholar] [CrossRef]
- Horner, P.; Adams, M. A molecular systematic assessment of species boundaries in Australian Cryptoblepharus (Reptilia: Squamata: Scincidae)–a case study for the combined use of allozymes and morphology to explore cryptic biodiversity. In The Beagle, Records of the Museums and Art Galleries of the Northern Territory; Museums and Art Galleries of the Northern Territory: Darwin, Australia, 2007; Supplement 3, pp. 1–19. [Google Scholar]
- Kay, G.M.; Keogh, J.S. Molecular phylogeny and morphological revision of the Ctenotus labillardieri (Reptilia: Squamata: Scincidae) species group and a new species of immediate conservation concern in the southwestern Australian biodiversity hotspot. Zootaxa 2012, 3390, 1–18. [Google Scholar] [CrossRef]
- Andreone, F.; Bartolozzi, L.; Boano, G.; Boero, F.; Bologna, M.; Bon, M.; Bressi, N.; Capula, M.; Casale, A.; Casiraghi, M.; et al. Italian natural history museums on the verge of collapse? Zookeys 2014, 456, 139–146. [Google Scholar] [CrossRef]
- Andreone, F.; Boero, F.; Bologna, M.A.; Carpaneto, G.M.; Castiglia, R.; Gippoliti, S.; Massa, B.; Minelli, A. Reconnecting research and natural history museums in Italy and the need of a national collection and biorepository. Zookeys 2022, 1104, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Loxdale, H.D.L.; Davis, B.J.; Davis, R.A. Known knowns and unknowns in biology. Biol. J. Linn. Soc. 2016, 117, 386–398. [Google Scholar] [CrossRef] [Green Version]
- Pape, T. Species can be named from photos. Nature 2016, 537, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceríaco, L.M.; Gutiérrez, E.E.; Duboic, A. Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences. Zootaxa 2016, 4196, 435–445. [Google Scholar] [CrossRef] [Green Version]
- McLean, B.S.; Bell, K.C.; Dunnum, J.L.; Abrahamson, B.; Colella, J.P.; Deardorff, E.R.; Weber, J.A.; Jones, A.K.; Salazar-Miralles, F.; Cook, J.A. Natural history collections-based research: Progress, promise, and best practices. J. Mammal. 2015, 97, 287–297. [Google Scholar] [CrossRef]
- Davis, R.A.; Wilcox, J.A.; Metcalf, B.M.; Bamford, M.J. Fauna Survey of the Proposed Iron Ore Mine, Could Break; Fortescue Metals Group: Perth, Australia; Bamford Consulting Ecologists: Perth, Australia, 2005; Unpublished report. [Google Scholar]
Species | Family |
---|---|
Christinus marmoratus | Gekkonidae |
Cryptoblepharus buchanani | Scincidae |
Ctenophorus adelaidensis | Agamidae |
Ctenotus australis | Scincidae |
Ctenotus fallens | Scincidae |
Hemiergis quadrilinieata | Scincidae |
Lerista distinguenda | Scincidae |
Lerista elegans | Scincidae |
Menetia greyii | Scincidae |
Morethia lineocellata | Scincidae |
Morethia obscura | Scincidae |
Pogona minor | Agamidae |
Strophurus spinigerus | Diplodactylidae |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Hopkins, A.J.M.; Davis, R.A. Going, Going, Gone The Diminishing Capacity of Museum Specimen Collections to Address Global Change Research: A Case Study on Urban Reptiles. Animals 2023, 13, 1078. https://doi.org/10.3390/ani13061078
Li Y, Hopkins AJM, Davis RA. Going, Going, Gone The Diminishing Capacity of Museum Specimen Collections to Address Global Change Research: A Case Study on Urban Reptiles. Animals. 2023; 13(6):1078. https://doi.org/10.3390/ani13061078
Chicago/Turabian StyleLi, Yanlin, Anna J. M. Hopkins, and Robert A. Davis. 2023. "Going, Going, Gone The Diminishing Capacity of Museum Specimen Collections to Address Global Change Research: A Case Study on Urban Reptiles" Animals 13, no. 6: 1078. https://doi.org/10.3390/ani13061078
APA StyleLi, Y., Hopkins, A. J. M., & Davis, R. A. (2023). Going, Going, Gone The Diminishing Capacity of Museum Specimen Collections to Address Global Change Research: A Case Study on Urban Reptiles. Animals, 13(6), 1078. https://doi.org/10.3390/ani13061078