Effects of Soybean and Linseed Oils Calcium Salts and Starter Protein Content on Growth Performance, Immune Response, and Nitrogen Utilization Efficiency in Holstein Dairy Calves
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Calves, Experimental Diets, and Management
2.2. Dry Matter Intake, Weight Gain, and Feed Efficiency
2.3. Skeletal Growth Parameters
2.4. Blood Items, Insulin, and Inflammatory Indicators
2.5. Urinary PD, MPS, and Urinary N Excretion
2.6. Statistical Analysis
3. Results
3.1. Stater Feed Intake, ADG, and FE
3.2. Skeletal Growth Items
3.3. Blood Chemistry, Insulin, and Inflammation Indicators
3.4. Urinary PD, MPS, and N Excretion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quigley, J.N.; Hill, T.M.; Hulbert, L.E.; Dennis, T.S.; Suarez-Mena, Z.F.; Bortoluzzi, E.M. Effects of fatty acids and calf starter form on intake, growth, digestion, and selected blood metabolites in male calves from 0 to 4 months of age. J. Dairy Sci. 2019, 102, 8074–8091. [Google Scholar] [CrossRef] [PubMed]
- Karimi, A.; Alijoo, Y.A.; Kazemi-Bonchenari, M.; Mirzaei, M.; Sadri, H. Effects of supplemental fat sources and forage feeding levels on growth performance, nutrient digestibility, ruminal fermentation, and nitrogen utilization in dairy calves. Animal 2021, 15, 100179. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, T.C.; Palmquist, D.L. Effect of fatty acids or calcium soaps on rumen and total nutrient digestibility of dairy rations. J. Dairy Sci. 1984, 67, 978–986. [Google Scholar] [CrossRef]
- Yousefinejad, S.; Fattahnia, F.; Kazemi-Bonchenari, M.; Khanaki, H.; Drackley, J.K.; Ghaffari, M.H. Soybean oil supplementation and starter protein content: Effects on growth performance, digestibility, ruminal fermentation, and urinary purine derivatives of Holstein dairy calves. J. Dairy Sci. 2021, 104, 1630–1644. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, H.; Kazemi-Bonchenari, M.; HosseinYazdi, M.; Mahjoubi, E. Effects of various fat delivery methods in starter diet on growth performance, nutrients digestibility and blood metabolites of Holstein dairy calves. Anim. Feed Sci. Technol. 2020, 262, 114429. [Google Scholar] [CrossRef]
- Fiorentini, G.; Messana, J.D.; Dian, P.H.M.; Reis, R.A.; Canesin, R.C.; Pires, A.V.; Berchielli, T.T. Digestibility, fermentation and rumen microbiota of crossbred heifers fed diets with different soybean oil availabilities in the rumen. Anim. Feed Sci. Technol. 2013, 181, 26–34. [Google Scholar] [CrossRef]
- Manso, T.; Castro, T.; Mantecón, A.R.; Jimeno, J. Effects of palm oil and calcium soaps of palm oil fatty acids in fattening diets on digestibility, performance and chemical body composition of lambs. Anim. Feed Sci. Technol. 2006, 127, 175–186. [Google Scholar] [CrossRef]
- Kliem, K.E.; Reynolds, C.K.; Humphries, D.J.; Kirkland, R.M.; Barratt, C.E.S.; Livingstone, K.M.; Givens, D.I. Incremental effect of a calcium salt of cis-monounsaturated fatty acids supplement on milk fatty acid composition in cows fed maize silage-based diets. J. Dairy Sci. 2013, 96, 3211–3221. [Google Scholar] [CrossRef]
- Schmitz, G.; Ecker, J. The opposing effects of n-3 and n-6 fatty acids. Prog. Lipid Res. 2008, 47, 147–155. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Rezamand, P.; Loucks, W.I.; Scholte, C.M.; Doumit, M.E. The effect of dietary fat on fatty acid composition, gene expression and vitamin status in pre-ruminant calves. Anim. Feed Sci. Technol. 2017, 229, 32–42. [Google Scholar] [CrossRef]
- Hill, T.M.; Bateman, H.G.; Aldrich, J.M.; Quigley, J.D.; Schlotterbeck, R.L. Inclusion of tallow and soybean oil to calf starters fed to dairy calves from birth to four months of age on calf performance and digestion. J. Dairy Sci. 2015, 98, 4882–4888. [Google Scholar] [CrossRef] [PubMed]
- Van Sossten, D.; Meyer, U.; Piechotta, M. Effect of conjugated linoleic acid supplementation on body composition, body fat mobilization, protein accretion, and energy utilization in early lactating dairy cows. J. Dairy Sci. 2012, 95, 222–1239. [Google Scholar]
- Pormalekshahi, A.; Fattahnia, F.; Jafari, H.; Azarfar, A.; Varmaghany, S. Interaction effect of ruminal undegradable protein level and rumen-protected conjugated linoleic acid (CLA) inclusion in the diet of growing goat kids on meat CLA content and quality traits. Br. J. Nutr. 2019, 122, 745–754. [Google Scholar] [CrossRef]
- Kandi, M.; Kazemi-Bonchenari, M.; HosseinYazdi, M.; Mirzaei, M. Effects of ca-salt of linseed oil supplementation and protein content in diet on performance, ruminal fermentation, microbial protein yield, and blood metabolites in young lambs. Small Rumin. Res. 2020, 193, 106257. [Google Scholar] [CrossRef]
- Deckelbaum, R.J.; Worgall, T.S.; Seo, T. N-3 fatty acids and gene expression. Am. J. Clin. Nutr. 2006, 83, 1520–1525. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (NRC). Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 17th ed.; AOAC International: Arlington, VA, USA, 2002. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber non-starch polysaccharide in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Mohtashami, B.; Khalilvandi-Behroozyar, H.; Pirmohammadi, R.; Dehghan-Banadaky, M.; Kazemi-Bonchenari, M.; Dirandeh, E.; Ghaffari, M.H. The effect of supplemental bioactive fatty acids on growth performance and immune function of milk-fed Holstein calves during heat stress. Br. J. Nutr. 2021, 16, 188–201. [Google Scholar] [CrossRef]
- Kazemi-Bonchenari, M.; Khanaki, H.; Jafari, A.; Eghbali, M.; Poorhmdollah, M.; Ghffari, M.H. Milk feeding level and starter protein content: Effects on growth performance, blood metabolites, and urinary purine derivatives of Holstein dairy calves. J. Dairy Sci. 2022, 105, 1115–1130. [Google Scholar] [CrossRef]
- Dennis, T.S.; Suarez-Mena, F.X.; Hill, T.M.; Quigley, J.D.; Schlotterbeck, R.l.L.; Lascano, G.J. Short communication: Effect of replacing corn with beet pulp in a high concentrate diet fed to weaned Holstein calves on diet digestibility and growth. J. Dairy Sci. 2018, 101, 408–412. [Google Scholar] [CrossRef]
- Kazemi-Bonchenari, M.; Salem, A.Z.M.; Lopez, S. Influence of barley grain particle size and treatment with citric acid on digestibility, ruminal fermentation and microbial protein synthesis in Holstein calves. Animal 2017, 11, 1295–1302. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.B.; Gomes, M.J. Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives: An Overview of Technical Details; Rowett Research Institute, University of Aberdeen: Aberdeen, UK, 1992. [Google Scholar]
- Allen, M.S.; Bradford, B.J.; Oba, M. Board-invited review: The hepatic oxidation theory of the control of feed intake and its application to ruminants. J. Anim. Sci. 2009, 87, 3317–3334. [Google Scholar] [CrossRef]
- Ikwuegbu, O.A.; Sutton, J.D. The effect of varying the amount of linseed oil supplementation on rumen metabolism in sheep. Br. J. Nutr. 1982, 48, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Makizadeh, H.; Kazemi-Bonchenari, M.; Mansoori-Yarahmadi, H.; Fakhraei, J.; Khanaki, H.; Drackley, J.K.; Ghaffari, M.H. Corn-processing and crude protein content in calf starter: Effects on growth performance, ruminal fermentation, and blood metabolites. J. Dairy Sci. 2020, 103, 9037–9053. [Google Scholar] [CrossRef] [PubMed]
- Kazemi-Bonchenari, M.; Dehghan-Banadaky, M.; Fattahnia, F.; Saleh-Bahmanpour, A.; Jahani-Moghadam, M.; Mirzaei, M. Effects of linseed oil and rumen-undegradable protein: Rumen-degradable protein ratio on performance of Holstein dairy calves. Br. J. Nutr. 2020, 123, 1247–1257. [Google Scholar] [CrossRef]
- Pantophlet, A.J.; Gilbert, M.S.; van den Borne, J.J.G.C.; Gerrits, W.J.J.; Priebe, M.G.; Vonk, R.J. Insulin sensitivity in calves decreases substantially during the first 3 months of life and is unaffected by weaning or fructo-oligosaccharide supplementation. J. Dairy Sci. 2016, 99, 7602–7611. [Google Scholar] [CrossRef]
- Kohn, R.A.; Dinneen, M.M.; Russek-Cohen, E. Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats. J. Anim. Sci. 2005, 83, 79–889. [Google Scholar] [CrossRef]
- Wynn, R.J.; Daniel, Z.C.; Flux, C.L.; Craigon, J.; Salter, A.M.; Buttery, P.J. Effect of feeding rumen-protected conjugated linoleic acid on carcass characteristics and fatty acid composition of sheep tissues. J. Anim. Sci. 2006, 84, 3440–3450. [Google Scholar] [CrossRef] [PubMed]
- Schiavon, S.; Tagliapietra, F.; Dalla, M.G.; Cecchinato, A.; Bittante, G. Low protein diets and rumen-protected conjugated linoleic acid increase nitrogen efficiency and reduce the reduce the environmental impact of double-muscled young Piemontese bulls. Anim. Feed Sci. Technol. 2012, 174, 96–107. [Google Scholar] [CrossRef]
- Kadkhodaei, A.; Riasi, A.; Alikhani, M.; Dehghan-Banadaky, M.; Kowsar, R. Effects of fat sources and dietary C18:2 to C18:3 fatty acids ratio on growth performance, ruminal fermentation and some blood components of Holstein calves. Livest. Sci. 2017, 204, 71–77. [Google Scholar] [CrossRef]
- Ballou, M.; DePeters, E.J. Supplementing milk replacer with omega-3 fatty acids from fish oil on immunocompetence and health of Jersey calves. J. Dairy Sci. 2008, 91, 3488–3500. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.; Greco, L.F.; Favoreto, M.G.; Marsola, R.S.; Wang, D.; Shin, J.H.; Block, E.; Thatcher, W.W.; Santos, J.E.P.; Staples, C.R. Effect of supplementing essential fatty acids to pregnant nonlactating Holstein cows and their pre-weaned calves on calf performance, immune response, and health. J. Dairy Sci. 2014, 97, 5045–5064. [Google Scholar] [CrossRef] [PubMed]
- Ogle, C.K.; Ogle, J.D.; Mao, J.X.; Simon, J.; Noel, J.G.; Li, B.G.; Alexander, J.W. Effect of glutamine on phagocytosis and bacterial killing by normal and pediatric burn patient neutrophils. J. Parenter. Enter. Nutr. 1994, 18, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Yassad, A.; Lavoinne, A.; Bion, A.; Daveau, M.; Husson, A. Glutamine accelerates interleukin-6 production by rat peritoneal macrophages in culture. FEBS Lett. 1997, 413, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Alharthi, A.S.; Lopreiato, V.; Dai, H.; Bucktrout, R.; Abdelmegeid, M.; Batistel, F.; Parys, C.; Shen, X.; Ballou, M.A.; Trevisi, E.; et al. Short Communication: Supply of methionine during late pregnancy enhances whole-blood innate immune response of Holstein calves partly through changes in mRNA abundance in polymorphonuclear leukocytes. J. Dairy Sci. 2019, 102, 10599–10605. [Google Scholar] [CrossRef] [PubMed]
- Jasem, M.K.; Fattahnia, F.; Mohammadi, Y.; Shokri, A.N.; Khalilvandi-Behroozyar, H.; Kazemi-Bonchenari, M. Effect of n-3 fatty acid supplementation from flax oil on growth performance, ruminal fermentation, and immune response in Holstein dairy calves fed either coarsely ground or steam-flaked corn grain. Anim. Feed Sci. Technol. 2022, 290, 113572. [Google Scholar] [CrossRef]
- Momeni-Pooya, F.; Kazemi-Bonchenari, M.; Mirzaei, M.; HosseinYazdi, M. Effects of linseed oil supplementation in Holstein dairy calves received starters based on either corn or barley grain on growth performance and immune response. J. Anim. Physiol. Anim. Nutr. 2022, 107, 329–339. [Google Scholar] [CrossRef]
Experimental Diet 1 | ||||
---|---|---|---|---|
n-6 FA | n-3 FA | |||
Item | 18CP | 22CP | 18CP | 22CP |
Ingredients, g/kg of DM | ||||
Alfalfa hay, finely chopped | 70 | 70 | 70 | 70 |
Barley grain, ground | 110 | 110 | 110 | 110 |
Corn grain, coarsely ground | 510 | 430 | 510 | 430 |
Soybean meal | 230 | 310 | 230 | 310 |
Ca-salt of soybean oil (n-6 FA source) | 30 | 30 | 0 | 0 |
Ca-salt of linseed oil (n-3 FA source) | 0 | 0 | 30 | 30 |
Calcium carbonate | 10 | 10 | 10 | 10 |
Di-calcium phosphate | 5 | 5 | 5 | 5 |
Sodium bicarbonate | 10 | 10 | 10 | 10 |
Salt | 5 | 5 | 5 | 5 |
Vitamin and mineral mix 2 | 20 | 20 | 20 | 20 |
Chemical composition, (g/kg of DM, unless otherwise stated) | ||||
Metabolizable energy 3, (Mcal/kg) | 3.03 | 3.08 | 3.02 | 3.05 |
Crude protein | 180 | 220 | 180 | 220 |
Neutral detergent fiber | 187 | 182 | 187 | 182 |
Ether extract | 49.7 | 49.5 | 49.7 | 49.5 |
Non-fiber carbohydrate 4 | 512 | 481 | 512 | 481 |
Calcium | 90 | 90 | 90 | 90 |
Phosphorus | 44 | 44 | 44 | 44 |
Item | Experimental Diet 1 | SEM | p-Value 2 | |||||
---|---|---|---|---|---|---|---|---|
n-6 FA | n-3 FA | FA | CP | FA × CP | ||||
18CP | 22CP | 18CP | 22CP | |||||
Starter feed intake, g/d | ||||||||
Pre-weaning (d 3–63) | 675 | 628 | 685 | 698 | 67.33 | 0.67 | 0.85 | 0.75 |
Post-weaning (d 64–83) | 1937 | 2055 | 1965 | 1976 | 83.37 | 0.75 | 0.44 | 0.52 |
Entire period (d 3–83) | 990 | 986 | 1005 | 1017 | 97.92 | 0.81 | 0.97 | 0.92 |
Milk intake, g/d | 642 | 639 | 641 | 640 | 19.41 | 0.96 | 0.93 | 0.97 |
Total dry matter intake (milk + starter), g/d | 1314 | 1266 | 1324 | 1335 | 95.82 | 0.67 | 0.85 | 0.74 |
Average daily gain, g/d | ||||||||
Pre-weaning (d 3–63) | 558 | 676 | 620 | 671 | 61.19 | 0.65 | 0.15 | 0.57 |
Post-weaning (d 64–83) | 745 | 685 | 735 | 765 | 51.10 | 0.50 | 0.77 | 0.39 |
Entire period (d 3–83) | 605 | 678 | 648 | 693 | 47.90 | 0.54 | 0.21 | 0.76 |
Body weight | ||||||||
Initial (d 3) | 40.0 | 40.8 | 40.5 | 39.8 | 1.22 | 0.80 | 0.96 | 0.46 |
Weaning (d 63) | 73.5 | 75.9 | 77.7 | 80.1 | 1.84 | 0.02 | 0.08 | 0.94 |
Final (d 83) | 88.4 | 89.7 | 92.4 | 95.3 | 1.75 | 0.05 | 0.15 | 0.54 |
Feed efficiency 3 | ||||||||
Pre-weaning (d 3–63) | 0.42 | 0.53 | 0.51 | 0.59 | 0.04 | 0.04 | 0.05 | 0.71 |
Post-weaning (d 64–83) | 0.39 | 0.34 | 0.38 | 0.41 | 0.03 | 0.45 | 0.57 | 0.21 |
Entire period (d 3–83) | 0.40 | 0.48 | 0.48 | 0.54 | 0.03 | 0.05 | 0.07 | 0.95 |
Item | Experimental Diet 1 | SEM | p-Value 2 | |||||
---|---|---|---|---|---|---|---|---|
n-6 FA | n-3 FA | FA | CP | FA × CP | ||||
18CP | 22CP | 18CP | 22CP | |||||
Heart girth, cm | ||||||||
d 63 | 97.1 b | 95.2 c | 94.4 c | 99.7 a | 0.98 | 0.59 | 0.31 | 0.03 |
d 83 | 100.4 | 101.0 | 99.3 | 105.7 | 1.04 | 0.46 | 0.8 | 0.06 |
Body length, cm | ||||||||
d 63 | 49.3 | 49.1 | 49.5 | 50.7 | 0.68 | 0.42 | 0.65 | 0.53 |
d 83 | 53.9 | 52.0 | 52.9 | 54.8 | 0.63 | 0.41 | 0.94 | 0.10 |
Wither height, cm | ||||||||
d 63 | 84.5 | 85.7 | 85.9 | 90.5 | 0.81 | 0.03 | 0.26 | 0.09 |
d 83 | 89.7 | 87.3 | 87.4 | 91.5 | 0.98 | 0.80 | 0.86 | 0.11 |
Hip height, cm | ||||||||
d 63 | 89.6 b | 87.4 c | 87.6 c | 92.6 a | 0.83 | 0.25 | 0.32 | 0.02 |
d 83 | 89.8 c | 92.3 b | 90.0 c | 95.4 a | 1.09 | 0.23 | 0.29 | 0.01 |
Item | Experimental Diet 1 | SEM | p-Value 2 | |||||
---|---|---|---|---|---|---|---|---|
n-6 FA | n-3 FA | FA | CP | FA × CP | ||||
18CP | 22CP | 18CP | 22CP | |||||
Glucose, mg/dL | ||||||||
Pre-weaning | 80.7 b | 77.2 c | 84.1 b | 98.7 a | 3.67 | 0.02 | 0.23 | 0.04 |
Post-weaning | 58.1 | 63.5 | 72.4 | 67.2 | 4.19 | 0.06 | 0.97 | 0.27 |
BHB, mmol/L | ||||||||
Pre-weaning | 0.10 | 0.11 | 0.13 | 0.14 | 0.02 | 0.11 | 0.48 | 0.52 |
Post-weaning | 0.19 | 0.21 | 0.29 | 0.22 | 0.04 | 0.09 | 0.39 | 0.13 |
Blood urea nitrogen, mg/dL | ||||||||
Pre-weaning | 21.5 b | 27.7 a | 19.8 c | 20.4 b | 1.04 | 0.01 | 0.02 | 0.03 |
Post-weaning | 19.2 b | 25.3 a | 17.3 b | 16.5 c | 1.78 | 0.04 | 0.01 | 0.05 |
Insulin, IU/L | ||||||||
Pre-weaning | 5.87 b | 5.02 b | 4.84 c | 7.65 a | 0.34 | 0.05 | 0.03 | 0.01 |
Post-weaning | 8.75 | 9.61 | 8.84 | 9.41 | 0.79 | 0.91 | 0.19 | 0.75 |
Inflammatory markers | ||||||||
Tumor necrosis factor-α (pg/mL) | ||||||||
Pre-weaning | 488 a | 362 b | 377 b | 339 c | 14.09 | 0.02 | 0.01 | 0.04 |
Post-weaning | 402 | 399 | 378 | 391 | 15.43 | 0.45 | 0.80 | 0.68 |
Serum amyloid A (mg/L) | ||||||||
Pre-weaning | 14.4 | 13.6 | 12.9 | 10.5 | 0.83 | 0.01 | 0.07 | 0.29 |
Post-weaning | 13.5 | 11.7 | 11.9 | 13.0 | 0.79 | 0.89 | 0.16 | 0.78 |
Haptoglobin (μg/mL) | ||||||||
Pre-weaning | 12.0 | 12.2 | 12.5 | 11.3 | 0.60 | 0.81 | 0.52 | 0.37 |
Post-weaning | 13.5 | 12.8 | 12.3 | 12.1 | 0.71 | 0.21 | 0.64 | 0.72 |
Item | Experimental Diet 1 | SEM | p-Value 2 | |||||
---|---|---|---|---|---|---|---|---|
n-6 FA | n-3 FA | FA | CP | FA × CP | ||||
18CP | 22CP | 18CP | 22CP | |||||
Allantoin, mmol/d | 14.01 | 16.75 | 14.27 | 16.94 | 0.98 | 0.85 | 0.03 | 0.97 |
Uric acid, mmol/d Pre-weaning | 1.39 | 1.39 | 1.32 | 1.26 | 0.05 | 0.45 | 0.82 | 0.85 |
Total PD, mmol/d | 15.41 | 18.14 | 15.59 | 18.21 | 1.08 | 0.92 | 0.04 | 0.89 |
Microbial protein yield, g/d Pre-weaning | 82.3 | 96.9 | 83.3 | 97.4 | 4.94 | 0.92 | 0.04 | 0.89 |
Urinary nitrogen, g/d | 13.8 b | 16.9 a | 11.7 c | 12.3 b,c | 0.82 | 0.01 | 0.02 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajabi, A.; Fattahnia, F.; Shamsollahi, M.; Jahani-Azizabadi, H.; Khalilvandi-Behroozyar, H.; Pezeshki, A.; Kazemi-Bonchenari, M. Effects of Soybean and Linseed Oils Calcium Salts and Starter Protein Content on Growth Performance, Immune Response, and Nitrogen Utilization Efficiency in Holstein Dairy Calves. Animals 2023, 13, 960. https://doi.org/10.3390/ani13060960
Rajabi A, Fattahnia F, Shamsollahi M, Jahani-Azizabadi H, Khalilvandi-Behroozyar H, Pezeshki A, Kazemi-Bonchenari M. Effects of Soybean and Linseed Oils Calcium Salts and Starter Protein Content on Growth Performance, Immune Response, and Nitrogen Utilization Efficiency in Holstein Dairy Calves. Animals. 2023; 13(6):960. https://doi.org/10.3390/ani13060960
Chicago/Turabian StyleRajabi, Ardashir, Farshid Fattahnia, Mohammad Shamsollahi, Hossein Jahani-Azizabadi, Hamed Khalilvandi-Behroozyar, Adel Pezeshki, and Mehdi Kazemi-Bonchenari. 2023. "Effects of Soybean and Linseed Oils Calcium Salts and Starter Protein Content on Growth Performance, Immune Response, and Nitrogen Utilization Efficiency in Holstein Dairy Calves" Animals 13, no. 6: 960. https://doi.org/10.3390/ani13060960
APA StyleRajabi, A., Fattahnia, F., Shamsollahi, M., Jahani-Azizabadi, H., Khalilvandi-Behroozyar, H., Pezeshki, A., & Kazemi-Bonchenari, M. (2023). Effects of Soybean and Linseed Oils Calcium Salts and Starter Protein Content on Growth Performance, Immune Response, and Nitrogen Utilization Efficiency in Holstein Dairy Calves. Animals, 13(6), 960. https://doi.org/10.3390/ani13060960