The Use of Sand Substrate Modulates Dominance Behaviour and Brain Gene Expression in a Flatfish Species
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Rearing Conditions
2.2. Behavioural Assay
2.2.1. Experimental Dominance Set-Up
2.2.2. Dominance Test
2.3. RNA Isolation, Complementary DNA Synthesis and Quantitative Real-Time Polymerase Chain Reaction Assay
2.4. Statistical Analysis
3. Results
3.1. Dominance Test
3.2. Gene Expression Analysis in the Brain
4. Discussion
4.1. Dominance Test
4.2. Gene Expression in Association with Dominance Behaviour and Enriched Environment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Food and Agriculture Organization of the United Nations. 2022. Available online: http://www.fao.org/home/en/ (accessed on 4 January 2023).
- Näslund, J.; Johnsson, J.I. Environmental enrichment for fish in captive environments: Effects of physical structures and substrates. Fish 2016, 17, 1–30. [Google Scholar] [CrossRef]
- Williams, T.D.; Readman, G.D.; Owen, S.F. Key issues concerning environmental enrichment for laboratory-held fish species. Lab. Anim. 2009, 43, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xu, X.; Wang, Y.; Zhang, X. Effects of environmental enrichment on growth performance, aggressive behavior and stress-induced changes in cortisol release and neurogenesis of Black Rockfish Sebastes schlegelii. Aquaculture 2020, 528, 735483. [Google Scholar] [CrossRef]
- Arechavala-Lopez, P.; Cabrera-Álvarez, M.J.; Maia, C.M.; Saraiva, J.L. Environmental enrichment in fish aquaculture: A review of fundamental and practical aspects. Rev. Aquac. 2021, 14, 704–728. [Google Scholar] [CrossRef]
- Kientz, J.L.; Barnes, M.E. Structural complexity improves the rearing performance of rainbow trout in circular tanks. N. Am. J. Aquac. 2016, 78, 203–207. [Google Scholar] [CrossRef]
- Batzina, A.; Kalogiannis, D.; Dalla, C.; Papadopoulou-Daifoti, Z.; Chadio, S.; Karakatsouli, N. Blue substrate modifies the time course of stress response in gilthead seabream Sparus aurata. Aquaculture 2014, 420–421, 247–253. [Google Scholar] [CrossRef]
- Saraiva, J.L.; Nogueirinha, M.; Teodósio, R.; Aragão, C.; Engrola, S.; Arechavala-Lopez, P. The effect of tank cover on welfare of farmed Nile tilapia. Appl. Anim. Behav. Sci. 2021, 241, 105396. [Google Scholar] [CrossRef]
- Reig, L.; Duarte, S.; Valero, J.; Oca, J. Preference of cultured sole (Solea senegalensis) for different substrates differing in material, texture and colour. Aquac. Eng. 2010, 42, 82–89. [Google Scholar] [CrossRef]
- Almansa, C.; Oca, J.; Claramunt, J.; Reig, L. Influence of tank bottom surface on growth and welfare of Senegalese sole (Solea senegalensis). Aquac. Eng. 2017, 78, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Howell, B.R.; Canario, A.V.M. The influence of sand on the estimation of resting metabolic rate of juvenile sole, Solea solea (L.). J. Fish Biol. 1987, 31, 277–280. [Google Scholar] [CrossRef]
- Woodward, M.A.; Winder, L.A.; Watt, P.J. Enrichment increases aggression in zebrafish. Fishes 2019, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Arechavala-Lopez, P.; Diaz-Gil, C.; Saraiva, J.L.; Moranta, D.; Castanheira, M.F.; Nuñez-Velázquez, S.; Ledesma-Corvi, S.; Mora-Ruiz, M.R.; Grau, A. Effects of structural environmental enrichment on welfare of juvenile seabream (Sparus aurata). Aquac. Rep. 2019, 15, 100224. [Google Scholar] [CrossRef]
- Arechavala-Lopez, P.; Caballero-Froilán, J.C.; Jiménez-García, M.; Capó, X.; Tejada, S.; Saraiva, J.L.; Sureda, A.; Moranta, D. Enriched environments enhance cognition, exploratory behaviour and brain physiological functions of Sparus aurata. Sci. Rep. 2020, 10, 11252. [Google Scholar] [CrossRef]
- Noakes, D.L.; Jones, K.M.M. Cognition, learning and behavior. Fish Physiol. 2016, 35, 333–364. [Google Scholar] [CrossRef]
- Øverli, Ø.; Korzan, W.J.; Höglund, E.; Winberg, S.; Bollig, H.; Watt, M.; Forster, G.L.; Barton, B.A.; Øverli, E.; Renner, K.J.; et al. Stress coping style predicts aggression and social dominance in rainbow trout. Horm. Behav. 2004, 45, 235–241. [Google Scholar] [CrossRef]
- Fatsini, E.; Rey, S.; Ibarra-Zatarain, Z.; Mackenzie, S.; Duncan, N.J. Dominance behaviour in a non-aggressive flatfish, Senegalese sole (Solea senegalensis) and brain mRNA abundance of selected transcripts. PLoS ONE 2017, 12, e0184283. [Google Scholar] [CrossRef] [Green Version]
- Øverli, Ø. Preface: Plasticity and diversity in behavior and brain function—Important raw material for natural selection? Brain Behav. Evol. 2007, 70, 215–217. [Google Scholar] [CrossRef] [PubMed]
- Morais, S.; Aragão, C.; Cabrita, E.; Conceição, L.E.C.; Constenla, M.; Costas, B.; Dias, J.; Duncan, N.; Engrola, S.; Estevez, A.; et al. New developments and biological insights into the farming of Solea senegalensis reinforcing its aquaculture potential. Rev. Aquac. 2016, 8, 227–263. [Google Scholar] [CrossRef] [Green Version]
- Carazo, I.; Norambuena, F.; Oliveira, C.; Sánchez-Vázquez, F.J.; Duncan, N.J. The effect of night illumination, red and infrared light, on locomotor activity, behaviour and melatonin of Senegalese sole (Solea senegalensis) broodstock. Physiol. Behav. 2013, 118, 201–207. [Google Scholar] [CrossRef]
- Fatsini, E.; González, W.; Ibarra-Zatarain, Z.; Napuchi, J.; Duncan, N.J. The presence of wild Senegalese sole breeders improves courtship and reproductive success in cultured conspecifics. Aquaculture 2020, 519, 734922. [Google Scholar] [CrossRef]
- Martín, I.; Carazo, I.; Rasines, I.; Rodríguez, C.; Fernández, R.; Martínez, P.; Norambuena, F.; Chereguini, O.; Duncan, N. Reproductive performance of captive Senegalese sole, Solea senegalensis, according to the origin (Wild or cultured) and gender. SJAR 2019, 17, e0608. [Google Scholar] [CrossRef] [Green Version]
- Rey, S.; Boltana, S.; Vargas, R.; Roher, N.; Mackenzie, S. Combining animal personalities with transcriptomics resolves individual variation within a wild-type zebrafish population and identifies underpinning molecular differences in brain function. Mol. Ecol. 2013, 22, 6100–6115. [Google Scholar] [CrossRef] [PubMed]
- Teles, M.C.; Cardoso, S.D.; Oliveira, R.F. Social plasticity relies on different neuroplasticity mechanisms across the brain social decision-making network in zebrafish. Front. Behav. Neurosci. 2016, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- McClung, C.A.; Nestler, E.J. Neuroplasticity mediated by altered gene expression. Neuropsychopharmacology 2008, 33, 3–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connell, L.A.; Fontenot, M.R.; Hofmann, H.A. Neurochemical profiling of dopaminergic neurons in the forebrain of a cichlid fish, Astatotilapia burtoni. J. Chem. Neuroanat. 2013, 47, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Manchado, M.; Salas-Leiton, E.; Infante, C.; Ponce, M.; Asensio, E.; Crespo, A.; Zuasti, E.; Cañavate, J.P. Molecular characterization, gene expression and transcriptional regulation of cytosolic HSP90 genes in the flatfish Senegalese sole (Solea senegalensis Kaup). Gene 2008, 416, 77–84. [Google Scholar] [CrossRef]
- Manchado, M.; Infante, C.; Asensio, E.; Cañavate, J.P. Differential gene expression and dependence on thyroid hormones of two glyceraldehyde-3-phosphate dehydrogenases in the flatfish Senegalese sole (Solea senegalensis Kaup). Gene 2007, 400, 1–8. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, S.; Ribas, L.; Pilarczyk, M.; Capdevila, D.M.; Kadri, S.; Huntingford, F.A. Screening for coping style increases the power of gene expression studies. PLoS ONE 2009, 4, e5314. [Google Scholar] [CrossRef]
- Fatsini, E.; Rey, S.; Ibarra-Zatarain, Z.; Boltaña, S.; Mackenzie, S.; Duncan, N.J. Linking stress coping styles with brain mRNA abundance of selected transcripts for Senegalese sole (Solea senegalensis) juveniles. Physiol. Behav. 2020, 213, 112724. [Google Scholar] [CrossRef]
- Chauvigné, F.; Zapater, C.; Crespo, D.; Planas, J.V.; Cerda, J. Fsh and Lh direct conserved and specific pathways during flatfish semicystic spermatogenesis. J. Mol. Endocrinol. 2014, 53, 175–190. [Google Scholar] [CrossRef] [Green Version]
- Marín-Juez, R.; Viñas, J.; Mechaly, A.S.; Planas, J.V.; Piferrer, F. Stage-specific gene expression during spermatogenesis in the Senegalese sole (Solea senegalensis), a fish with semi-cystic type of spermatogenesis, as assessed by laser capture microdissection and absolute quantitative PCR. Gen. Comp. Endocrinol. 2013, 188, 242–250. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef] [Green Version]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Fatsini, E.; Bautista, R.; Manchado, M.; Duncan, N.J. Transcriptomic profiles of the upper olfactory rosette in cultured and wild Senegalese sole (Solea senegalensis) males. CBP-D 2016, 20, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Huntingford, F.A. Implications of domestication and rearing conditions for the behaviour of cultivated fishes. J. Fish Biol. 2004, 65 (Suppl. A), 122–142. [Google Scholar] [CrossRef]
- Buitenhuis, B.; Hedegaard, J.; Janss, L.; Sørensen, P. Differentially expressed genes for aggressive pecking behaviour in laying hens. BMC Genom. 2009, 10, 544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carazo, I.; Chereguini, O.; Martín, I.; Huntingford, F.; Duncan, N.J. Reproductive ethogram and mate selection in captive wild Senegalese sole (Solea senegalensis). SJAR 2017, 14, e0401. [Google Scholar] [CrossRef] [Green Version]
- MacLean, A.; Metcalfe, N.B.; Mitchell, D. Alternative competitive strategies in juvenile Atlantic salmon (Salmo salar): Evidence from fin damage. Aquaculture 2000, 184, 291–302. [Google Scholar] [CrossRef]
- Gibson, R.N.; Stoner, A.W.; Ryer, C.H. The behaviour of flatfishes. In Flatfishes: Biology and Exploitation: Second Edition (Vol. 9781118501, Issue January 2015); Wiley: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Ottesen, O.H.; Strand, H.K. Growth, development, and skin abnormalities of halibut (Hippoglossus hippoglossus L.) juveniles kept on different bottom substrates. Aquaculture 1996, 146, 17–25. [Google Scholar] [CrossRef]
- Salvanes, A.G.V.; Moberg, O.; Ebbesson, L.O.E.; Nilsen, T.O.; Jensen, K.H.; Braithwaite, V.A. Environmental enrichment promotes neural plasticity and conginitive ability in fish. RSPB 2013, 80, 20131331. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, A.; Zech, M.; Sigafoos, A.N.; Clark, K.J.; Dincer, Y.; Wagner, M.; Humberson, J.B.; Green, S.; van Gassen, K.; et al. De novo variants of NR4A2 are associated with neurodevelopmental disorder and epilepsy. GIM 2020, 22, 1413–1417. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, A.; Shimoura, K.; Niwa, H.; Kagawa, N. The presence of a conspecific induces risk-taking behaviour and enlargement of somata size of dopaminergic neurons in the brain of male medaka fish. J. Fish Biol. 2020, 96, 1014–1023. [Google Scholar] [CrossRef] [PubMed]
- Ghahramani, Z.N.; Timothy, M.; Varughese, J.; Sisneros, J.A.; Forlano, P.M. Dopaminergic neurons are preferentially responsive to advertisement calls and co-active with social behavior network nuclei in sneaker male midshipman fish. Brain Res. 2018, 1701, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Blin, M.; Norton, W.; Bally-Cuif, L.; Vernier, P. NR4A2 controls the differentiation of selective dopaminergic nuclei in the zebrafish brain. Mol. Cell. Neurosci. 2008, 39, 592–604. [Google Scholar] [CrossRef]
- Eells, J.B.; Lipska, B.K.; Yeung, S.K.; Misler, J.A.; Nikodem, V.M. Nurr1-null heterozygous mice have reduced mesolimbic and mesocortical dopamine levels and increased stress-induced locomotor activity. Behav. Brain Res. 2002, 136, 267–275. [Google Scholar] [CrossRef] [PubMed]
Behaviour | Acronym | Description |
---|---|---|
Position before feeding | POSITB | Index per fish per day = ((position 1 x “y”) + (position 2 x “y”) + (position 3 x “y”) + (position 4 x “y”) + (position 5 x “y”) + (position 6 x “y”))/12 (nº of fish) |
“y” = Frequency (events) of each position during the 30 min before feeding (9:30–10 AM) (Without and With sand) | ||
Position after feeding | POSITA | Index per fish per day = ((position 1 x “y”) + (position 2 x “y”) + (position 3 x “y”) + (position 4 x “y”) + (position 5 x “y”) + (position 6 x “y”))/12 (nº of fishes) |
“y” = Frequency (events) of each position during the 30 min after feeding (10–10:30 am) (Without sand) “y” = Frequency (events) of each position from the beginning of food delivery until the last pellet was eaten (10–12:00 pm) (With sand) | ||
Feeding order | FO | Fish that ate first was 1, second to eat was 2, etc (rank according to feeding) |
Rest the head | RTH | Percentage of the number of times (events) that a fish rests its head on another fish before and after the feeding period (Without sand: 60 min; with sand: 150 min). |
Gene | Gene Name | Amplicon Size | Primers (5′ 3′) | Biological Function |
---|---|---|---|---|
Ubiquitin | ubq | 89 | F-AAAATTCCCCAATCAATCTCCT R-CTTCACAAAGATCTGCATCTTGA | Housekeeping [28] |
Beta-actin | b-act | 90 | F-GCCTTTGCCGATCCGC R-GCCGTAGCCGTTGTCG | Housekeeping [28] |
C-FOS | c-fos | 175 | F-CTGGAGTTCATTCTGGCTGC R-TTGAGGTGAATGTTGGCTGC | Neuroplasticity, neurogenesis, and brain activation [25] |
Nuclear Receptor Subfamily 4, Group A, Member 2 | nr4a2 | 187 | F-TCTCCCGAGTTTCAGCACTT R-CCCAGAGTGAGCCATCATTT | Differentiation of dopamine neurons [26] |
Neurogenic differentiation factor 2 | nrd2 | 396 | F-TTATCAGTGTGCGCGTCTGT R-TTCAGTTCGTCGTACACGGG | Neuroplasticity, neurogenesis, and brain activation [25] |
Brain-derived neurotrophic factor | bdnf | 154 | F-ACTCGTTTGAAACATCCGGC R-CAGACAGGGTGAGTGGAGAA | Neuroplasticity (involved in changes in synaptic plasticity), neurogenesis, and brain activation [24] |
Heat shock protein 90, alpha (cytosolic) class A | hsp90aa | 105 | F-GACCAAGCCTATCTGGACCCGCAAC R-TTGACAGCCAGGTGGTCCTCCCAGT | Cellular stress, cellular protection, and cellular homeostasis [27] |
Heat shock protein 70 | hsp70 | 119 | F-AGCCACCGTGTCGCCGACCT R-CGACCTCCTCAATATTTGGGCCAGCA | Cellular stress and cellular protection [27] |
Glyceraldehyde-3-phosphate dehydrogenases 2 | gapdh-2 | 107 | F-AGCCACCGTGTCGCCGACCT R-AAAAGAGGAGATGGTGGGGGGTGGT | Metabolic pathway, membrane fusion, phosphotransferase activity, nuclear RNA export, DNA replication and repair, apoptosis, age-related neurodegenerative disease, and viral pathogenesis [28] |
Nuclear progestin receptor | pgr | 120 | F-TGTCTGACCACCTTCATCCA R-TCCAGTCACAGGACGTCTCC | Gene expression in reproductive tissues, progestin-induced signalling pathways to regulate spermatogenesis and testicular differentiation and spermatogenesis [25] |
Follicle-stimulating hormone receptor α | fshra | 60 | F-GGACCCAAACTACATCCATGAAC R-CAGTCCCCGTTACAGATCACCTGTCT | Supports steroidogenesis, folliculogenesis, and ovulation and stimulates spermatogenesis [31,32] |
Treatment | Social Category | Initial Weight (g) | Final Weight (g) | The Mean of Weight Gained in 2 Months (g) |
---|---|---|---|---|
Without sand | Dominant | 205.33 ± 13.44 | 342.51 ± 38.70 | 137.17 ± 26.97 |
Intermediate | 203.92 ± 17.39 | 319.58 ± 34.94 | 115.66 ± 32.87 | |
Subordinate | 204.17 ± 11.96 | 308.83 ± 58.44 | 104.67 ± 53.43 | |
With sand | Dominant | 197.83 ± 15.69 | 314.51 ± 44.14 | 116.68 ± 29.19 |
Intermediate | 204.29 ± 16.57 | 309.19 ± 34.19 | 104.91 ± 32.93 | |
Subordinate | 205.67 ± 18.41 | 308.83 ± 58.44 | 111.63 ± 50.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, M.M.; Cabrita, E.; Fatsini, E. The Use of Sand Substrate Modulates Dominance Behaviour and Brain Gene Expression in a Flatfish Species. Animals 2023, 13, 978. https://doi.org/10.3390/ani13060978
Almeida MM, Cabrita E, Fatsini E. The Use of Sand Substrate Modulates Dominance Behaviour and Brain Gene Expression in a Flatfish Species. Animals. 2023; 13(6):978. https://doi.org/10.3390/ani13060978
Chicago/Turabian StyleAlmeida, Maria Mafalda, Elsa Cabrita, and Elvira Fatsini. 2023. "The Use of Sand Substrate Modulates Dominance Behaviour and Brain Gene Expression in a Flatfish Species" Animals 13, no. 6: 978. https://doi.org/10.3390/ani13060978
APA StyleAlmeida, M. M., Cabrita, E., & Fatsini, E. (2023). The Use of Sand Substrate Modulates Dominance Behaviour and Brain Gene Expression in a Flatfish Species. Animals, 13(6), 978. https://doi.org/10.3390/ani13060978