Comparison of Venous Blood Gas and Biochemical Parameters in Sunda Pangolin (Manis javanica) and Chinese Pangolin (Manis pentadactyla) before and after Isoflurane Anesthesia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Population
2.2. Sample Collection and Processing
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hua, Y.; Wang, J.; An, F.Y.; Xu, J.J.; Zhang, H.; Gu, H.X. Phylogenetic relationship of Chinese pangolin (Manis pentadactyla aurita) revealed by complete mitochondrial genome. Mitochondrial. DNA. Part. B 2020, 5, 2523–2524. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.E.; Li, L.M.; Jiang, H.Y.; Zhang, X.J.; Li, J.; Li, G.Y.; Chen, J.P. Transcriptomic analysis identifies genes and pathways related to myrmecophagy in the Malayan pangolin (Manis javanica). PeerJ 2017, 5, e4140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Challender, D.W.; Ades, G.W.; Chin, J.S.; Sun, N.C.; Chong, J.L.; Connelly, E.; Hywood, L.; Luz, S.; Mohapatra, R.K.; De Ornellas, P.; et al. Evaluating the feasibility of pangolin farming and its potential conservation impact. Glob. Ecol. Conserv. 2019, 20, e00714. [Google Scholar] [CrossRef]
- Zhou, Z.M.; Zhou, Y.; Newman, C.; Macdonald, D.W. Scaling up pangolin protection in China. Front. Ecol. Environ. 2014, 12, 97–98. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Wang, W.; Mahmood, A.; Wu, S.; Li, J.Q.; Xu, N. Observations of Chinese pangolins (Manis pentadactyla) in mainland China. Glob. Ecol. Conserv. 2021, 26, e01460. [Google Scholar] [CrossRef]
- Omifolaji, J.K.; Hughes, A.C.; Ibrahim, A.S.; Zhou, J.; Zhang, S.; Ikyaagba, E.T.; Luan, X. Dissecting the illegal pangolin trade in China: An insight from seizures data reports. Nat. Conserv. 2022, 45, 17–38. [Google Scholar] [CrossRef]
- Challender, D.; Willcox, D.H.; Panjang, E.; Lim, N.; Nash, H.; Heinrich, S.; Chong, J. Manis javanica. The IUCN Red List of Threatened Species 2019: E.T12763A123584856. 2019. Available online: https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T12763A123584856.en (accessed on 20 September 2022).
- Challender, D.; Wu, S.; Kaspal, P.; Khatiwada, A.; Ghose, A.; Ching-Min Sun, N.; Mohapatra, R.K.; Laxmi Suwal, T. Manis pentadactyla (Errata Version Published in 2020). The IUCN Red List of Threatened Species 2019: E.T12764A168392151. 2019. Available online: https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T12764A168392151.en (accessed on 20 September 2022).
- Sun, N.C.; Pei, K.J.; Wu, L.Y. Reproductive Behaviors of Wild Chinese Pangolin (Manis Pentadactyla): A Case Study Based on Long-Term Monitoring. Res. Sq. 2021; preprint. [Google Scholar]
- Zhang, F.; Yu, J.; Wu, S.; Li, S.; Zou, C.; Wang, Q.; Sun, R. Keeping and breeding the rescued Sunda pangolins (Manis javanica) in captivity. Zoo. Biol. 2017, 36, 387–396. [Google Scholar] [CrossRef]
- Aitken-Palmer, C.; Demaar, T.W.; Johnson, J.G.; Langan, J.; Bergmann, J.; Chinnadurai, S.; Guerra, H.; Carboni, D.A.; Adkesson, M.J. Complications associated with pregnancy and parturition in african white-bellied pangolins (phataginus tricuspis). J. Zoo. Wildl. Med. 2019, 50, 678–687. [Google Scholar] [CrossRef]
- Challender, D.W.; Harrop, S.R.; MacMillan, D.C. Understanding markets to conserve trade-threatened species in CITES. Biol. Conserv. 2015, 187, 249–259. [Google Scholar] [CrossRef] [Green Version]
- Min, Y.; Wu, S.; Zhang, F.; Xu, N. The Stomach Morphology and Contents of the Chinese Pangolin (Manis pentadactyla). J. Zoo. Biol. 2020, 3, 13–20. [Google Scholar] [CrossRef]
- Chin, S.C.; Lien, C.Y.; Chan, Y.; Chen, C.L.; Yang, Y.C.; Yeh, L.S. Hematologic and serum biochemical parameters of apparently healthy rescued formosan pangolins (Manis pentadactyla pentadactyla). J. Zoo. Wildl. Med. 2015, 46, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Irshad, N.; Mahmood, T.; Nadeem, M.S. Morpho-anatomical characteristics of Indian pangolin (Manis crassicaudata) from Potohar Plateau, Pakistan. Mammalia 2016, 80, 103–110. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Samsuddin, S.; Oh, S.J.; Martinez-Perez, P.; Rasedee, A. Hematological and serum biochemical parameters of rescued Sunda pangolins (Manis javanica) in Singapore. J. Vet. Med. Sci. 2018, 80, 1867–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennifer, H.Y.; Nguyen, N.D.; Lam, H.K.; Jimerson, J.; Hayek, L.A.; Raphael, B.L.; Nguyen, V.T.; Valitutto, M.T. Serum biochemistry and select mineral parameters of pre-release sunda pangolins (Manis javanica) following rehabilitation in vietnam. J. Zoo. Wildl. Med. 2021, 52, 241–252. [Google Scholar]
- Hooijberg, E.H.; Lourens, K.; Meyer, L.C. Reference Intervals for Selected Hematology and Clinical Chemistry Measurands in Temminck’s Pangolin (Smutsia temminckii). Front. Vet. Sci. 2021, 8, 654529. [Google Scholar] [CrossRef]
- Revsbech, I.G.; Shen, X.; Chakravarti, R.; Jensen, F.B.; Thiel, B.; Evans, A.L.; Kindberg, J.; Fröbert, O.; Stuehr, D.J.; Kevil, C.G.; et al. Hydrogen sulfide and nitric oxide metabolites in the blood of free-ranging brown bears and their potential roles in hibernation. Free. Radical. Biol. Med. 2014, 73, 349–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manire, C.A.; Reiber, C.M.; Gaspar, C.; Rhinehart, H.L.; Byrd, L.; Sweeney, J.; West, K.L. Blood chemistry and hematology values in healthy and rehabilitated rough-toothed dolphins (Steno bredanensis). J. Wildl. Dis. 2018, 54, 1–13. [Google Scholar] [CrossRef]
- Serieys, L.E.; Foley, J.; Owens, S.; Woods, L.; Boydston, E.E.; Lyren, L.M.; Poppenga, R.H.; Clifford, D.L.; Stephenson, N.; Rudd, J.; et al. Serum chemistry, hematologic, and post-mortem findings in free-ranging bobcats (Lynx rufus) with notoedric mange. J. Parasitol. 2013, 99, 989–996. [Google Scholar] [CrossRef]
- Harms, C.A.; Mallo, K.M.; Ross, P.M.; Segars, A.L. Venous blood gases and lactates of wild loggerhead sea turtles (Caretta caretta) following two capture techniques. J. Wildl. Dis. 2003, 39, 366–374. [Google Scholar] [CrossRef] [Green Version]
- Sood, P.; Paul, G.; Puri, S. Interpretation of arterial blood gas. Indian. J. Crit. Care. Med. 2010, 14, 57–64. [Google Scholar] [PubMed]
- Nigam, P.; Perumamthadathil, C.S. Critical care and emergency management of wild animals. Intas. Polivet. 2011, 12, 153–162. [Google Scholar]
- Heath, M.E. Hematological parameters of four Chinese pangolins (Manis pentadactyla). Zoo. Biol. 1986, 5, 387–390. [Google Scholar] [CrossRef]
- Khatri-Chhetri, R.; Sun, C.M.; Wu, H.Y.; Pei, K.J. Reference intervals for hematology, serum biochemistry, and basic clinical findings in free-ranging Chinese Pangolin (Manis pentadactyla) from Taiwan. Vet. Clin. Pathol. 2015, 44, 380–390. [Google Scholar] [CrossRef] [Green Version]
- Bailey, R.S.; Aitken-Palmer, C.; Chinnadurai, S.K. Venous blood gas and selected biochemical values from awake and anesthetized white-bellied pangolins (Phataginus tricuspis). J. Zoo. Wildl. Med. 2018, 49, 1025–1028. [Google Scholar] [PubMed]
- Souza, A.P.; Guerrero, P.N.; Nishimori, C.T.; Paula, D.P.; Santos, P.S.; Rezende, M.L.; Nunes, N. Cardiopulmonary and acid-base effects of desflurane and sevoflurane in spontaneously breathing cats. J. Feline. Med. Surg. 2005, 7, 95–100. [Google Scholar] [CrossRef]
- Bertelsen, M.F.; Miller, R.E. Journal of Zoo and Wildlife Medicine 1970–2019. J. Zoo. Wildl. Med. 2019, 50, 2–4. [Google Scholar]
- Grimm, K.A.; Lamont, L.A.; Tranquilli, W.J.; Greene, S.A.; Robertson, S.A. Veterinary Anesthesia and Analgesia, 5th ed.; John Wiley & Sons: Ames, IA, USA, 2015; pp. 277–296. [Google Scholar]
- Gardhouse, S.M.; Eshar, D.; Bello, N.; Mason, D. Venous blood gas analytes during isoflurane anesthesia in black-tailed prairie dogs (Cynomys ludovicianus). J. Am. Vet. Med. Assoc. 2015, 247, 404–408. [Google Scholar] [CrossRef]
- Sorrell-Raschi, L. Small Animal Critical Care Medicine, 1st ed.; Philadelphia: Saunders Elsevier: St. Louis, MO, USA, 2008; pp. 878–882. [Google Scholar]
- Liu, W.; Peng, L.; Hua, S. Clinical significance of dynamic monitoring of blood lactic acid, oxygenation index and C-reactive protein levels in patients with severe pneumonia. Exp. Ther. Med. 2015, 10, 1824–1828. [Google Scholar] [CrossRef] [Green Version]
- Pang, D.S.; Allaire, J.; Rondenay, Y.; Kaartinen, J.; Cuvelliez, S.G.; Troncy, E. The use of lingual venous blood to determine the acid-base and blood-gas status of dogs under anesthesia. Vet. Anaesth. Analg. 2009, 36, 124–132. [Google Scholar] [CrossRef]
- Gallego, M. Laboratory reference intervals for systolic blood pressure, rectal temperature, haematology, biochemistry and venous blood gas and electrolytes in healthy pet rabbits. Open. Vet. J. 2017, 7, 203–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boag, A.K.; Coe, R.J.; Martinez, T.A.; Hughes, D. Acid-base and electrolyte abnormalities in dogs with gastrointestinal foreign bodies. J. Vet. Intern. Med. 2005, 19, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.A.; Lerche, P. Anesthesia and Analgesia for Veterinary Technicians, 4th ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2016; pp. 36–37. [Google Scholar]
- DiBartola, S.P. Disorders of Sodium and Water: Hypernatremia and Hyponatremia. In Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice, 4th ed.; DiBartola, S.P., Ed.; Saunders Elsevier: St. Louis, MO, USA, 2012; pp. 45–79. [Google Scholar]
- Nelson, R.W.; Couto, C.G. Small Animal Internal Medicine, 5th ed.; Saunders Elsevier: St. Louis, MO, USA, 2014; pp. 879–880. [Google Scholar]
- Ashwood, E.; Kost, G.; Kenny, M. Temperature correction of blood-gas and pH measurements. Clin. Chem. 1983, 29, 1877–1885. [Google Scholar] [CrossRef] [PubMed]
- Innis, C.J.; Tlusty, M.; Merigo, C.; Weber, E.S. Metabolic and respiratory status of cold-stunned Kemp’s ridley sea turtles (Lepidochelys kempii). J. Comp. Physiol. B 2007, 177, 623–630. [Google Scholar] [CrossRef]
- McNally, K.L.; Mott, C.R.; Guertin, J.R.; Gorham, J.C.; Innis, C.J. Venous blood gas and biochemical analysis of wild captured green turtles (Chelonia mydas) and Kemp’s ridley turtles (Lepidochelys kempii) from the Gulf of Mexico. PLoS ONE 2020, 15, e0237596. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, S.; Wang, W.; Mahmood, A.; Zhang, F. Body temperatures of Manis pentadactyla and Manis javanica. Vet. Med. Sci. 2021, 7, 2399–2403. [Google Scholar] [CrossRef]
- Refinetti, R. The circadian rhythm of body temperature. Front. Biosci. 2010, 15, 564–594. [Google Scholar] [CrossRef] [Green Version]
Item | Sex | Median | Min | Max | SD | Mean | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
M. P | M. J | M. P | M. J | M. P | M. J | M. P | M. J | M. P | M. J | ||
Weight | ♀ | 3.43 | 4.82 | 3.1 | 3.71 | 5.96 | 5.93 | 0.73 | 0.58 | 3.6 | 4.86 |
♂ | 4.32 | 6.66 | 3.29 | 5 | 5.94 | 8.87 | 0.71 | 1.47 | 4.38 | 6.84 | |
Total length | ♀ | 69 | 90 | 63.5 | 82 | 83 | 93 | 4.4 | 2.66 | 69.82 | 89.32 |
♂ | 74.5 | 105 | 66 | 90 | 92 | 121 | 5.89 | 9.3 | 75.74 | 103.77 | |
Tail length | ♀ | 28 | 40 | 25 | 36 | 35 | 44.3 | 2.22 | 1.85 | 28.86 | 40.52 |
♂ | 30.8 | 48 | 26 | 40 | 35 | 54.5 | 2.09 | 4.5 | 30.62 | 47.46 |
Item | Unit | Awake | Isoflurane Anaesthesia | ||||||
---|---|---|---|---|---|---|---|---|---|
Median | Min | Max | Mean ± SD | Median | Min | Max | Mean ± SD | ||
Body temperature | °C | 33.1 | 32.4 | 33.9 | 33.142 ± 0.344 | 33.4 | 32.1 | 34.8 | 33.523 ± 0.636 |
H+ | 10−7 mol/L | 4.624 | 3.02 | 8.128 | 5.098 ± 1.414 | 5.497 | 3.162 | 7.943 | 5.378 ± 1.249 |
pH | — | 7.335 | 7.09 | 7.52 | 7.308 ± 0.115 | 7.26 | 7.1 | 7.5 | 7.281 ± 0.105 |
PO2 | mmHg | 95.5 | 23 | 144 | 96.231 ± 35.581 | 308.5 | 27.1 | 549 | 301.081 ± 143.662 |
PCO2 | mmHg | 52.5 | 36 | 109 | 62.615 ± 22.304 | 69.5 | 42 | 112 | 72.654 ± 16.68 |
pHt | — | 7.39 | 7.15 | 7.58 | 7.362 ± 0.117 | 7.305 | 7.15 | 7.55 | 7.328 ± 0.107 |
PO2t | mmHg | 75.5 | 18 | 125 | 78.038 ± 31.231 | 292.5 | 46 | 527 | 292.269 ± 132.21 |
PCO2t | mmHg | 44 | 30 | 93 | 52.769 ± 18.688 | 61 | 35 | 93 | 62.577 ± 14.387 |
TCO2 | mmol/L | 31.95 | 19.7 | 58.3 | 32.396 ± 7.945 | 35 | 24.3 | 53.9 | 36.204 ± 6.786 |
Beecf | mmol/L | 2.7 | −9 | 29.6 | 4.181 ± 7.980 | 6.1 | −6.6 | 26.6 | 7.238 ± 7.463 |
BE(B) | mmol/L | 0.9 | −8.8 | 20.4 | 1.858 ± 6.481 | 3.9 | −7.9 | 19.6 | 4.119 ± 6.417 |
HCO3− | mmol/L | 29.45 | 18.4 | 55.2 | 30.473 ± 7.526 | 32.8 | 22.3 | 51.4 | 33.965 ± 6.572 |
HCO3−(std) | mmol/L | 25.65 | 18.1 | 38.3 | 26.081 ± 4.831 | 28.05 | 18.8 | 40.3 | 28.204 ± 5.005 |
K+ | mmol/L | 5.45 | 4.3 | 7.1 | 5.535 ± 0.696 | 4.1 | 2.9 | 5.4 | 4.085 ± 0.534 |
Na+ | mmol/L | 148 | 143 | 154 | 147.885 ± 3.103 | 145.5 | 140 | 153 | 145.808 ± 2.669 |
iCa2+ | mmol/L | 1.25 | 1.13 | 1.56 | 1.259 ± 0.1 | 1.22 | 1.08 | 1.53± | 1.225 ± 0.084 |
Glu | mmol/L | 4.35 | 3.1 | 10.2 | 4.873 ± 1.746 | 5.4 | 3.3 | 10.3 | 5.708 ± 1.574 |
Lac | mmol/L | 8.2 | 1.3 | 13.5 | 7.738 ± 3.509 | 4.6 | 1.3 | 11.2 | 5.354 ± 3.223 |
nCa2+ | mmol/L | 1.205 | 1.07 | 1.48 | 1.212 ± 0.091 | 1.15 | 1.05 | 1.44 | 1.168 ± 0.095 |
Hct | % | 54 | 5.3 | 63 | 51.652 ± 10.95 | 48 | 32 | 59 | 48.538 ± 5.907 |
SO2 | % | 97 | 37 | 99 | 90.346 ± 15.43 | 100 | 92 | 100 | 99.538 ± 1.606 |
THBC | g/L | 184 | 133 | 214 | 182.16 ± 17.58 | 163 | 109 | 201 | 165.077 ± 20.112 |
Item | Unit | Awake | Isoflurane Anaesthesia | ||||||
---|---|---|---|---|---|---|---|---|---|
Median | Min | Max | Mean ± SD | Median | Min | Max | Mean ± SD | ||
Body temperature | °C | 32.75 | 31.9 | 33.8 | 32.739 ± 0.479 | 33.1 | 32.2 | 34.7 | 33.296 ± 0.661 |
H+ | 10−7 mol/L | 5.248 | 3.311 | 7.079 | 5.301 ± 0.999 | 5.070 | 4.266 | 10.715 | 5.604 ± 1.368 |
pH | — | 7.28 | 7.15 | 7.48 | 7.284 ± 0.086 | 7.295 | 6.97 | 7.37 | 7.262 ± 0.092 |
PO2 | mmHg | 94 | 25 | 165 | 87.929 ± 34.333 | 296 | 64 | 456 | 280.357 ± 112.034 |
PCO2 | mmHg | 70.5 | 44 | 95 | 69.036 ± 12.926 | 81.5 | 58 | 109 | 81.536 ± 11.403 |
pHt | — | 7.34 | 7.21 | 7.53 | 7.343 ± 0.088 | 7.35 | 7.02 | 7.43 | 7.314 ± 0.095 |
PO2t | mmHg | 72 | 18 | 148 | 68.929 ± 30.262 | 279.5 | 50 | 431 | 262.143 ± 110.608 |
PCO2t | mmHg | 58 | 36 | 78 | 57.286 ± 10.561 | 69 | 51 | 91 | 69.286 ± 9.63 |
TCO2 | mmol/L | 35 | 24 | 48.8 | 34.793 ± 6.2 | 39.2 | 28.4 | 48.7 | 39.218 ± 4.898 |
Beecf | mmol/L | 5.25 | −6 | 21.7 | 5.625 ± 6.827 | 10.05 | −6.7 | 20.9 | 9.671 ± 6.112 |
BE(B) | mmol/L | 3.5 | −7.4 | 15.1 | 2.757 ± 5.838 | 6.75 | −11 | 14.9 | 5.668 ± 5.879 |
HCO3− | mmol/L | 32.95 | 22.2 | 46.5 | 32.668 ± 6.013 | 36.8 | 25.1 | 46.2 | 36.721 ± 4.932 |
HCO3−(std) | mmol/L | 27.5 | 19.1 | 36.7 | 26.718 ± 4.571 | 30.9 | 16.4 | 36.6 | 29.446 ± 4.630 |
K+ | mmol/L | 4.9 | 3.7 | 6.5 | 4.979 ± 0.597 | 3.9 | 3.1 | 4.7 | 3.868 ± 0.322 |
Na+ | mmol/L | 146 | 139 | 155 | 146.571 ± 3.584 | 145 | 139 | 152 | 144.429 ± 3.426 |
iCa2+ | mmol/L | 1.25 | 1.12 | 1.54 | 1.266 ± 0.083 | 1.22 | 1.07 | 1.51 | 1.232 ± 0.095 |
Glu | mmol/L | 4.9 | 2.6 | 7.2 | 5.082 ± 0.926 | 5.6 | 4.2 | 7.5 | 5.768 ± 0.996 |
Lac | mmol/L | 7.7 | 3.2 | 14.6 | 8.124 ± 3.739 | 4.45 | 1.3 | 14.9 | 5.386 ± 3.615 |
nCa2+ | mmol/L | 1.18 | 1.1 | 1.47 | 1.208 ± 0.094 | 1.15 | 0.96 | 1.45 | 1.166 ± 0.102 |
Hct | % | 59 | 49 | 64 | 58.200 ± 4.5 | 53 | 38 | 60 | 50.821 ± 6.622 |
SO2 | % | 96.5 | 31 | 100 | 88.179 ± 17.889 | 100 | 84 | 100 | 98.750 ± 3.555 |
THBC | g/L | 201 | 167 | 221 | 198.808 ± 15.654 | 180 | 128 | 204 | 172.714 ± 22.594 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, F.; Yan, H.; Xu, X.; Kuang, Y.; Wang, X.; Zhang, Z.; Ren, Z.; Zou, J.; Hou, F.; Wang, K.; et al. Comparison of Venous Blood Gas and Biochemical Parameters in Sunda Pangolin (Manis javanica) and Chinese Pangolin (Manis pentadactyla) before and after Isoflurane Anesthesia. Animals 2023, 13, 1162. https://doi.org/10.3390/ani13071162
An F, Yan H, Xu X, Kuang Y, Wang X, Zhang Z, Ren Z, Zou J, Hou F, Wang K, et al. Comparison of Venous Blood Gas and Biochemical Parameters in Sunda Pangolin (Manis javanica) and Chinese Pangolin (Manis pentadactyla) before and after Isoflurane Anesthesia. Animals. 2023; 13(7):1162. https://doi.org/10.3390/ani13071162
Chicago/Turabian StyleAn, Fuyu, Hongmei Yan, Xuelin Xu, Yingjie Kuang, Xianghe Wang, Zhidong Zhang, Zhenyu Ren, Jiejian Zou, Fanghui Hou, Kai Wang, and et al. 2023. "Comparison of Venous Blood Gas and Biochemical Parameters in Sunda Pangolin (Manis javanica) and Chinese Pangolin (Manis pentadactyla) before and after Isoflurane Anesthesia" Animals 13, no. 7: 1162. https://doi.org/10.3390/ani13071162
APA StyleAn, F., Yan, H., Xu, X., Kuang, Y., Wang, X., Zhang, Z., Ren, Z., Zou, J., Hou, F., Wang, K., & Hua, Y. (2023). Comparison of Venous Blood Gas and Biochemical Parameters in Sunda Pangolin (Manis javanica) and Chinese Pangolin (Manis pentadactyla) before and after Isoflurane Anesthesia. Animals, 13(7), 1162. https://doi.org/10.3390/ani13071162