Clinical Occurrences in the Neurorehabilitation of Dogs with Severe Spinal Cord Injury
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stillman, M.D.; Barber, J.; Burns, S.; Williams, S.; Hoffman, J.M. Complications of Spinal Cord Injury over the First Year after Discharge from Inpatient Rehabilitation. Arch. Phys. Med. Rehabil. 2017, 98, 1800–1805. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Jones, Z.B.; Chen, X.; Zhou, L.; So, K.F.; Ren, Y. Multiple organ dysfunction and systemic inflammation after spinal cord injury: A complex relationship. J. Neuroinflamm. 2016, 13, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fynne, L.; Worsoe, J.; Gregersen, T.; Schlageter, V.; Laurberg, S.; Krogh, K. Gastric and small intestinal dysfunction in spinal cord injury patients. Acta Neurol. Scand. 2012, 125, 123–128. [Google Scholar] [CrossRef]
- Berlly, M.; Shem, K. Respiratory management during the first five days after spinal cord injury. J. Spinal Cord Med. 2007, 30, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Harvey, L.A.; Glinsky, J.A.; Katalinic, O.M.; Ben, M. Contracture management for people with spinal cord injuries. Neurorehabilitation 2011, 28, 17–20. [Google Scholar] [CrossRef]
- Nas, K.; Yazmalar, L.; Şah, V.; Aydin, A.; Öneş, K. Rehabilitation of spinal cord injuries. World J. Orthop. 2015, 6, 8–16. [Google Scholar] [CrossRef]
- Bourassa-Moreau, E.; Mac-Thiong, J.-M.; Feldman, D.E.; Thompson, C.; Parent, S. Complications in acute phase hospitalization of traumatic spinal cord injury: Does surgical timing matter? J. Trauma Acute Care Surg. 2013, 74, 849–854. [Google Scholar] [CrossRef]
- Yue, J.K.; Winkler, E.A.; Rick, J.W.; Deng, H.; Partow, C.P.; Upadhyayula, P.S.; Birk, H.S.; Chan, A.K.; Dhall, S.S. Update on critical care for acute spinal cord injury in the setting of ploytrauma. Neurosurg. Focus 2017, 43, E19. [Google Scholar] [CrossRef] [Green Version]
- Elmelund, M.; Klarskov, N.; Biering-Sørensen, F. Fecal Incontinence and Neurogenic Bowel Dysfunction in Women with Traumatic and Nontraumatic Spinal Cord Injury. Dis. Colon Rectum. 2019, 62, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Ducoté, J.M. Common neurologic problems: Impact on patient welfare, caregiver burden and veterinary wellbeing. Vet. Clin. Small Anim. Pract. 2019, 49, 463–476. [Google Scholar] [CrossRef]
- Drum, M.G. Physical Rehabilitation of the Canine Neurologic Patient. Vet. Clin. Small Anim. Pract. 2010, 40, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Frankel, H.L.; Hancock, D.O.; Hyslop, G.; Melzak, J.; Michaelis, L.S.; Ungar, G.H.; Vernon, J.D.S.; Walsh, J.J. The value of postural reduction in the initial management of closed injuries of the spine with paraplegia and tetraplegia. Spinal Cord 1969, 7, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Olby, N.; De Risio, L.; Munana, K.R.; Wosar, M.A.; Skeen, T.M.; Sharp, N.J.; Keene, B.W. Development of a functional scoring system in dogs with acute spinal cord injuries. Am. J. Vet. Res. 2001, 62, 1624–1628. [Google Scholar] [CrossRef]
- Sims, C.; Waldron, R.; Marcellin-Little, D.J. Rehabilitation and Physical Therapy for the Neurologic Veterinary Patient. Vet. Clin. Small Anim. Pract. 2015, 45, 123–143. [Google Scholar] [CrossRef]
- Granger, N.; Olby, N.J.; Nout-Lomas, Y.S.; Canine Spinal Cord Injury Consortium (CANSORT-SCI). Bladder and bowel management in dogs with spinal cord injury. Front. Vet. Sci. 2020, 7, 583342. [Google Scholar] [CrossRef] [PubMed]
- Millis, D.L.; Ciuperca, I.A. Evidence for canine rehabilitation and physical therapy. Vet. Clin. Small Anim. Pract. 2015, 45, 1–27. [Google Scholar] [CrossRef]
- Gouveia, D.; Cardoso, A.; Carvalho, C.; Gonçalves, A.R.; Gamboa, Ó.; Canejo-Teixeira, R.; Ferreira, A.; Martins, Â. Influence of spinal shock on the neurorehabilitation of ANNPE dogs. Animals 2022, 12, 1557. [Google Scholar] [CrossRef]
- Brisson, B.A. Intervertebral disc disease in dogs. Vet. Clin. Small Anim. Pract. 2010, 40, 829–858. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, P.J.; Bannasch, D.L. Current Understanding of the Genetics of Intervertebral Disc Degeneration. Front. Vet. Sci. 2020, 7, 431. [Google Scholar] [CrossRef]
- Smolders, L.A.; Bergknut, N.; Grinwis, G.C.M.; Hagman, R.; Lagerstedt, A.; Hazewinkel, H.A.W.; Tryfonidou, M.A.; Meij, B.P. Intervertebral disc degeneration in the dog. Part 2: Chondrodystrophic and non-chondrodystrophic breeds. J. Vet. Med. 2013, 195, 292–299. [Google Scholar] [CrossRef]
- Fenn, J.; Olby, N.J. Classification of Intervertebral Disc Disease. Front. Vet. Sci. 2020, 7, 579025. [Google Scholar] [CrossRef] [PubMed]
- Batcher, K.; Dickinson, P.; Giuffrida, M.; Sturges, B.; Vernau, K.; Knipe, M.; Rasouliha, S.H.; Drögemüller, C.; Leeb, T.; Maciejczyk, K.; et al. Phenotypic effects of FGF4 retrogenes on intervertebral disc disease in dogs. Genes 2019, 10, 435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, B.G.; Dickinson, P.; Marcellin-Little, D.J.; Batcher, K.; Raverty, S.; Bannasch, D. Pathologic Features of the Intervertebral Disc in Young Nova Scotia Duck Tolling Retrievers Confirms Chondrodystrophy Degenerative Phenotype Associated with Genotype. Vet. Pathol. 2019, 56, 895–902. [Google Scholar] [CrossRef]
- Brown, E.A.; Dickinson, P.J.; Mansour, T.; Sturges, B.K.; Aguilar, M.; Young, A.E.; Korff, C.; Lind, J.; Ettinger, C.L.; Varon, S.; et al. FGF4 retrogene on CFA12 is responsible for chondrodystrophy and intervertebral disc disease in dogs. Proc. Natl. Acad. Sci. USA 2017, 114, 11476–11481. [Google Scholar] [CrossRef] [Green Version]
- Ives, E.; Freeman, P.M. (Eds.) Neurological Emergencies. In A Practical Approach to Neurology for the Small Animal Practitioner, 1st ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2020; pp. 329–370. [Google Scholar]
- Gandini, G.; Cizinauskas, S.; Lang, J.; Fatzer, R.; Jaggy, A. Fibrocartilaginous embolism in 75 dogs: Clinical findings and factors influencing the recovery rate. J. Small Anim. Pract. 2003, 44, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Cardy, T.J.A.; De Decker, S.; Kenny, P.J.; Volk, H.A. Clinical reasoning in canine spinal disease: What combination of clinical information is useful? Vet. Rec. 2015, 177, 171. [Google Scholar] [CrossRef] [Green Version]
- Olby, N.J.; Moore, S.A.; Brisson, B.; Fenn, J.; Flegel, T.; Kortz, G.; Lewis, M.; Tipold, A. ACVIM consensus statement on diagnosis and management of acute canine thoracolumbar intervertebral disc extrusion. J. Vet. Intern. Med. 2022, 36, 1570–1596. [Google Scholar] [CrossRef]
- Langerhuus, L.; Miles, J. Proportion recovery and times to ambulation for non-ambulatory dogs with thoracolumbar disc extrusions treated with hemilaminectomy or conservative treatment: A systematic review and meta-analysis of case-series studies. Vet. J. 2017, 220, 7–16. [Google Scholar] [CrossRef]
- Bergknut, N.; Smolders, L.A.; Grinwis, G.C.M.; Hagman, R.; Lagerstedt, A.S.; Hazewinkel, H.A.W.; Tryfonidou, M.A.; Meij, B.P. Intervertebral disc degeneration in the dog. Part 1: Anatomy and physiology of the intervertebral disc and characteristics of intervertebral disc degeneration. Vet. J. 2013, 195, 282–291. [Google Scholar] [CrossRef]
- Martins, Â.; Gouveia, D.; Cardoso, A.; Viegas, I.; Gamboa, Ó.; Ferreira, A. A Comparison between Body Weight-Supported Treadmill Training and Conventional Over-Ground Training in Dogs with Incomplete Spinal Cord Injury. Front. Vet. Sci. 2021, 8, 597949. [Google Scholar] [CrossRef]
- Martins, Â.; Gouveia, D.; Cardoso, A.; Carvalho, C.; Coelho, T.; Silva, C.; Viegas, I.; Gamboa, Ó.; Ferreira, A. A controlled clinical study of intensive neurorehabilitation in post-surgical dogs with severe acute intervertebral disc extrusion. Animals 2021, 11, 3034. [Google Scholar] [CrossRef] [PubMed]
- Hady, L.L.; Schwarz, P.D. Recovery times for dogs undergoing thoracolumbar hemilaminectomy with fenestration and physical rehabilitation: A review of 113 cases. J. Vet. Med. Anim. Health 2015, 7, 278–289. [Google Scholar]
- Aikawa, T.; Fujita, H.; Kanazono, S.; Shibata, M.; Yoshigae, Y. Long-term neurologic outcome of hemilaminectomy and disk fenestration for treatment of dogs with thoracolumbar intervertebral disk herniation: 831 cases (2000–2007). J. Am. Vet. Med. Assoc. 2012, 241, 1617–1626. [Google Scholar] [CrossRef] [Green Version]
- Davis, G.J.; Brown, D.C. Prognostic indicators for time to ambulation after surgical decompression in nonambulatory dogs with acute thoracolumbar disk extrusions: 112 cases. Vet. Surg. 2002, 31, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Martins, Â.; Gouveia, D.; Cardoso, A.; Carvalho, C.; Silva, C.; Coelho, T.; Gamboa, Ó.; Ferreira, A. Functional neurorehabilitation in dogs with an incomplete recovery 3 months following intervertebral disc surgery: A case series. Animals 2021, 11, 2442. [Google Scholar] [CrossRef]
- Acierno, M.J.; Labato, M.A. Canine Incontinence. Vet. Clin. Small Anim. Pract. 2019, 49, 125–140. [Google Scholar] [CrossRef]
- Carwardine, D.R.; Rose, J.H.; Harcourt-Brown, T.R.; Granger, N. Effectiveness of manual bladder expression in paraplegic dogs. Am. J. Vet. Res. 2017, 78, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Granger, N. Chronic Spinal Cord Injury: Bypassing the lesion for artificial bladder control. In Proceedings of the 34th ESVN-ECVN Symposium Spinal Cord Injury, Palma de Mallorca, Spain, 22–24 September 2022; pp. 35–37. [Google Scholar]
- Byron, J.K. Micturition Disorders. Vet. Clin. Small Anim.Pract. 2015, 45, 769–782. [Google Scholar] [CrossRef]
- Zidan, N.; Sims, C.; Fenn, J.; Williams, K.; Griffith, E.; Early, P.J.; Mariani, C.L.; Munana, K.R.; Guevar, J.; Olby, N.J. A randomized, blinded, prospective clinical trial of postoperative rehabilitation in dogs after surgical decompression of acute thoracolumbar intervertebral disc herniation. J. Vet. Intern. Med. 2018, 32, 1133–1144. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.Z.; Granger, N.; Jeffery, N.D. Pathophysiology, Clinical Importance, and Management of Neurogenic Lower Urinary Tract Dysfunction Caused by Suprasacral Spinal Cord Injury. J. Vet. Intern. Med. 2016, 30, 1575–1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bubenik, L.J.; Hosgood, G.L.; Waldron, D.R.; Snow, L.A. Frequency of urinary tract infection in catheterized dogs and comparison of bacterial culture and susceptibility testing results for catheterized and noncatheterized dogs with urinary tract infections. J. Am. Vet. Med. Assoc. 2007, 231, 893–899. [Google Scholar] [CrossRef]
- Mandracchia, V.J.; Hayes, D.W.; Yoho, R.M.; Hayes, M.F. Diagnosis, Differential and Treatment Options. Nat. Ver. Microbiol. 2016, 13, 34. [Google Scholar]
- Dewey, C.W.; da Costa, R.C. (Eds.) Spinal Trauma Management. In Pratical Guide to Canine and Feline Neurology, 3rd ed.; Wiley Blackwell: Ames, IA, USA, 2016; pp. 423–433. [Google Scholar]
- Holmes, G.M.; Blanke, E.N. Gastrointestinal dysfunction after spinal cord injury. Exp. Neurol. 2019, 320, 113009. [Google Scholar] [CrossRef]
- Cerda-Gonzalez, S.; Olby, N.J. Fecal incontinence associated with epidural spinal hematoma and intervertebral disk extrusion in a dog. J. Am. Vet. Med. Assoc. 2006, 228, 230–235. [Google Scholar] [CrossRef]
- Uemura, E.E. (Ed.) Chapter 5: Spinal Cord. In Fundamentals of Canine Neuroanatomy and Neurophysiology, 1st ed.; John Wiley & Sons, Inc.: Ames, IA, USA, 2015; pp. 99–119. [Google Scholar]
- de Lahunta, A.; Glass, E.; Kent, M. (Eds.) Chapter 7: Lower Motor Neuron: General Visceral Efferent System. In Veterinary Neuroanatomy and Clinical Neurology, 4th ed.; Elsevier: St. Louis, MO, USA, 2015; pp. 197–221. [Google Scholar]
- Petchell, W.H.R.; Noble, P.J.M.; Broome, H.A.O.; Burrow, R. Incidence of alimentary and respiratory disease in brachycephalic dogs presenting to primary care veterinary practices participating in the SAVSNET project. Vet. Rec. 2022, 191, e1685. [Google Scholar] [CrossRef] [PubMed]
- Kaye, B.M.; Rutherford, L.; Perridge, D.J.; Ter Haar, G. Relationship between brachycephalic airway syndrome and gastrointestinal signs in three breeds of dog. J. Small Anim. Pract. 2018, 59, 670–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roedler, F.S.; Pohl, S.; Oechtering, G.U. How does severe brachycephaly affect dog’s lives? Results of a structured preoperative owner questionnaire. Vet. J. 2013, 198, 606–610. [Google Scholar] [CrossRef]
- Poncet, C.M. Prevalence of gastrointestinal tract lesions in 73 brachycephalic dogs. J. Small Anim. Pract. 2005, 46, 273–279. [Google Scholar] [CrossRef]
- Haimel, G.; Dupré, G. Brachycephalic airway syndrome: A comparative study between pugs and French bulldogs. J. Small Anim. Pract. 2015, 56, 714–719. [Google Scholar] [CrossRef]
- Gogova, S.; Leiva, M.; Ortillés, A.; Lacerda, R.P.; Seruca, C.; Laguna, F.; Crasta, M.; Rios, J.; Pena, M.T. Corneoconjuntival transposition for the treatment of deep stromal to full-thickness corneal defects in dogs: A multicentric retrospective study of 100 cases (2012–2018). Vet. Ophthalmol. 2020, 23, 450–459. [Google Scholar] [CrossRef]
- Cebrian, P.; Escanilla, N.; Lowe, R.C.; Dawson, C.; Sanchez, R.F. Corneo-limbo-conjunctival transposition to treat deep and perforating corneal ulcers in dogs: A review of 418 eyes and corneal clarity scoring in 111 eyes. Vet. Ophthalmol. 2021, 24, 48–58. [Google Scholar] [CrossRef]
- Hollingsworth, S.R. Ophtalmic emergencies. In Textbook of Small Animal Emergency Medicine; Drobatz, K.J., Hopper, K., Rozanski, E., Silverstein, D.C., Eds.; Wiley Blackwell: Hoboken, NJ, USA, 2019; pp. 60–66. [Google Scholar]
- Aronson, L.R. (Ed.) Ocular emergencies. In Small Animal Surgical Emergencies; Wiley Blackwell: Ames, Iowa, USA, 2016; pp. 495–507. [Google Scholar]
- Packer, R.M.A.; O’Neill, D.G.; Fletcher, F.; Farnworth, M.J. Great expectations, inconvenient truths, and the paradoxes of the dog-owner relationship for owners of brachycephalic dogs. PLoS ONE 2019, 14, e0219918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, D.G.; Baral, L.; Church, D.B.; Brodbelt, D.C.; Packer, R.M.A. Demography and disorders of the French Bulldog population under primary veterinary care in the UK in 2013. Canine Genet. Epidemiol. 2018, 5, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, D.G.; Darwent, E.C.; Church, D.B.; Brodbelt, D.C. Demography and health of Pugs under primary veterinary care in England. Canine Genet. Epidemiol. 2016, 3, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, S.; Mishra, R. Pressure ulcers: Current understanding and newer modalities of treatment. Indian J. Plast. Surg. 2015, 48, 4–16. [Google Scholar] [CrossRef]
- Caraty, J.; De Vreught, L.; Cachon, T.; Moissonnier, P.; Bongartz, A.; Viguier, E.; Carozzo, C. Comparison of the different supports used in veterinary medicine for pressure sore prevention. J. Small Anim. Pract. 2019, 60, 623–630. [Google Scholar] [CrossRef]
- Thomas, D.R. Prevention and treatment of pressure ulcers: What works? What doesn’t? Cleve. Clin. J. Med. 2001, 68, 704–722. [Google Scholar] [CrossRef]
- Campbell, C.; Parish, L.C. The decubitus ulcer: Facts and controversies. Clin. Dermatol. 2010, 28, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Davis, J. Decubitus ulcer: Risk factors, prevention and treatment. Vet. Nurs. J. 2011, 2, 130–139. [Google Scholar] [CrossRef]
- Barone, R. Anatomie Compare des Mammifères Domestiques, Tome 1 et Tome 2; Vigot Freres: Paris, France, 2010. [Google Scholar]
- Wake, W. Pressure ulcers: What clinicians need to know. Perm. J. 2010, 14, 56–60. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, K.; Chauhan, N. Pressure ulcers: Back to the basics. Indian J. Plast. Surg. 2012, 45, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Lahunta, A.; Howard, E. Miller’s Anatomy of the Dogs, 4th ed.; Saunders: St. Louis, MO, USA, 2012; p. 872. [Google Scholar]
- Bostrom, A.; Hielm-Bjorkman, A.; Chang, Y.M.; Weller, R.; Davies, E. Comparasion of cross-sectional area and fat infiltration of the epaxial muscles in dogs with and without spinal cord compression. Res. Vet. Sci. 2014, 97, 646–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’hooge, R.; Cagnie, B.; Crombez, G.; Vanderstraeten, G.; Dolphens, M.; Danneels, L. Increased intramuscular fatty infiltration without differences in lumbar muscle cross-sectional area during remission of unilateral recurrent low back pain. Man. Ther. 2012, 17, 584–588. [Google Scholar] [CrossRef] [Green Version]
- Macedo, L.G.; Latimer, J.; Maher, C.G.; Hodges, P.W.; McAuley, J.H.; Nicholas, M.K.; Tonkin, L.; Stanton, C.J.; Stanton, T.R.; Stafford, R. Effect of motor control exercises versus graded activity in patients with chronic nonspecific low back pain: A randomized controlled trial. Phys. Ther. 2012, 92, 363–377. [Google Scholar] [CrossRef] [Green Version]
- Richards, M.C.; Ford, J.J.; Slater, S.L.; Hahne, A.J.; Surkitt, L.D.; Davidson, M.; Mckeeken, J.M. The effectiveness of physiotherapy functional restoration for post-acute low back pain: A systematic review. Man. Ther. 2013, 18, 4–25. [Google Scholar] [CrossRef]
- Kube, S.; Goldberg, M.E. (Eds.) Chapter 11: The Disabled Patient Part 2: The Neurological Patient. In Physical Rehabilitation for Veterinary Technicians and Nurses, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 163–186. [Google Scholar]
- Gouveia, D.; Bimbarra, S.; Carvalho, C.; Cardoso, A.; Gamboa, Ó.; Teixeira, R.; Ferreira, A.; Martins, Â. Effects of hyperbaric oxygen therapy on wound healing in veterinary medicine: A pilot study. Open Vet. J. 2021, 11, 544–554. [Google Scholar]
- Java, M.A.; Drobatz, K.J.; Gilley, R.S.; Long, S.N.; Kushner, L.I.; King, L.G. Incidence of and risk factors for postoperative pneumonia in dogs anesthetized for diagnosis or treatment of intervertebral disk disease. J. Am. Vet. Med. Assoc. 2009, 235, 281–287. [Google Scholar] [CrossRef]
- Drum, M.; Werbe, B.; McLucas, K.; Millis, D. Chapter 16: Nursing Care of the Rehabilitation Patient. In Canine Rehabilitation and Physical Therapy, 2nd ed.; Millis, D., Levine, D., Eds.; Elsevier: Philadelphia, PA, USA, 2014; pp. 277–304. [Google Scholar]
- Hoareau, G.L.; Mellema, M.S.; Silverstein, D.C. Indication, management, and outcome of brachycephalic dogs requiring mechanical ventilation. J. Vet. Emerg. Crit. Care. 2011, 21, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Sherman, R.; Karagiannis, M. Aspiration Pneumonia in the Dog: A Review. Top. Companion Anim. Med. 2017, 32, 1–7. [Google Scholar] [CrossRef]
- Shearer, T.S. Managing mobility challenges in palliative and hospice care patients. Vet. Clin. Small Anim. 2011, 41, 609–617. [Google Scholar] [CrossRef]
- Lisciandro, G.R. (Ed.) Chapter 11: POCUS: Urinary Bladder. In Point-of-Care Ultrasound Techniques for the Small Animal Practitioner, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 211–224. [Google Scholar]
- Lisciandro, G.R. (Ed.) Chapter 12: POCUS: Gastrointestinal Tract and Pancreas. In Point-of-Care Ultrasound Techniques for the Small Animal Practitioner, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 225–244. [Google Scholar]
- Boysen, S.; Gommerren, K.; Chalhoub, S. The Esssentials of Veterinary Point of Care Ultrasound: Pleural Space and Lung, 1st ed.; Edra: Zaragoza, Spain, 2022; pp. 111–182. [Google Scholar]
Total (n = 488) | |
---|---|
Age | <7 years old: 72.3% (353/488) ≥7 years old: 27.7% (135/488) Mean: 5.57 years old |
Weight | <15 kg: 72.1% (352/488) ≥15 kg: 27.9% (136/488) Mean: 13.57 kg |
Sex | Male: 59.8% (292/488) Female: 40.2% (196/488) |
Breed | Pure-breed: 77% (376/488) Mixed-breed: 23% (112/488) |
Neuroanatomical localization | Cervical: 26% (127/488) Thoracolumbar: 73% (355/488) Lumbosacral: 1% (6/488) |
Etiology | Compressive: 93% (454/488) Non-compressive: 7% (34/488) |
DP perception | DPN: 27.5% (134/488) DPP: 72.5% (354/488) |
Sternal recumbency | Absent: 54.9% (268/488) Present: 45.1% (220/488) |
Clinical Occurrences | Absent: 20.5% (100/488) Present: 79.5% (388/488) |
System | Occurrences | |
---|---|---|
Urinary | Neurogenic bladder | Yes □ No □ |
Urinary incontinence | Yes □ No □ | |
Urinary infection | Yes □ No □ | |
Gastrointestinal | Fecal incontinence | Yes □ No □ |
Diarrhea | Yes □ No □ | |
Vomiting | Yes □ No □ | |
Dermatological | Dermatitis | Yes □ No □ |
Pressure sores | Yes □ No □ | |
Respiratory | Kennel cough | Yes □ No □ |
Aspiration pneumonia | Yes □ No □ | |
Bronchopneumonia | Yes □ No □ | |
Musculoskeletal | Muscle atrophy | Yes □ No □ |
Spasticity | Yes □ No □ | |
Ophthalmic | Conjunctivitis | Yes □ No □ |
Episcleritis | Yes □ No □ | |
Corneal ulcers | Yes □ No □ | |
Others | Pyrexia | Yes □ No □ |
Pancreatitis | Yes □ No □ | |
Discospondylitis | Yes □ No □ | |
Progressive myelomalacia | Yes □ No □ |
Total (n = 488) | ||
---|---|---|
Age | Mean | 5.57 |
Median | 5 | |
Mode | 5 | |
Variance | 9.046 | |
SD | 3.008 | |
Minimum | 1 | |
Maximum | 16 | |
SEM | 0.136 | |
Kolmogorov–Smirnov normality test | ≤0.001 | |
Weight | Mean | 13.57 |
Median | 10 | |
Mode | 7 | |
Variance | 111.075 | |
SD | 10.539 | |
Minimum | 1 | |
Maximum | 62 | |
SEM | 0.477 | |
Kolmogorov–Smirnov normality test | ≤0.001 |
System | Prevelance of Occurrences | |
---|---|---|
Urinary | Neurogenic bladder | 58% (283/488) |
Urinary incontinence | 21.3% (104/488) | |
Urinary tract infection | 6.1% (30/488) | |
Gastrointestinal | Fecal incontinence | 20.5% (100/488) |
Diarrhea | 35.5% (173/488) | |
Vomiting | 14.5% (71/488) | |
Dermatological | Dermatitis | 22.1% (108/488) |
Pressure sores | 19.5% (95/488) | |
Respiratory | Kennel cough | 1.2% (6/488) |
Aspiration pneumonia | 1.8% (9/488) | |
Bronchopneumonia | 0.2% (1/488) | |
Musculoskeletal | Muscle atrophy | 31.1% (152/488) |
Spasticity | 8% (39/488) | |
Ophthalmic | Conjunctivitis | 16.6% (81/488) |
Episcleritis | 10.2% (50/488) | |
Corneal ulcers | 2.9% (14/488) | |
Others | Pyrexia | 5.1% (25/488) |
Pancreatitis | 0.6% (3/488) | |
Discospondylitis | 0.2% (1/488) | |
Progressive myelomalacia | 4.5% (22/488) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gouveia, D.; Fonseca, S.; Carvalho, C.; Cardoso, A.; Almeida, A.; Gamboa, Ó.; Canejo-Teixeira, R.; Ferreira, A.; Martins, Â. Clinical Occurrences in the Neurorehabilitation of Dogs with Severe Spinal Cord Injury. Animals 2023, 13, 1164. https://doi.org/10.3390/ani13071164
Gouveia D, Fonseca S, Carvalho C, Cardoso A, Almeida A, Gamboa Ó, Canejo-Teixeira R, Ferreira A, Martins Â. Clinical Occurrences in the Neurorehabilitation of Dogs with Severe Spinal Cord Injury. Animals. 2023; 13(7):1164. https://doi.org/10.3390/ani13071164
Chicago/Turabian StyleGouveia, Débora, Sara Fonseca, Carla Carvalho, Ana Cardoso, António Almeida, Óscar Gamboa, Rute Canejo-Teixeira, António Ferreira, and Ângela Martins. 2023. "Clinical Occurrences in the Neurorehabilitation of Dogs with Severe Spinal Cord Injury" Animals 13, no. 7: 1164. https://doi.org/10.3390/ani13071164
APA StyleGouveia, D., Fonseca, S., Carvalho, C., Cardoso, A., Almeida, A., Gamboa, Ó., Canejo-Teixeira, R., Ferreira, A., & Martins, Â. (2023). Clinical Occurrences in the Neurorehabilitation of Dogs with Severe Spinal Cord Injury. Animals, 13(7), 1164. https://doi.org/10.3390/ani13071164