A Comparison of the Effects of Raw and Processed Amaranth Grain on Laying Hens’ Performance, Egg Physicochemical Properties, Blood Biochemistry and Egg Fatty Acids
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds and Assay Diets
2.2. Test Ingredients
2.3. Performanceon Laying Hens
2.4. Egg Physicochemical Properties
2.5. Egg Yolk Cholesterol, Triglyceride and Fatty Acid Content
2.6. Blood Biochemistry Parameters and AntioxidantStatus
2.7. Statistical Analysis
3. Results
4. Discussion
4.1. Performance
4.2. Egg Physicochemical Properties
4.3. Blood Biochemistry
4.4. Egg Fatty Acids
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janmohammadi, H.; Hosseintabar-Ghasemabad, B.; Oliyai, M.; Alijani, S.; Gorlov, I.F.; Slozhenkina, M.I.; Mosolov, A.A.; Suarez Ramirez, L.; Seidavi, A.; Laudadio, V. Effect of Dietary Amaranth (Amaranthus hybridus chlorostachys) Supplemented with Enzyme Blend on Egg Quality, Serum Biochemistry and Antioxidant Status in Laying Hens. Antioxidants 2023, 12, 456. [Google Scholar] [CrossRef]
- National Academy of Sciences; Advisory Committee on Technological Innovation; United States, Agency for International Development, Office of Science and Technology. Underexploited Tropical Plants with Promising Economic Value: Report of an Ad Hoc Panel of the Advisory Committee on Technology Innovation, Board on Science and Technology for International Development, Commission on International Relations; National Academy of Sciences: Washington, DC, USA, 1975. [Google Scholar]
- Shodiev, D.; Hojiali, Q. Medicinal properties of amaranth oil in the food industry. In Proceedings of the Interdisciplinary Conference of Young Scholars in Social Sciences, Oxford, UK, 21–23 July 2021; pp. 205–208. [Google Scholar]
- World Health Organization. The State of Food Security and Nutrition in the World 2018: Building Climate Resilience for Food Security and Nutrition; Food & Agriculture Organization: Rome, Italy, 2018. [Google Scholar]
- Cai, Y.; Corke, H.; Wu, H. Amaranth. In Encyclopedia of Grain Science; Wrigley, C.W., Corke, H., Walker, C.E., Eds.; Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Peiretti, P. Amaranth in animal nutrition: A review. Livest. Res. Rural Dev. 2018, 30, 1–20. [Google Scholar]
- Mozaffarian, V. A Dictionary of Iranian Plant Names; Farhang Moaser: Tehran, Iran, 1996; Volume 396, pp. 396–398. [Google Scholar]
- Mozaffarian, V. Identification of Medicinal and Aromatic Plants of Iran; éditeur non identifié: Tehran, Iran, 2013. [Google Scholar]
- Gordon, E. Analysing the versatility and complexity of cereal grains. Food Sci. Newsl. 2006, 88, 1–5. [Google Scholar]
- Schmidt, D.; Verruma-Bernardi, M.R.; Forti, V.A.; Borges, M.T.M.R. Quinoa and amaranth as functional foods: A review. Food Rev. Int. 2021, 1–20. [Google Scholar] [CrossRef]
- Emmanuel, O.C.; Babalola, O.O. Amaranth production and consumption in South Africa: The challenges of sustainability for food and nutrition security. Int. J. Agric. Sustain. 2022, 20, 449–460. [Google Scholar] [CrossRef]
- Procopeț, O.; Oroian, M. Changes in texture profile of amaranth seeds subjected to sous vide treatment. Food Environ. Saf. J. 2022, 21, 247–256. [Google Scholar] [CrossRef]
- Ravindran, V.; Hood, R.; Gill, R.; Kneale, C.; Bryden, W. Nutritional evaluation of grain amaranth (Amaranthus hypochondriacus) in broiler diets. Anim. Feed Sci. Technol. 1996, 63, 323–331. [Google Scholar] [CrossRef]
- Gamel, T.H.; Linssen, J.P.; Mesallam, A.S.; Damir, A.A.; Shekib, L.A. Effect of seed treatments on the chemical composition of two amaranth species: Oil, sugars, fibres, minerals and vitamins. J. Sci. Food Agric. 2006, 86, 82–89. [Google Scholar] [CrossRef]
- Tillman, P.; Waldroup, P. Effects of feeding extruded grain amaranth to laying hens. Poult. Sci. 1987, 66, 1697–1701. [Google Scholar] [CrossRef]
- Punita, A.; Chaturvedi, A. Effect of feeding crude red palm oil (Elaeis guineensis) and grain amaranth (Amaranthus paniculatus) to hens on total lipids, cholesterol, PUFA levels and acceptability of eggs. Plant Foods Hum. Nutr. 2000, 55, 147–157. [Google Scholar] [CrossRef]
- Bartkowiak, A.; Skiba, T.; Króliczewska, B. Level of selected lipid fractions in egg yolk of hens fed with fodders supplemented with amaranth seeds. Pol. J. Food Nutr. Sci. 2007, 57, 3–6. [Google Scholar]
- Popiela, E.; Króliczewska, B.; Zawadzki, W.; Opaliński, S.; Skiba, T. Effect of extruded amaranth grains on performance, egg traits, fatty acids composition, and selected blood characteristics of laying hens. Livest. Sci. 2013, 155, 308–315. [Google Scholar] [CrossRef]
- Hosseintabar-Ghasemabad, B.; Janmohammadi, H.; Hosseinkhani, A.; Amirdahri, S.; Baghban-Kanani, P.; Gorlov, I.F.; Slozhenkina, M.I.; Mosolov, A.A.; Ramirez, L.S.; Seidavi, A. Effects of Using Processed Amaranth Grain with and without Enzyme on Performance, Egg Quality, Antioxidant Status and Lipid Profile of Blood and Yolk Cholesterol in Laying Hens. Animals 2022, 12, 3123. [Google Scholar] [CrossRef]
- Pesti, G.; Miller, B.; Hargrave, J. User-Friendly Feed Formulation, Done Again (UFFDA); University of Georgia: Athens, GA, USA, 1992. [Google Scholar]
- Hosseintabar-Ghasemabad, B.; Janmohammadi, H.; Hosseinkhani, A.; Alijani, S.; Oliyai, M. Determination of Chemical Composition and Apparent Metabolizable Energy Corrected for Nitrogen (AMEn) Content of Amaranth Grain with and without Enzyme in Adult Leghorn Roosters by Regression Method. Iran. J. Appl. Anim. Sci. 2020, 10, 705–716. [Google Scholar]
- Janmohammadi, H.; Hosseintabar-Ghasemabad, B.; Amirdahri, S.; Gorlov, I.F.; Vladimirovna, K.E.; Slozhenkina, M.I.; Bilal, R.M.; Seidavi, A.; Phillips, C.J.C. The Energy Value for Broiler Chickens of Heat-Treated and Untreated Amaranth Grain, with and without Enzyme Addition. Agriculture 2022, 12, 1810. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- León Camacho, M.; Pérez Camino, M.d.C. SLE Single-Step Purification and HPLC Isolation Method for Sterols and Triterpenic Dialcohols Analysis from Olive Oil. Foods 2021, 10, 2019. [Google Scholar] [CrossRef]
- AOCS. Determination of Tocopherols and Tocotrienols in Vegetable Oils and Fats by HPLC; AOCS Press: Champaign, IL, USA, 1989. [Google Scholar]
- Takatsuto, S.; Abe, H. Sterol Composition of the Strobilus of Equisetum arvense L. Biosci. Biotechnol. Biochem. 1992, 56, 834–835. [Google Scholar] [CrossRef]
- International Olive Oil Council. Determination of the Composition and Content of Sterols by Capillary Coloumn Gas Chromatography; International Olive Oil Council Madrid: Madrid, Spain, 2001. [Google Scholar]
- Baghban-Kanani, P.; Hosseintabar-Ghasemabad, B.; Azimi-Youvalari, S.; Seidavi, A.; Laudadio, V.; Mazzei, D.; Tufarelli, V. Effect of dietary sesame (Sesame indicum L.) seed meal level supplemented with lysine and phytase on performance traits and antioxidant status of late-phase laying hens. Asian-Australas. J. Anim. Sci. 2020, 33, 277. [Google Scholar] [CrossRef]
- Elkin, R.G.; Rogler, J.C. Reduction of the cholesterol content of eggs by the oral administration of lovastatin to laying hens. J. Agric. Food Chem. 1990, 38, 1635–1641. [Google Scholar] [CrossRef]
- Baghban-Kanani, P.; Janmohammadi, H.; Ostadrahimi, A. Effect of different levels of sunflower meal and niacin on performance, biochemical parameters, antioxidant status, and egg yolk cholesterol of laying hens. Iran. J. Appl. Anim. Sci. 2019, 9, 737–746. [Google Scholar]
- Tufarelli, V.; Baghban-Kanani, P.; Azimi-Youvalari, S.; Hosseintabar-Ghasemabad, B.; Slozhenkina, M.; Gorlov, I.; Viktoronova, F.M.; Seidavi, A.; Laudadio, V. Effect of dietary flaxseed meal supplemented with dried tomato and grape pomace on performance traits and antioxidant status of laying hens. Anim. Biotechnol. 2022, 33, 1525–1532. [Google Scholar] [CrossRef]
- Baghban-Kanani, P.; Hosseintabar-Ghasemabad, B.; Azimi-Youvalari, S.; Seidavi, A.; Ayaşan, T.; Laudadio, V.; Tufarelli, V. Effect of different levels of sunflower meal and multi-enzyme complex on performance, biochemical parameters and antioxidant status of laying hens. S. Afr. J. Anim. Sci. 2018, 48, 390–399. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, L.; Schmitz, A. The rapid preparation of fatty acid esters for gas chromatographic analysis. Anal. Chem. 1961, 33, 363–364. [Google Scholar] [CrossRef]
- Cherian, G.; Sim, J. Effect of feeding full fat flax and canola seeds to laying hens on the fatty acid composition of eggs, embryos, and newly hatched chicks. Poult. Sci. 1991, 70, 917–922. [Google Scholar] [CrossRef]
- Baghban-Kanani, P.; Hosseintabar-Ghasemabad, B.; Azimi-Youvalari, S.; Seidavi, A.; Ragni, M.; Laudadio, V.; Tufarelli, V. Effects of using Artemisia annua leaves, probiotic blend, and organic acids on performance, egg quality, blood biochemistry, and antioxidant status of laying hens. J. Poult. Sci. 2019, 56, 120–127. [Google Scholar] [CrossRef]
- Nobakht, A.; Palangi, V.; Ayaşan, T.; Coçkun, I. Efficacy of Tragopogon graminifolius medicinal powder as an inulin source for laying hens. S. Afr. J. Anim. Sci. 2022, 52, 252–258. [Google Scholar]
- Feshanghchi, M.; Baghban-Kanani, P.; Kashefi-Motlagh, B.; Adib, F.; Azimi-Youvalari, S.; Hosseintabar-Ghasemabad, B.; Slozhenkina, M.; Gorlov, I.; Zangeronimo, M.G.; Swelum, A.A.; et al. Milk Thistle (Silybum marianum), Marine Algae (Spirulina platensis) and toxin binder powders in the diets of broiler chickens exposed to aflatoxin-B1: Growth performance, humoral immune response and cecal microbiota. Agriculture 2022, 12, 805. [Google Scholar] [CrossRef]
- Kunst, A. D-Glucose, UV-methods with hexokinase and glucose-6-phosphate dehydrogenase. In Methods of Enzymatic Analysis; Elsevier: Amsterdam, The Netherlands, 1984; Volume VI, pp. 168–172. [Google Scholar]
- Hosseintabar, B.; Dadashbeiki, M.; Bouyeh, M.; Seidavi, A.; van den Hoven, R.; Gamboa, S. Effect of different levels of L-carnitine and lysine-methionine on broiler blood parameters. Rev. MVZ Córdoba 2015, 20, 4698–4708. [Google Scholar] [CrossRef]
- Li, X.; He, W.; Yang, M.; Yan, Y.; Xue, Y.; Zhao, S. Effect of dietary supplementation of Ligustrum lucidum on performance, egg quality and blood biochemical parameters of Hy-Line Brown hens during the late laying period. Animal 2017, 11, 1899–1904. [Google Scholar] [CrossRef] [PubMed]
- Mokhtarzadeh, S.; Nobakht, A.; Mehmannavaz, Y.; Palangi, V.; Eseceli, H.; Lackner, M. Impacts of Continuous and Intermittent Use of Bovine Colostrum on Laying Japanese Quails: Egg Performance and Traits, Blood Biochemical and Antioxidant Status. Animals 2022, 12, 2811. [Google Scholar] [CrossRef] [PubMed]
- Hosseini-Vashan, S.; Golian, A.; Yaghobfar, A.; Zarban, A.; Afzali, N.; Esmaeilinasab, P. Antioxidant status, immune system, blood metabolites and carcass characteristic of broiler chickens fed turmeric rhizome powder under heat stress. Afr. J. Biotechnol. 2012, 11, 16118–16125. [Google Scholar]
- Kei, S. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin. Chim. Acta 1978, 90, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Yagi, K. [39] Assay for blood plasma or serum. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1984; Volume 105, pp. 328–331. [Google Scholar]
- Wang, L.; Piao, X.; Kim, S.; Piao, X.; Shen, Y.; Lee, H. Effects of Forsythia suspensa extract on growth performance, nutrient digestibility, and antioxidant activities in broiler chickens under high ambient temperature. Poult. Sci. 2008, 87, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Jimoh, M.O.; Okaiyeto, K.; Oguntibeju, O.O.; Laubscher, C.P. A Systematic Review on Amaranthus-Related Research. Horticulturae 2022, 8, 239. [Google Scholar]
- Rodríguez-Ríos, H.; Campos-Parra, J.; Astudillo-Neira, R.; Grande-Cano, J.; Carrillo-Domínguez, S.; Gil-Romo, F.P. Amaranthus cruentus L. as a food alternative in laying hens to reduce cholesterol in eggs. Chil. J. Agric. Anim. Sci. 2020, 36, 78–85. [Google Scholar]
- Cotterill, O. Freezing egg products. In Egg Science and Technology; Avi Publishing Co.: Westport, CT, USA, 1973. [Google Scholar]
- Mine, Y. Egg Bioscience and Biotechnology; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Martirosyan, D.M.; Miroshnichenko, L.A.; Kulakova, S.N.; Pogojeva, A.V.; Zoloedov, V.I. Amaranth oil application for coronary heart disease and hypertension. Lipids Health Dis. 2007, 6, 1. [Google Scholar] [CrossRef]
- Tang, Y.; Tsao, R. Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: A review. Mol. Nutr. Food Res. 2017, 61, 1600767. [Google Scholar] [CrossRef]
- Iftikhar, M.; Khan, M. Amaranth. In Bioactive Factors and Processing Technology for Cereal Foods; Springer: Singapore, 2019; pp. 217–232. [Google Scholar]
- Awad, A.B.; Chan, K.C.; Downie, A.C.; Fink, C.S. Peanuts as a source of β-sitosterol, a sterol with anticancer properties. Nutr. Cancer 2000, 36, 238–241. [Google Scholar]
- Marcone, M.F.; Kakuda, Y.; Yada, R.Y. Amaranth as a rich dietary source of β-sitosterol and other phytosterols. Plant Foods Hum. Nutr. 2003, 58, 207–211. [Google Scholar] [CrossRef] [PubMed]
- McNaughton, J.L. Effect of dietary fiber on egg yolk, liver, and plasma cholesterol concentrations of the laying hen. J. Nutr. 1978, 108, 1842–1848. [Google Scholar] [CrossRef] [PubMed]
- He, H.-P.; Cai, Y.; Sun, M.; Corke, H. Extraction and purification of squalene from Amaranthus grain. J. Agric. Food Chem. 2002, 50, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Ryan, E.; Galvin, K.; O’Connor, T.P.; Maguire, A.R.; O’Brien, N.M. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum. Nutr. 2007, 62, 85–91. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.-P.; Farnworth, E.R.; Jones, P.J. Consumption of fermented and nonfermented dairy products: Effects on cholesterol concentrations and metabolism. Am. J. Clin. Nutr. 2000, 71, 674–681. [Google Scholar] [CrossRef]
- Reklewska, B.; Nalecz-Tarwacka, T.; Niemiec, J.; Karaszewska, A. Yolk triacylglycerol composition and egg quality following the diet containing amaranth meal. Anim. Sci. Pap. Rep. 1995, 13, 73–80. [Google Scholar]
- Kamal, H.; Mudgil, P.; Bhaskar, B.; Fisayo, A.F.; Gan, C.-Y.; Maqsood, S. Amaranth proteins as potential source of bioactive peptides with enhanced inhibition of enzymatic markers linked with hypertension and diabetes. J. Cereal Sci. 2021, 101, 103308. [Google Scholar] [CrossRef]
- Chandrashekhar, U.; Newman, M. Antidiabetic activity of Amaranthus dubious ethanolic leaf extract on alloxan induced diabetic mice. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 584–590. [Google Scholar]
- Paśko, P.; Bartoń, H.; Zagrodzki, P.; Gorinstein, S. Effect of amaranth seeds (Amaranthus cruentus) in the diet on some biochemical parameters and essential trace elements in blood of high fructose-fed rats. Nat. Prod. Res. 2011, 25, 844–849. [Google Scholar] [CrossRef]
- O’Harte, F.; Mooney, M.H.; Flatt, P.R. NH2-terminally modified gastric inhibitory polypeptide exhibits amino-peptidase resistance and enhanced antihyperglycemic activity. Diabetes 1999, 48, 758–765. [Google Scholar] [CrossRef]
- Wiedeman, P.E.; Trevillyan, J.M. Dipeptidyl peptidase IV inhibitors for the treatment of impaired glucose tolerance and type 2 diabetes. Curr. Opin. Investig. Drugs 2003, 4, 412–420. [Google Scholar] [PubMed]
- Foucault, A.S.; Mathé, V.; Lafont, R.; Even, P.; Dioh, W.; Veillet, S.; Tomé, D.; Huneau, J.F.; Hermier, D.; Quignard-Boulangé, A. Quinoa extract enriched in 20-hydroxyecdysone protects mice from diet-induced obesity and modulates adipokines expression. Obesity 2012, 20, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.A.; Lehmann, J.W.; Peterson, D.M. Amaranth and its oil inhibit cholesterol biosynthesis in 6-week-old female chickens. J. Nutr. 1996, 126, 1972–1978. [Google Scholar] [PubMed]
- Lehmann, J.W.; Putnam, D.H.; Qureshi, A.A. Vitamin E isomers in grain amaranths (Amaranthus spp.). Lipids 1994, 29, 177–181. [Google Scholar] [CrossRef]
- Mendonça, S.; Saldiva, P.H.; Cruz, R.J.; Arêas, J.A. Amaranth protein presents cholesterol-lowering effect. Food Chem. 2009, 116, 738–742. [Google Scholar] [CrossRef]
- Soares, R.A.M.; Mendonça, S.; De Castro, L.Í.A.; Menezes, A.C.C.C.C.; Arêas, J.A.G. Major peptides from amaranth (Amaranthus cruentus) protein inhibit HMG-CoA reductase activity. Int. J. Mol. Sci. 2015, 16, 4150–4160. [Google Scholar] [CrossRef]
- Janevski, M.; Mcglynn, M.; Lewandowski, P. Squalene supplementation alters genes associated with liver cholesterol metabolism. Asia Pac. J. Clin. Nutr. 2006, 15, 1–8. [Google Scholar]
- Hood, R.L. Tocotrienols in metabolism. In Phytochemicals: A New Paradigm; CRC Press: Boca Raton, FL, USA, 1998; pp. 33–47. [Google Scholar]
- Króliczewska, B.; Zawadzki, W.; Bartkowiak, A.; Skiba, T. The level of selected blood indicators of laying hens fed with addition of amaranth grain. Electron. J. Pol. Agric. Univ. Ser. Vet. Med. 2008, 11, 1–6. [Google Scholar]
- Longato, E.; Meineri, G.; Peiretti, P.G. The effect of Amaranthus caudatus supplementation to diets containing linseed oil on oxidative status, blood serum metabolites, growth performance and meat quality characteristics in broilers. Anim. Sci. Pap. Rep. 2017, 35, 71–86. [Google Scholar]
- Alvarez-Jubete, L.; Wijngaard, H.; Arendt, E.K.; Gallagher, E. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem. 2010, 119, 770–778. [Google Scholar] [CrossRef]
- Woods, V.B.; Fearon, A.M. Dietary sources of unsaturated fatty acids for animals and their transfer into meat, milk and eggs: A review. Livest. Sci. 2009, 126, 1–20. [Google Scholar] [CrossRef]
Treatments | |||||||
---|---|---|---|---|---|---|---|
Items | T1: Control | T2: 5% (ARaw) | T3: 10% (ARaw) | T4: 15% (ARaw) | T5: 5% (A120°C) | T6: 10% (A120°C) | T7: 15% (A120°C) |
Ingredient (%) | |||||||
Corn grain | 58.27 | 54.93 | 49.59 | 45.24 | 54.93 | 49.59 | 45.24 |
Soybean meal | 23.31 | 22.36 | 21.41 | 20.47 | 22.36 | 21.41 | 20.47 |
Amaranth grain | 0 | 5.00 | 10.00 | 15.00 | 5.00 | 10.00 | 15.00 |
Oyster shells | 11.30 | 11.30 | 11.30 | 11.30 | 11.30 | 11.30 | 11.30 |
Soybean oil | 3.52 | 3.19 | 2.85 | 2.52 | 3.19 | 2.85 | 2.52 |
Wheat bran | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
Di-calcium phosphate | 1.37 | 1.40 | 1.44 | 1.47 | 1.40 | 1.44 | 1.47 |
Premix Vit 1 &Min 2 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
Salt | 0.23 | 0.23 | 0.23 | 0.233 | 0.23 | 0.23 | 0.233 |
Sodium bicarbonate | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 |
DL- Methionine | 0.12 | 0.12 | 0.12 | 0.13 | 0.12 | 0.12 | 0.13 |
Threonine | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Calculated nutrient content (% except for ME) | |||||||
ME (Kcal/kg DM) | 2720 | 2720 | 2720 | 2720 | 2720 | 2720 | 2720 |
Crude protein (%) | 15.70 | 15.70 | 15.70 | 15.70 | 15.70 | 15.70 | 15.70 |
Calcium (%) | 4.70 | 4.70 | 4.70 | 4.70 | 4.70 | 4.70 | 4.70 |
Av. phosphorus (%) | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 |
Methionine (%) | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 |
Met+ cysteine (%) | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 |
Lysine (%) | 0.82 | 0.81 | 0.79 | 0.78 | 0.81 | 0.79 | 0.78 |
Threonine (%) | 0.59 | 0.59 | 0.59 | 0.59 | 0.59 | 0.59 | 0.59 |
Tryptophan (%) | 0.18 | 0.19 | 0.20 | 0.21 | 0.19 | 0.20 | 0.21 |
Items | Raw Amaranth Grain (ARaw) | Processed Amaranth Grain (A120°C) |
---|---|---|
Dry Matter (%) | 90.6 | 90.5 |
Crude Protein (%) | 16.7 | 16.7 |
Ether Extract (%) | 5.5 | 5.4 |
Crude fiber (%) | 10.8 | 10.5 |
NDF (%) | 34.17 | 35.15 |
ADF (%) | 6.25 | 6.92 |
Ash (%) | 6.4 | 6.1 |
Linoleic acid (%) | 35.15 | 35.31 |
Gross energy (Kcal/kg) | 4229 | 4214 |
Phytosterols (ppm) | 3255.08 | 3195.10 |
Tocopherols (ppm) | 551.01 | 531.03 |
Squalene (ppm) | 2174.10 | 2164.39 |
Items | Egg Production (%) | Egg Weight (g) | Feed Intake (g d−1 bird−1) | Egg Mass (g d−1 bird−1) | FCR (kgfeed:kg egg) | |
---|---|---|---|---|---|---|
Amaranth types | ||||||
Processed | 73.29 a | 61.71 | 91.01 a | 45.23 a | 2.01 b | |
Raw | 69.11 b | 61.78 | 89.60 b | 42.70 b | 2.10 a | |
SEM | 0.20 | 0.15 | 0.17 | 0.18 | 0.01 | |
p-value | 0.001 | 0.75 | 0.001 | 0.001 | 0.001 | |
Amaranth levels (%) | ||||||
5 | 72.47 a | 61.74 | 91.30 a | 44.74 a | 2.04 | |
10 | 71.32 b | 61.76 | 90.36 b | 44.04 a | 2.05 | |
15 | 69.81 c | 61.73 | 89.26 c | 43.10 b | 2.07 | |
SEM | 0.24 | 0.19 | 0.21 | 0.22 | 0.01 | |
p-value | 0.001 | 0.99 | 0.001 | 0.001 | 0.15 | |
Amaranth types × Amaranth levels (%) | ||||||
Processed | 5 | 74.09 a | 61.65 | 91.66 a | 45.68 a | 2.01 |
Processed | 10 | 73.56 ab | 61.77 | 90.90 ab | 45.44 a | 2.00 |
Processed | 15 | 72.22 bc | 61.71 | 90.47 ab | 44.57 ab | 2.03 |
Raw | 5 | 70.85 c | 61.83 | 90.95 ab | 43.80 bc | 2.08 |
Raw | 10 | 69.08 d | 61.75 | 89.81 b | 42.65 cd | 2.11 |
Raw | 15 | 67.40 e | 61.76 | 88.04 c | 41.63 d | 2.12 |
SEM | 0.34 | 0.04 | 0.29 | 0.31 | 0.01 | |
p-value | 0.04 | 0.93 | 0.01 | 0.20 | 0.57 | |
Contrast between Control and Amaranths | ||||||
Control | 74.44 a | 61.98 | 93.90 a | 46.14 a | 2.04 | |
Amaranths | 71.20 b | 61.74 | 90.31 b | 43.96 b | 2.06 | |
SEC | 0.97 | 0.25 | 0.52 | 0.63 | 0.02 | |
SEA | 0.40 | 0.10 | 0.21 | 0.26 | 0.01 | |
p-value | 0.004 | 0.39 | 0.001 | 0.003 | 0.43 | |
CV | 3.32 | 1.01 | 1.39 | 3.51 | 2.70 |
Items | Haugh | Shell Thickness (mm) | Yolk Cholesterol (mg/g Yolk) | Yolk Triglyceride (mg/g Yolk) | |
---|---|---|---|---|---|
Amaranth types | |||||
Processed | 78.86 | 0.31 | 11.77 | 178.71 a | |
Raw | 78.11 | 0.31 | 11.79 | 178.01 b | |
SEM | 0.32 | 0.00 | 0.13 | 0.17 | |
p-value | 0.11 | 0.99 | 0.93 | 0.006 | |
Amaranth levels | |||||
5 | 78.70 | 0.31 | 12.49 a | 179.57 a | |
10 | 78.02 | 0.31 | 11.67 b | 178.51 b | |
15 | 78.73 | 0.32 | 11.18 b | 177.00 c | |
SEM | 0.40 | 0.00 | 0.16 | 0.21 | |
p-value | 0.36 | 0.64 | 0.001 | 0.001 | |
Amaranth types × Amaranth levels | |||||
Processed | 5 | 79.13 | 0.32 | 12.15 ab | 179.62 |
Processed | 10 | 78.84 | 0.31 | 11.89 ab | 179.08 |
Processed | 15 | 78.60 | 0.32 | 11.29 bc | 177.44 |
Raw | 5 | 78.28 | 0.31 | 12.83 a | 179.53 |
Raw | 10 | 77.20 | 0.32 | 11.45 bc | 177.95 |
Raw | 15 | 78.85 | 0.32 | 11.08 c | 176.56 |
SEM | 0.56 | 0.01 | 0.22 | 0.29 | |
p-value | 0.25 | 0.09 | 0.043 | 0.19 | |
Contrast between Control and Amaranths | |||||
Control | 78.15 | 0.31 | 14.33 | 183.46 a | |
Amaranths | 78.48 | 0.31 | 11.78 | 178.36 b | |
SEC | 0.57 | 0.01 | 0.30 | 0.58 | |
SEA | 0.23 | 0.003 | 0.12 | 0.24 | |
p-value | 0.59 | 0.33 | 0.33 | 0.001 | |
CV | 1.79 | 4.15 | 6.10 | 0.80 |
Items. | Glucose (mg/dL) | Cholesterol (mg/dL) | Triglyceride (mg/dL) | Total Antioxidant Capacity (U/mL) | Malondialdehyde (nmol/mL) | |
---|---|---|---|---|---|---|
Amaranth types | ||||||
Processed | 203.15 b | 102.56 b | 89.21 b | 6.21 | 4.92 | |
Raw | 208.40 a | 107.39 a | 92.16 a | 6.19 | 5.08 | |
SEM | 1.08 | 0.63 | 0.27 | 0.05 | 0.05 | |
p-value | 0.002 | 0.001 | 0.001 | 0.74 | 0.31 | |
Amaranth levels | ||||||
5 | 212.11 a | 112.25 a | 94.53 a | 6.26 | 5.01 | |
10 | 206.55 b | 101.47 b | 88.91 b | 6.12 | 5.02 | |
15 | 198.66 c | 101.22 b | 88.62 b | 6.22 | 4.97 | |
SEM | 1.33 | 0.77 | 0.33 | 0.06 | 0.06 | |
p-value | 0.001 | 0.001 | 0.001 | 0.29 | 0.84 | |
Amaranth types × Amaranth levels | ||||||
Processed | 5 | 207.78 bc | 109.27 | 91.30 b | 6.28 | 4.96 |
Processed | 10 | 201.42 cd | 99.43 | 88.30 c | 6.17 | 4.85 |
Processed | 15 | 200.24 cd | 98.99 | 88.04 c | 6.19 | 4.95 |
Raw | 5 | 216.44 a | 115.22 | 97.75 a | 6.24 | 5.05 |
Raw | 10 | 211.67 ab | 103.50 | 89.53 cd | 6.07 | 5.20 |
Raw | 15 | 197.07 d | 103.46 | 89.20 c | 6.25 | 5.00 |
SEM | 1.88 | 1.09 | 0.47 | 0.09 | 0.09 | |
p-value | 0.002 | 0.66 | 0.001 | 0.63 | 0.18 | |
Contrast between Control and Amaranths | ||||||
Control | 243.58 a | 124.42 a | 102.30 a | 5.18 b | 4.95 | |
Amaranths | 205.77 b | 104.98 b | 90.69 b | 6.20 a | 5.00 | |
SEC | 3.57 | 2.43 | 1.36 | 0.09 | 0.09 | |
SEA | 1.46 | 0.99 | 0.56 | 0.04 | 5.00 | |
p-value | 0.001 | 0.001 | 0.001 | 0.001 | 0.58 | |
CV | 4.14 | 5.53 | 3.61 | 3.59 | 4.35 |
Items | FA1 | FA2 | FA3 | FA4 | TM | FA5 | FA6 | TP1 | FA7 | FA8 | TP2 | FA9 | FA9 | R (TP1/TP2) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amaranth types | |||||||||||||||
Processed | 0.39 | 0.04 | 21.19 | 7.63 | 41.75 | 2.77 | 38.97 | 18.86 | 15.01 | 3.85 | 0.69 | 0.39 | 0.30 | 27.82 | |
Raw | 0.40 | 0.04 | 21.89 | 7.68 | 41.31 | 2.77 | 38.54 | 18.55 | 14.57 | 3.97 | 0.74 | 0.40 | 0.33 | 26.23 | |
SEM | 0.01 | 0.004 | 0.24 | 0.18 | 0.31 | 0.11 | 0.28 | 0.18 | 0.17 | 0.04 | 0.03 | 0.01 | 0.03 | 1.15 | |
p-value | 0.07 | 0.92 | 0.06 | 0.83 | 0.33 | 0.97 | 0.29 | 0.22 | 0.07 | 0.59 | 0.31 | 0.28 | 0.42 | 0.3 | |
Amaranth levels | |||||||||||||||
5 | 0.39 | 0.04 | 21.56 | 7.49 | 41.28 | 2.77 | 38.51 | 18.59 | 14.62 | 3.97 | 0.75 | 0.40 | 0.35 | 25.31 | |
10 | 0.39 | 0.05 | 21.30 | 7.55 | 41.49 | 2.76 | 38.72 | 18.81 | 14.93 | 3.88 | 0.71 | 0.39 | 0.32 | 27.32 | |
15 | 0.40 | 0.05 | 21.75 | 7.91 | 41.82 | 2.78 | 39.04 | 18.71 | 14.82 | 3.89 | 0.68 | 0.40 | 0.28 | 28.44 | |
SEM | 0.01 | 0.01 | 0.29 | 0.22 | 0.38 | 0.14 | 0.35 | 0.22 | 0.20 | 0.05 | 0.04 | 0.01 | 0.03 | 1.41 | |
p-value | 0.48 | 0.48 | 0.56 | 0.34 | 0.61 | 0.99 | 0.56 | 0.77 | 0.56 | 0.39 | 0.39 | 0.52 | 0.35 | 0.29 | |
Amaranth types × Amaranth levels | |||||||||||||||
Processed | 5 | 0.38 | 0.04 | 21.26 | 7.39 | 41.78 | 2.76 | 39.02 | 18.92 | 15.03 | 3.89 | 0.71 | 0.40 | 0.31 | 26.91 |
Processed | 10 | 0.39 | 0.04 | 21.05 | 7.48 | 41.47 | 2.77 | 38.70 | 18.84 | 15.05 | 3.79 | 0.71 | 0.38 | 0.34 | 26.83 |
Processed | 15 | 0.39 | 0.05 | 21.27 | 8.02 | 41.99 | 2.79 | 39.20 | 18.82 | 14.95 | 3.87 | 0.65 | 0.39 | 0.26 | 29.70 |
Raw | 5 | 0.40 | 0.04 | 21.87 | 7.60 | 40.78 | 2.78 | 38.00 | 18.26 | 14.22 | 4.05 | 0.79 | 0.41 | 0.39 | 23.71 |
Raw | 10 | 0.39 | 0.05 | 21.56 | 7.63 | 41.50 | 2.76 | 38.75 | 18.78 | 14.81 | 3.97 | 0.71 | 0.40 | 0.31 | 27.81 |
Raw | 15 | 0.42 | 0.05 | 22.24 | 7.81 | 41.65 | 2.77 | 38.88 | 18.60 | 14.69 | 3.91 | 0.71 | 0.41 | 0.30 | 27.17 |
SEM | 0.01 | 0.01 | 0.42 | 0.31 | 0.54 | 0.20 | 0.49 | 0.31 | 0.29 | 0.07 | 0.05 | 0.01 | 0.05 | 1.99 | |
p-value | 0.50 | 0.71 | 0.84 | 0.75 | 0.63 | 0.99 | 0.55 | 0.60 | 0.53 | 0.55 | 0.72 | 0.68 | 0.51 | 0.53 | |
Contrast between Control and Amaranths | |||||||||||||||
Control | 0.41 | 0.05 | 22.20 | 8.06 | 42.23 | 2.70 | 39.53 | 16.62 b | 12.73 b | 3.89 | 0.69 | 0.41 | 0.28 | 25.53 | |
Amaranths | 0.39 | 0.04 | 21.54 | 7.65 | 41.53 | 2.77 | 38.76 | 18.70 a | 14.79 a | 3.91 | 0.71 | 0.40 | 0.32 | 27.02 | |
SEC | 0.01 | 0.01 | 0.45 | 0.29 | 0.55 | 0.17 | 0.51 | 0.32 | 0.32 | 0.07 | 0.06 | 0.02 | 0.05 | 2.11 | |
SEA | 0.004 | 0.003 | 0.18 | 0.12 | 0.22 | 0.07 | 0.21 | 0.13 | 0.13 | 0.03 | 0.02 | 0.01 | 0.02 | 0.86 | |
p-value | 0.12 | 0.72 | 0.18 | 0.20 | 0.24 | 0.71 | 0.17 | 0.001 | 0.001 | 0.79 | 0.67 | 0.48 | 0.43 | 0.51 | |
CV | 6.40 | 36.23 | 5.04 | 9.26 | 3.24 | 15.38 | 3.22 | 4.26 | 5.38 | 4.27 | 19.16 | 11.36 | 36.36 | 19.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kianfar, R.; Di Rosa, A.R.; Divari, N.; Janmohammadi, H.; Hosseintabar-Ghasemabad, B.; Oteri, M.; Gorlov, I.F.; Slozhenkina, M.I.; Mosolov, A.A.; Seidavi, A. A Comparison of the Effects of Raw and Processed Amaranth Grain on Laying Hens’ Performance, Egg Physicochemical Properties, Blood Biochemistry and Egg Fatty Acids. Animals 2023, 13, 1394. https://doi.org/10.3390/ani13081394
Kianfar R, Di Rosa AR, Divari N, Janmohammadi H, Hosseintabar-Ghasemabad B, Oteri M, Gorlov IF, Slozhenkina MI, Mosolov AA, Seidavi A. A Comparison of the Effects of Raw and Processed Amaranth Grain on Laying Hens’ Performance, Egg Physicochemical Properties, Blood Biochemistry and Egg Fatty Acids. Animals. 2023; 13(8):1394. https://doi.org/10.3390/ani13081394
Chicago/Turabian StyleKianfar, Ruhollah, Ambra Rita Di Rosa, Neda Divari, Hossein Janmohammadi, Babak Hosseintabar-Ghasemabad, Marianna Oteri, Ivan Fedorovich Gorlov, Marina Ivanovna Slozhenkina, Aleksandr Anatolievich Mosolov, and Alireza Seidavi. 2023. "A Comparison of the Effects of Raw and Processed Amaranth Grain on Laying Hens’ Performance, Egg Physicochemical Properties, Blood Biochemistry and Egg Fatty Acids" Animals 13, no. 8: 1394. https://doi.org/10.3390/ani13081394
APA StyleKianfar, R., Di Rosa, A. R., Divari, N., Janmohammadi, H., Hosseintabar-Ghasemabad, B., Oteri, M., Gorlov, I. F., Slozhenkina, M. I., Mosolov, A. A., & Seidavi, A. (2023). A Comparison of the Effects of Raw and Processed Amaranth Grain on Laying Hens’ Performance, Egg Physicochemical Properties, Blood Biochemistry and Egg Fatty Acids. Animals, 13(8), 1394. https://doi.org/10.3390/ani13081394