Effect of Bacterial Phytase on Growth Performance, Nutrient Utilization, and Bone Mineralization in Broilers Fed Pelleted Diets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Diets and Experimental Treatments
2.2. Birds and Housing
2.3. Determination of Coefficient of Apparent Ileal Digestibility
2.4. Tibia and Toe Measurements
2.5. Measuring Blood Parameters
2.6. Chemical Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Selle, P.H.; Ravindran, V. Microbial phytase in poultry nutrition. Anim. Feed. Sci. Technol. 2006, 135, 1–41. [Google Scholar] [CrossRef]
- Dersjant-Li, Y.; Awati, A.; Schulze, H.; Partridge, G. Phytase in non-ruminant animal nutrition: A critical review on phytase activities in the gastrointestinal tract and influencing factors. J. Sci. Food Agric. 2014, 95, 878–896. [Google Scholar] [CrossRef]
- Abd EI-Hack, M.E.; Alagawany, M.; Arif, M.; Emam, M.; Saeed, M.A.; Arain, A.; Siyal, F.A.; Patra, A.; Elnesr, S.S.; Khan, R.U. The uses of microbial phytase as a feed additive in poultry nutrition. Ann. Anim. Sci. 2018, 18, 639–658. [Google Scholar] [CrossRef]
- Marchal, L.; Bello, A.; Sobotik, E.; Archer, G.; Dersjant-Li, Y. A novel consensus bacterial 6-phytase variant completely replaced inorganic phosphate in broiler diets, maintaining growth performance and bone quality: Data from two independent trials. Poult. Sci. 2020, 100, 100962. [Google Scholar] [CrossRef]
- Qian, H.; Kornegay, E.T.; Denbow, D.M. Phosphorus equivalence of microbial phytase in turkey diets as influenced by Ca:P ratios and P levels. Poult. Sci. 1996, 75, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Kornegay, E.; Denbow, D. Utilization of phytate phosphorus and calcium as influenced by microbial phytase, cholecalciferol, and the calcium: Total phosphorus ratio in broiler diets. Poult. Sci. 1997, 76, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Uarquin, F.; Molano, E.; Heinrich, F.; Sommerfeld, V.; Rodehutscord, M.; Huber, K. Research Note: Jejunum phosphatases and systemic myo-inositol in broiler chickens fed without or with supplemented phytase. Poult. Sci. 2020, 99, 5972–5976. [Google Scholar] [CrossRef]
- Walk, C.; Bedford, M.; Olukosi, O. Effect of phytase on growth performance, phytate degradation and gene expression of myo- inositol transporters in the small intestine, liver and kidney of 21 day old broilers. Poult. Sci. 2018, 97, 1155–1162. [Google Scholar] [CrossRef]
- Selle, P.H.; Cowieson, A.J.; Ravindran, V. Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livest. Sci. 2009, 124, 126–141. [Google Scholar] [CrossRef]
- Angel, R.; Tamim, N.M.; Applegate, T.J.; Dhandu, A.S.; Ellestad, L.E. Phytic Acid Chemistry: Influence on Phytin-Phosphorus Availability and Phytase Efficacy. J. Appl. Poult. Res. 2002, 11, 471–480. [Google Scholar] [CrossRef]
- Dersjant-Li, Y.; Evans, C.; Kumar, A. Effect of phytase dose and reduction in dietary calcium on performance, nutrient digestibility, bone ash and mineralization in broilers fed corn-soybean meal-based diets with reduced nutrient density. Anim. Feed. Sci. Technol. 2018, 242, 95–110. [Google Scholar] [CrossRef]
- Tamim, N.; Angel, R.; Christman, M. Influence of dietary calcium and phytase on phytate phosphorus hydrolysis in broiler chickens. Poult. Sci. 2004, 83, 1358–1367. [Google Scholar] [CrossRef]
- Sandberg, A.-S.; Larsen, T.; Sandström, B. High Dietary Calcium Level Decreases Colonic Phytate Degradation in Pigs Fed a Rapeseed Diet. J. Nutr. 1993, 123, 559–566. [Google Scholar] [CrossRef]
- Ravindran, V.; Abdollahi, M.R. Nutrition and Digestive Physiology of the Broiler Chick: State of the Art and Outlook. Animals 2021, 11, 2795. [Google Scholar] [CrossRef]
- Ross. Ross 308 Broiler: Nutrition Specification; Ross Breeders Limited: Newbridge, UK, 2019. [Google Scholar]
- Watson, B.C.; Matthews, J.O.; Southern, L.L.; Shelton, J.L. The effects of phytase on growth performance and intestinal transit time of broilers fed nutritionally adequate diets and diets deficient in calcium and phosphorus. Poult. Sci. 2006, 85, 493–497. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 18th ed.; AOAC International: Washington, DC, USA, 2005. [Google Scholar]
- Short, F.; Gorton, P.; Wiseman, J.; Boorman, K. Determination of titanium dioxide added as an inert marker in chicken digestibility studies. Anim. Feed. Sci. Technol. 1996, 59, 215–221. [Google Scholar] [CrossRef]
- Plummer, D. An Introduction of Practical Biochemistry, 3rd ed.; Tata McGraw Hill Publishers Co., Ltd.: New Delhi, India, 1990. [Google Scholar]
- Latta, M.; Eskin, M. A simple and rapid colorimetric method for phytate determination. J. Agric. Food Chem. 1980, 28, 1313–1315. [Google Scholar] [CrossRef]
- SAS. User’s Guide: The SAS Software, version 9; SAS Inst. Inc.: Cary, NC, USA, 2004. [Google Scholar]
- Kiarie, E.; Woyengo, T.; Nyachoti, C.M. Efficacy of New 6-Phytase from Buttiauxella spp. on Growth Performance and Nutrient Retention in Broiler Chickens Fed Corn Soybean Meal-based Diets. Asian-Australas. J. Anim. Sci. 2015, 28, 1479–1487. [Google Scholar] [CrossRef] [PubMed]
- Dersjant-Li, Y.; Kwakernaak, C. Comparative effects of two phytases versus increasing the inorganic phosphorus content of the diet, on nutrient and amino acid digestibility in boilers. Anim. Feed. Sci. Technol. 2019, 253, 166–180. [Google Scholar] [CrossRef]
- Dersjant-Li, Y.; Archer, G.; Stiewert, A.; Brown, A.; Sobotik, E.; Jasek, A.; Marchal, L.; Bello, A.; Sorg, R.; Christensen, T.; et al. Functionality of a next generation biosynthetic bacterial 6-phytase in enhancing phosphorus availability to broilers fed a corn-soybean meal-based diet. Anim. Feed. Sci. Technol. 2020, 264, 114481. [Google Scholar] [CrossRef]
- Whitfield, H.; Laurendon, C.; Rochell, S.; Dridi, S.; Lee, S.; Dale, T.; York, T.; Kuehn, I.; Bedford, M.; Brearley, C. Effect of phytase supplementation on plasma and organ myo-inositol content and erythrocyte inositol phosphates as pertaining to breast meat quality issues in chickens. J. Appl. Anim. Nutr. 2022, 10, 45–57. [Google Scholar] [CrossRef]
- Gifford, S.R.; Clydesdale, F.M. Interactions Among Calcium, Zinc and Phytate with Three Protein Sources. J. Food Sci. 1990, 55, 1720–1724. [Google Scholar] [CrossRef]
- Maenz, D.D.; Engele-Schaan, C.M.; Newkirk, R.W.; Classen, H.L. The effect of minerals and mineral chelators on the formation of phytase-resistant and phytase-susceptible forms of phytic acid in solution and in a slurry of canola meal. Anim. Feed. Sci. Technol. 1999, 81, 177–192. [Google Scholar] [CrossRef]
- Plumstead, P.; Leytem, A.; Maguire, R.; Spears, J.; Kwanyuen, P.; Brake, J. Interaction of Calcium and Phytate in Broiler Diets. 1. Effects on Apparent Prececal Digestibility and Retention of Phosphorus. Poult. Sci. 2008, 87, 449–458. [Google Scholar] [CrossRef]
- Paiva, D.M.; Walk, C.L.; McElroy, A.P. Influence of dietary calcium level, calcium source, and phytase on bird performance and mineral digestibility during a natural necrotic enteritis episode. Poult. Sci. 2013, 92, 3125–3133. [Google Scholar] [CrossRef]
- Naderinejad, S.; Zaefarian, F.; Abdollahi, M.R.; Hassanabadi, A.; Kermanshahi, H.; Ravindran, V. Influence of feed form and particle size on performance, nutrient utilisation, and gastrointestinal tract development and morphometry in broiler starters fed maize-based diets. Anim. Feed. Sci. Technol. 2016, 215, 92–104. [Google Scholar] [CrossRef]
- Sommerfeld, V.; Schollenberger, M.; Kühn, I.; Rodehutscord, M. Interactive effects of phosphorus, calcium, and phytase supplements on products of phytate degradation in the digestive tract of broiler chickens. Poult. Sci. 2018, 97, 1177–1188. [Google Scholar] [CrossRef] [PubMed]
- Walk, C.L.; Olukosi, O.A. Influence of graded concentrations of phytase in high-phytate diets on growth performance, apparent ileal amino acid digestibility, and phytate concentration in broilers from hatch to 28 D post-hatch. Poult. Sci. 2019, 98, 3884–3893. [Google Scholar] [CrossRef]
- Walk, C.L.; Santos, T.T.; Bedford, M.R. Influence of superdoses of a novel microbial phytase on growth performance, tibia ash, and gizzard phytate and inositol in young broilers. Poult. Sci. 2014, 93, 1172–1177. [Google Scholar] [CrossRef]
- Brenes, A.; Viveros, A.; Arija, I.; Centeno, C.; Pizarro, M.; Bravo-Llatas, C. The effect of citric acid and microbial phytase on mineral utilization in broiler chicks. Anim. Feed. Sci. Technol. 2003, 110, 201–219. [Google Scholar] [CrossRef]
- Farhadi, D.; Karimi, A.; Sadeghi, G.; Rostamzadeh, J.; Bedford, M.R. Effects of a high dose of microbial phytase and myo-inositol supplementation on growth performance, tibia mineralization, nutrient digestibility, litter moisture content, and foot problems in broiler chickens fed phosphorus-deficient diets. Poult. Sci. 2017, 96, 3664–3675. [Google Scholar] [CrossRef] [PubMed]
- Baradaran, N.; Shahir, M.; Taheri, H.; Bedford, M. Effect of sequential feeding of phosphorus-deficient diets and high-dose phytase on efficient phosphorus utilization in broiler chickens. Livest. Sci. 2020, 243, 104368. [Google Scholar] [CrossRef]
- Proszkowiec-Weglarz, M.; Angel, R. Calcium and phosphorus metabolism in broilers: Effect of homeostatic mechanism on calcium and phosphorus digestibility. J. Appl. Poult. Res. 2013, 22, 609–627. [Google Scholar] [CrossRef]
- Omotoso, A.O.; Reyer, H.; Oster, M.; Maak, S.; Ponsuksili, S.; Wimmers, K. Broiler physiological response to low phosphorus diets at different stages of production. Poult. Sci. 2023, 102, 102351. [Google Scholar] [CrossRef]
- Zhao, S.C.; Teng, X.Q.; Xu, D.L.; Chi, X.; Ge, M.; Xu, S.W. Influences of low level of dietary calcium on bone characters in laying hens. Poult. Sci. 2020, 99, 7084–7091. [Google Scholar] [CrossRef]
- Denbow, D.M.; Ravindran, V.; Kornegay, E.T.; Yi, Z.; Hulet, R.M. Improving Phosphorus Availability in Soybean Meal for Broilers by Supplemental Phytase. Poult. Sci. 1995, 74, 1831–1842. [Google Scholar] [CrossRef]
- Dhandu, A.; Angel, R. Broiler nonphytin phosphorus requirement in the finisher and withdrawal phases of a commercial four-phase feeding system. Poult. Sci. 2003, 82, 1257–1265. [Google Scholar] [CrossRef]
- Yan, F.; Angel, R.; Ashwell, C.; Mitchell, A.; Christman, M. Evaluation of the broiler’s ability to adapt to an early moderate deficiency of phosphorus and calcium. Poult. Sci. 2005, 84, 1232–1241. [Google Scholar] [CrossRef]
- Woyengo, T.; Wilson, J. Enhancing nutrient utilization in maize for broiler chickens by superdosing phytase. Anim. Feed. Sci. Technol. 2019, 252, 34–40. [Google Scholar] [CrossRef]
- Scholey, D.; Morgan, N.; Riemensperger, A.; Hardy, R.; Burton, E. Effect of supplementation of phytase to diets low in inorganic phosphorus on growth performance and mineralization of broilers. Poult. Sci. 2018, 97, 2435–2440. [Google Scholar] [CrossRef]
- Adedokun, S.; Pescatore, A.; Ford, M.; Ao, T.; Jacob, J. Investigating the effect of dietary calcium levels on ileal endogenous amino acid losses and standardized ileal amino acid digestibility in broilers and laying hens. Poult. Sci. 2018, 97, 131–139. [Google Scholar] [CrossRef]
- Abdollahi, M.; Duangnumsawang, Y.; Kwakkel, R.; Steenfeldt, S.; Bootwalla, S.; Ravindran, V. Investigation of the interaction between separate calcium feeding and phytase supplementation on growth performance, calcium intake, nutrient digestibility and energy utilisation in broiler starters. Anim. Feed. Sci. Technol. 2016, 219, 48–58. [Google Scholar] [CrossRef]
- Xue, P.C.; Ajuwon, K.M.; Adeola, O. Phosphorus and nitrogen utilization responses of broiler chickens to dietary crude protein and phosphorus levels. Poult. Sci. 2016, 95, 2615–2623. [Google Scholar] [CrossRef]
- Mulvenna, C.C.; McCormack, U.M.; Magowan, E.; McKillen, J.; Bedford, M.R.; Walk, C.L.; Oster, M.; Reyer, H.; Wimmers, K.; Fornara, D.A.; et al. The Growth Performance, Nutrient Digestibility, Gut Bacteria and Bone Strength of Broilers Offered Alternative, Sustainable Diets Varying in Nutrient Specification and Phytase Dose. Animals 2022, 12, 1669. [Google Scholar] [CrossRef]
Starter Phase | Finisher Phase | |||||
---|---|---|---|---|---|---|
PC | NC1 2 | NC2 3 | PC | NC1 2 | NC2 3 | |
Ingredients (g/kg) | ||||||
Corn | 485.5 | 502 | 510 | 505.8 | 522 | 530.2 |
Soya Meal, 43% | 394.4 | 391.2 | 389.8 | 332 | 328.4 | 327 |
Wheat Flour | 50 | 50 | 50 | 100 | 100 | 100 |
Vegetable Oil | 26.2 | 20.6 | 17.8 | 25 | 19.8 | 17 |
Dicalcium Phosphate | 18.6 | 12.8 | 10 | 15.1 | 9.4 | 6.5 |
Limestone | 10.6 | 8.7 | 7.7 | 9.4 | 7.5 | 6.6 |
Salt | 1.9 | 1.9 | 1.9 | 2.1 | 2.1 | 2.1 |
Min. and Vit. Premix 4 | 2 | 2 | 2 | 2 | 2 | 2 |
DL-Methionine | 3.3 | 3.2 | 3.2 | 2.8 | 2.8 | 2.8 |
L-Lysine HCL | 2.6 | 2.7 | 2.7 | 2 | 2.1 | 2.1 |
L-Threonine | 1.3 | 1.3 | 1.3 | 1.2 | 1.2 | 1.2 |
Bicarbonate Na | 2.1 | 2.1 | 2.1 | 1.6 | 1.7 | 1.7 |
Choline Chloride | 1.5 | 1.5 | 1.5 | 1 | 1 | 1 |
Calculated Analysis, % | ||||||
ME, kcal/kg | 2900 | 2900 | 2900 | 2970 | 2970 | 2970 |
Crude Protein | 22 | 22 | 22 | 20 | 20 | 20 |
Calcium | 0.96 | 0.76 | 0.66 | 0.83 | 0.63 | 0.53 |
Available phosphorus | 0.48 | 0.38 | 0.33 | 0.415 | 0.315 | 0.265 |
Analyzed values, % | ||||||
Dry matter | 93.7 | 92.2 | 92.3 | 94.4 | 95.1 | 94.9 |
Crude protein (nitrogen × 6.25) | 21.59 | 22.09 | 22.25 | 21.02 | 20.91 | 21.17 |
Gross energy, kcal/kg | 4218.3 | 4356.3 | 4203.3 | 4323.6 | 4321.1 | 4278.9 |
Fat | 5.4 | 5.03 | 4 | 4.5 | 4.83 | 4.66 |
Calcium | 0.976 | 0.842 | 0.705 | 0.876 | 0.746 | 0.583 |
Total phosphorus | 0.75 | 0.63 | 0.579 | 0.588 | 0.508 | 0.363 |
Phytate | 0.55 | 0.54 | 0.49 | 0.42 | 0.4 | 0.36 |
Diets | Starter Phase | Finisher Phase |
---|---|---|
NC1 + 500 FTU/kg | 630 | 519 |
NC1 + 1000 FTU/kg | 1040 | 940 |
NC2 + 500 FTU/kg | 612 | 555 |
NC2 + 1000 FTU/kg | 1030 | 910 |
Hatch to Day 21 | Hatch to Day 35 | |||||
---|---|---|---|---|---|---|
Treatments | BW Gain, g | FI, g | FCR, g:g | BW gain, g | FI, g | FCR, g:g |
PC 1 | 868.8 a | 1083 | 1.23 c | 1836.6 b | 2801 | 1.514 bc |
NC1 2 | 806.9 b | 1016.1 | 1.264 bc | 1729.06 c | 2768.4 | 1.602 a |
NC1 + 500 FTU | 872.3 a | 1066.5 | 1.224 c | 1869.1 ab | 2861.3 | 1.53 bc |
NC1 + 1000 FTU | 831.6 ab | 1025.7 | 1.233 c | 1817.9 b | 2810.6 | 1.546 b |
NC2 3 | 790.7 b | 1031.7 | 1.306 a | 1728.9 c | 2782.3 | 1.61 a |
NC2 + 500 FTU | 848.6 ab | 1071.4 | 1.262 bc | 1873.2 ab | 2810.3 | 1.5 c |
NC2 + 1000 FTU | 848.2 ab | 1084.5 | 1.278 ab | 1940.4 a | 2818.1 | 1.452 d |
SEM 4 | 19.08 | 20.13 | 0.013 | 26.88 | 29.86 | 0.014 |
ANOVA p-value | 0.04 | 0.08 | 0.001 | ˂0.0001 | 0.47 | ˂0.0001 |
Linear phytase, NC1 5 | 0.18 | 0.33 | 0.07 | 0.02 | 0.24 | 0.02 |
Linear phytase, NC2 5 | 0.009 | 0.02 | 0.07 | ˂0.0001 | 0.49 | ˂0.0001 |
Orthogonal contrast p-value | ||||||
PC vs. NC1 | 0.057 | 0.02 | 0.07 | 0.007 | 0.44 | 0.0001 |
PC vs. NC2 | 0.01 | 0.08 | 0.001 | 0.007 | 0.66 | ˂0.0001 |
PC vs. NC1 + 1000 FTU | 0.15 | 0.04 | 0.85 | 0.6 | 0.82 | 0.09 |
PC vs. NC2 + 1000 FTU | 0.44 | 0.95 | 0.01 | 0.009 | 0.69 | 0.004 |
Treatments | CAID of Ca | CAID of P | CAID of Ash | CAID of N | CAID of GE | CAID of Starch |
---|---|---|---|---|---|---|
PC 1 | 0.596 a | 0.762 a | 0.421 a | 0.786 a | 0.811 a | 0.953 |
NC1 2 | 0.434 c | 0.616 b | 0.3 b | 0.676 c | 0.728 b | 0.947 |
NC1 + 500 FTU | 0.504 bc | 0.648 b | 0.315 b | 0.753 b | 0.714 bc | 0.954 |
NC1 + 1000 FTU | 0.539 ab | 0.783 a | 0.275 b | 0.749 b | 0.708 bc | 0.956 |
NC2 3 | 0.478 bc | 0.677 ab | 0.287 b | 0.739 b | 0.72 b | 0.942 |
NC2 + 500 FTU | 0.503 bc | 0.642 b | 0.279 b | 0.739 b | 0.695 bc | 0.952 |
NC2 + 1000 FTU | 0.519 b | 0.761 a | 0.256 b | 0.719 b | 0.683 b | 0.954 |
SEM 4 | 0.011 | 0.033 | 0.02 | 0.011 | 0.011 | 0.004 |
ANOVA p-value | 0.001 | 0.004 | ˂0.0001 | ˂0.0001 | ˂0.0001 | 0.32 |
Linear phytase, NC1 5 | 0.02 | 0.006 | 0.47 | 0.005 | 0.52 | 0.23 |
Linear phytase, NC2 5 | 0.38 | 0.07 | 0.48 | 0.18 | 0.4 | 0.2 |
Orthogonal contrast p-value | ||||||
PC vs. NC1 | ˂0.0001 | 0.002 | 0.0001 | ˂0.0001 | ˂0.0001 | 0.37 |
PC vs. NC2 | 0.002 | 0.04 | ˂0.0001 | 0.01 | ˂0.0001 | 0.06 |
PC vs. NC1 + 1000 FTU | 0.1 | 0.65 | ˂0.0001 | 0.02 | ˂0.0001 | 0.57 |
PC vs. NC2 + 1000 FTU | 0.02 | 0.98 | ˂0.0001 | 0.0002 | ˂0.0001 | 0.84 |
Treatments | ALP | Ca | P |
---|---|---|---|
PC 1 | 908.7 | 10.09 a | 7.18 |
NC1 2 | 594.1 | 8.33 b | 6.5 |
NC1 + 500 FTU | 800.6 | 9.16 ab | 6.5 |
NC1 + 1000 FTU | 590.1 | 9.75 a | 6.58 |
NC2 3 | 819.7 | 8.5 b | 5.91 |
NC2 + 500 FTU | 762 | 9.6 a | 6.1 |
NC2 + 1000 FTU | 690.6 | 9.81 a | 6.81 |
SEM 4 | 135.4 | 0.33 | 0.31 |
ANOVA p-value | 0.77 | 0.001 | 0.12 |
Linear phytase, NC1 5 | 0.54 | 0.005 | 0.98 |
Linear phytase, NC2 5 | 0.84 | 0.01 | 0.01 |
Orthogonal contrast p-value | |||
PC vs. NC1 | 0.19 | 0.0002 | 0.13 |
PC vs. NC2 | 0.69 | 0.0007 | 0.005 |
PC vs. NC1 + 1000 FTU | 0.17 | 0.47 | 0.18 |
PC vs. NC2 + 1000 FTU | 0.34 | 0.57 | 0.42 |
Treatments | Tibia Ca | Tibia P | Tibia Ash | Toe Ash | Excreta P |
---|---|---|---|---|---|
PC 1 | 14.74 | 7.8 | 29.84 | 10.09 b | 0.702 a |
NC1 2 | 15.13 | 7.47 | 28.87 | 9.69 b | 0.75 a |
NC1 + 500 FTU | 15.51 | 7.56 | 29.22 | 10.14 b | 0.615 b |
NC1 + 1000 FTU | 15.89 | 7.55 | 31.46 | 9.99 b | 0.42 d |
NC2 3 | 14.88 | 7.75 | 27.76 | 9.77 b | 0.442 d |
NC2 + 500 FTU | 14.85 | 7.48 | 30.84 | 11.52 a | 0.47 d |
NC2 + 1000 FTU | 14.74 | 7.35 | 30.23 | 11.25 a | 0.537 c |
SEM 4 | 0.81 | 1.15 | 1.62 | 0.492 | 0.02 |
ANOVA p-value | 0.93 | 0.33 | 0.08 | 0.006 | ˂0.0001 |
Linear phytase, NC1 5 | 0.76 | 0.98 | 0.04 | 0.7 | 0.0001 |
Linear phytase, NC2 5 | 0.99 | 0.29 | 0.09 | 0.14 | 0.04 |
Orthogonal contrast p-value | |||||
PC vs. NC1 | 0.73 | 0.86 | 0.39 | 0.57 | 0.12 |
PC vs. NC2 | 0.9 | 0.02 | 0.002 | 0.32 | 0.0001 |
PC vs. NC1 + 1000 FTU | 0.31 | 0.69 | 0.23 | 0.84 | 0.0001 |
PC vs. NC2 + 1000 FTU | 0.4 | 0.47 | 0.77 | 0.02 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moradi, S.; Abdollahi, M.R.; Moradi, A.; Jamshidi, L. Effect of Bacterial Phytase on Growth Performance, Nutrient Utilization, and Bone Mineralization in Broilers Fed Pelleted Diets. Animals 2023, 13, 1450. https://doi.org/10.3390/ani13091450
Moradi S, Abdollahi MR, Moradi A, Jamshidi L. Effect of Bacterial Phytase on Growth Performance, Nutrient Utilization, and Bone Mineralization in Broilers Fed Pelleted Diets. Animals. 2023; 13(9):1450. https://doi.org/10.3390/ani13091450
Chicago/Turabian StyleMoradi, Soudabeh, Mohammad Reza Abdollahi, Arash Moradi, and Leili Jamshidi. 2023. "Effect of Bacterial Phytase on Growth Performance, Nutrient Utilization, and Bone Mineralization in Broilers Fed Pelleted Diets" Animals 13, no. 9: 1450. https://doi.org/10.3390/ani13091450
APA StyleMoradi, S., Abdollahi, M. R., Moradi, A., & Jamshidi, L. (2023). Effect of Bacterial Phytase on Growth Performance, Nutrient Utilization, and Bone Mineralization in Broilers Fed Pelleted Diets. Animals, 13(9), 1450. https://doi.org/10.3390/ani13091450