Insertion/Deletion (InDel) Variants within the Sheep Fat-Deposition-Related PDGFD Gene Strongly Affect Morphological Traits
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Phenotypic Data, and DNA Extraction
2.2. InDel Detection and Genotyping
2.3. Statistical Analyses
3. Results
3.1. InDel Genotyping and Sequencing
3.2. Genetic Parameters and Linkage Disequilibrium Analysis
3.3. Association Analysis of PDGFD InDel and Body Morphometric Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, C.; Wang, H.; Liu, G.; Wu, M.; Cao, J.; Liu, Z.; Liu, R.; Zhao, F.; Zhang, L.; Lu, J.; et al. Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds. BMC Genom. 2015, 16, 194. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Cheng, X.; Zhao, S.G.; Liu, Z.; Liu, L.S.; Zhou, R.; Wu, J.P.; Brown, M.A. Effects of tail docking on the expression of genes related to lipid metabolism in Lanzhou fat-tailed sheep. Genet. Mol. Res. 2016, 15, gmr7323. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, H.; Liu, X.; Xu, H.; Cai, Y.; Lan, X. Insight into the possible formation mechanism of the intersex phenotype of Lanzhou Fat-Tailed sheep using whole-genome resequencing. Animals 2020, 10, 944. [Google Scholar] [CrossRef]
- Akhatayeva, Z.; Li, H.; Mao, C.; Cheng, H.; Zhang, G.; Jiang, F.; Meng, X.; Yao, Y.; Lan, X.; Song, E.; et al. Detecting novel Indel variants within the GHR gene and their associations with growth traits in Luxi Blackhead sheep. Anim. Biotechnol. 2022, 33, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Tan, X.; Wang, J.; Jin, Q.; Meng, X.; Cai, Z.; Cui, X.; Wang, K. Whole genome sequencing of Luxi Black Head sheep for screening selection signatures associated with important traits. Anim. Biosci. 2022, 35, 1340–1350. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Shen, X.; Liu, F. The combinations of sulfur and molybdenum fertilizations improved antioxidant capacity of grazing Guiqian semi-fine wool sheep under copper and cadmium stress. Ecotoxicol. Environ. Saf. 2021, 222, 112520. [Google Scholar] [CrossRef]
- Raza, S.; Khan, S.; Amjadi, M.; Abdelnour, S.A.; Ohran, H.; Alanazi, K.M.; Abd El-Hack, M.E.; Taha, A.E.; Khan, R.; Gong, C.; et al. Genome-wide association studies reveal novel loci associated with carcass and body measures in beef cattle. Arch. Biochem. Biophys. 2020, 694, 108543. [Google Scholar] [CrossRef]
- Chauhan, A.; Dahiya, S.P.; Bangar, C.; Magotra, A. The estimation of (co)variance components and genetic parameters for growth and wool traits in Harnali sheep. Small Rumin. Res. 2021, 203, 106485. [Google Scholar] [CrossRef]
- Xu, S.S.; Li, M.H. Recent advances in understanding genetic variants associated with economically important traits in sheep (Ovis aries) revealed by high-throughput screening technologies. Front. Agric. Sci. Eng. 2017, 4, 279–288. [Google Scholar] [CrossRef]
- Li, X.; Yang, J.; Shen, M.; Xie, X.L.; Liu, G.J.; Xu, Y.X.; Lv, F.H.; Yang, H.; Yang, Y.L.; Liu, C.B.; et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nat. Commun. 2020, 11, 2815. [Google Scholar] [CrossRef]
- LaRochelle, W.J.; Jeffers, M.; McDonald, W.F.; Chillakuru, R.A.; Giese, N.A.; Lokker, N.A.; Sullivan, C.; Boldog, F.L.; Yang, M.; Vernet, C.; et al. PDGF-D, a new protease-activated growth factor. Nat. Cell Biol. 2001, 3, 517–521. [Google Scholar] [CrossRef]
- Dong, K.; Yang, M.; Han, J.; Ma, Q.; Han, J.; Song, Z.; Luosang, C.; Gorkhali, N.A.; Yang, B.; He, X.; et al. Genomic analysis of worldwide sheep breeds reveals PDGFD as a major target of fat-tail selection in sheep. BMC Genom. 2020, 21, 800. [Google Scholar] [CrossRef]
- Lv, F.H.; Cao, Y.H.; Liu, G.J.; Luo, L.Y.; Lu, R.; Liu, M.J.; Li, W.R.; Zhou, P.; Wang, X.H.; Shen, M.; et al. Whole-genome resequencing of worldwide wild and domestic sheep elucidates genetic diversity, introgression, and agronomically important loci. Mol. Biol. Evol. 2022, 39, msab353. [Google Scholar] [CrossRef]
- Qin, Z.; Feng, J.; Liu, Y.; Deng, L.L.; Lu, C. PDGF-D promotes dermal fibroblast invasion in 3-dimensional extracellular matrix via Snail-mediated MT1-MMP upregulation. Tumour. Biol. 2016, 37, 591–599. [Google Scholar] [CrossRef]
- Wu, Q.; Hou, X.; Xia, J.; Qian, X.; Miele, L.; Sarkar, F.H.; Wang, Z. Emerging roles of PDGF-D in EMT progression during tumorigenesis. Cancer Treat. Rev. 2013, 39, 640–646. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, J.D.; Yan, L.J.; Zhao, X.P. PDGF-D/PDGFRβ promotes tongue squamous carcinoma cell (TSCC) progression via activating p38/AKT/ERK/EMT signal pathway. Biochem. Biophys. Res. Commun. 2016, 478, 845–851. [Google Scholar] [CrossRef]
- Lu, Z.K.; Du, L.X.; Zhang, L.P.; Li, Q.; Chu, M.X.; Wei, C.H. Research advances in platelet-derived growth factor-D (PDGF-D) gene. J. Agric. Biotechnol. 2018, 26, 1970–1978. (In Chinese) [Google Scholar]
- Gong, M.; Yang, P.; Fang, W.; Li, R.; Jiang, Y. Building a cattle pan-genome using more de novo assemblies. J. Genet. Genom. 2022, 49, 906–908. [Google Scholar] [CrossRef]
- Zhang, X.; Qu, K.; Jia, P.; Zhang, J.; Liu, J.; Lei, C.; Huang, B. Assessing genomic diversity and productivity signatures in Dianzhong cattle by whole-genome scanning. Front. Genet. 2021, 12, 719215. [Google Scholar] [CrossRef]
- Li, Q.; Wang, H.; Lu, Z.; Jin, M.; Chu, M.; Wei, C. Association of the PDGF-D gene genetic variation with sheep tail traits. Chin. J. Anim. Vet. Sci. 2019, 50, 688–700. (In Chinese) [Google Scholar]
- Kandoussi, A.; Petit, D.; Boujenane, I. Morphologic characterization of the Blanche de Montagne, an endemic sheep of the Atlas Mountains. Trop. Anim. Health Prod. 2021, 53, 154. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xu, H.; Lan, X.; Cao, X.; Pan, C. The InDel variants of sheep IGF2BP1 gene are associated with growth traits. Anim. Biotechnol. 2021, 34, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Xu, H.; Zhang, C.; Zhang, J.; Lan, X.; Gu, C.; Chen, H. Polymorphisms in BMP-2 gene and their associations with growth traits in goats. Genes Genom. 2010, 32, 29–35. [Google Scholar] [CrossRef]
- Jia, W.; Wu, X.; Li, X.; Xia, T.; Lei, C.; Chen, H.; Pan, C.; Lan, X. Novel genetic variants associated with mRNA expression of signal transducer and activator of transcription 3 (STAT3) gene significantly affected goat growth traits. Small Rumin. Res. 2015, 129, 25–36. [Google Scholar] [CrossRef]
- Li, X.; Jiang, E.; Zhang, K.; Zhang, S.; Jiang, F.; Song, E.; Chen, H.; Guo, P.; Lan, X. Genetic variations within the bovine CRY2 gene are significantly associated with carcass traits. Animals 2022, 12, 1616. [Google Scholar] [CrossRef]
- Su, P.; Luo, Y.; Huang, Y.; Akhatayeva, Z.; Xin, D.; Guo, Z.; Pan, C.; Zhang, Q.; Xu, H.; Lan, X. Short variation of the sheep PDGFD gene is correlated with litter size. Gene 2022, 844, 146797. [Google Scholar] [CrossRef]
- Huang, Y.; Ma, Z.; Wang, X.; Zhao, L.; Zhang, Y.; Yang, X.; Xu, D.; Cheng, J.; Li, X.; Zeng, X.; et al. Identification of TRAPPC9 and BAIAP2 gene polymorphisms and their association with fat deposition-related traits in Hu sheep. Front. Vet. Sci. 2022, 9, 928375. [Google Scholar]
- Li, Q.; Lu, Z.; Jin, M.; Fei, X.; Quan, K.; Liu, Y.; Ma, L.; Chu, M.; Wang, H.; Wei, C. Verification and analysis of sheep tail type-associated PDGF-D gene polymorphisms. Animals 2020, 10, 89. [Google Scholar] [CrossRef]
- Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 1973, 70, 3321–3323. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, Y.; Lu, S.; Liu, Y.; Xu, W.; Li, Y.; Wang, L.; Wang, N.; Yang, Y.; Chen, S. Development of a 50K SNP array for Japanese flounder and its application in genomic selection for disease resistance. Engineering 2021, 7, 406–411. [Google Scholar] [CrossRef]
- Li, H.; Fredriksson, L.; Li, X.; Eriksson, U. PDGF-D is a potent transforming and angiogenic growth factor. Oncogene 2003, 22, 1501–1510. [Google Scholar] [CrossRef]
- Lokker, N.A.; Sullivan, C.M.; Hollenbach, S.J.; Israel, M.A.; Giese, N.A. Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: Evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res. 2002, 62, 3729–3735. [Google Scholar]
- Chen, Z.; Yu, H.; Shi, X.; Warren, C.R.; Lotta, L.A.; Friesen, M.; Meissner, T.B.; Langenberg, C.; Wabitsch, M.; Wareham, N.; et al. Functional screening of candidate causal genes for insulin resistance in human preadipocytes and adipocytes. Circ. Res. 2020, 126, 330–346. [Google Scholar] [CrossRef]
- Dani, C.; Pfeifer, A. The complexity of PDGFR signaling: Regulation of adipose progenitor maintenance and adipocyte-myofibroblast transition. Stem Cell Investig. 2017, 4, 28. [Google Scholar] [CrossRef]
- Gao, Z.; Daquinag, A.C.; Su, F.; Snyder, B.; Kolonin, M.G. PDGFRα/PDGFRβ signaling balance modulates progenitor cell differentiation into white and beige adipocytes. Development 2018, 145, dev155861. [Google Scholar] [CrossRef]
- Zeng, J.; Zhou, S.W.; Zhao, J.; Jin, M.H.; Kang, D.J.; Yang, Y.X.; Wang, X.L.; Chen, Y.L. Role of OXCT1 in ovine adipose and preadipocyte differentiation. Biochem. Biophys. Res. Commun. 2019, 512, 779–785. [Google Scholar] [CrossRef]
- Kang, D.; Zhou, G.; Zhou, S.; Zeng, J.; Wang, X.; Jiang, Y.; Yang, Y.; Chen, Y. Comparative transcriptome analysis reveals potentially novel roles of Homeobox genes in adipose deposition in fat-tailed sheep. Sci. Rep. 2017, 7, 14491. [Google Scholar] [CrossRef]
- Wang, S.; Liu, S.; Yuan, T.; Sun, X. Genetic effects of FTO gene insertion/deletion (InDel) on fat-tail measurements and growth traits in Tong sheep. Anim. Biotechnol. 2021, 32, 229–239. [Google Scholar] [CrossRef]
- Ma, L.; Li, Z.; Cai, Y.; Xu, H.; Yang, R.; Lan, X. Genetic variants in fat- and short-tailed sheep from high-throughput RNA-sequencing data. Anim. Genet. 2018, 49, 483–487. [Google Scholar] [CrossRef]
- Erdenee, S.; Akhatayeva, Z.; Pan, C.; Cai, Y.; Xu, H.; Chen, H.; Lan, X. An insertion/deletion within the CREB1 gene identified using the RNA-sequencing is associated with sheep body morphometric traits. Gene 2021, 775, 145444. [Google Scholar] [CrossRef]
- Kang, Y.; Bi, Y.; Tang, Q.; Xu, H.; Lan, X.; Zhang, Q.; Pan, C. A 7-nt nucleotide sequence variant within the sheep KDM3B gene affects female reproduction traits. Anim. Biotechnol. 2022, 33, 1661–1667. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Zhu, Q.; Meng, F.; Xu, H.; Guo, Z.; Pan, C. Rapid detection of InDel within the KDM3B gene in five sheep breeds using the mathematical expectation (ME) method. Gene 2022, 834, 146598. [Google Scholar] [CrossRef] [PubMed]
- Pang, P.; Li, Z.; Hu, H.; Wang, L.; Sun, H.; Mei, S.; Li, F. Genetic effect and combined genotype effect of ESR, FSHβ, CTNNAL1 and miR-27a loci on litter size in a Large White population. Anim. Biotechnol. 2019, 30, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Berulava, T.; Horsthemke, B. The obesity-associated SNPs in intron 1 of the FTO gene affect primary transcript levels. Eur. J. Hum. Genet. 2010, 18, 1054–1056. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Yan, H.; Wang, K.; Xu, H.; Zhang, X.; Zhu, H.; Liu, J.; Qu, L.; Lan, X.; Pan, C. Insertion/Deletion within the KDM6A gene is significantly associated with litter size in goat. Front. Genet. 2018, 9, 91. [Google Scholar] [CrossRef]
- Shaul, O. How introns enhance gene expression. Int. J. Biochem. Cell Biol. 2017, 91 Pt B, 145–155. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, H.; Luan, Y.; Liu, T.; Yang, W.; Roberts, K.G.; Qian, M.X.; Zhang, B.; Yang, W.; Perez-Andreu, V.; et al. Noncoding genetic variation in GATA3 increases acute lymphoblastic leukemia risk through local and global changes in chromatin conformation. Nat. Genet. 2022, 54, 170–179. [Google Scholar] [CrossRef]
- Wang, M.; Shu, H.; Xie, J.; Huang, Y.; Wang, K.; Feng, R.; Yu, X.; Guan, J.; Feng, W.; Liu, M. An intron mutation of HNF1A causes abnormal splicing and impairs its activity as a transcription factor. Mol. Cell Endocrinol. 2022, 545, 111575. [Google Scholar] [CrossRef]
- Li, W.; Zhang, M.; Li, Q.; Tang, H.; Zhang, L.; Wang, K.; Zhu, M.; Lu, Y.; Bao, H.; Zhang, Y.; et al. Whole-genome resequencing reveals candidate mutations for pig prolificacy. Proc. Biol. Sci. 2017, 284, 20172437. [Google Scholar] [CrossRef]
- Li, W.H.; Li, G.Y.; Zhang, J.; Wang, X.J.; Zhang, A.W.; Zhao, J.T.; Wang, L.J.; Yang, J.F.; Luo, T.Z.; Shen, K.Z. Estimates of (co)variance components and phenotypic and genetic parameters of growth traits and wool traits in Alpine Merino sheep. J. Anim. Breed Genet. 2022, 139, 351–365. [Google Scholar] [CrossRef]
Variant ID | Names | Primer Sequences (5′ to 3′) | Product Sizes (bp) | Location |
---|---|---|---|---|
rs1093585007 | P1-del-39bp | F: TCAGAGGCTTGACTGAGGTATGA R: CAACATTCCACTCCGCAGTTT | 378/339 | Intron 1 |
rs1094063906 | P2-del-18bp | F: GAAAGTCTGAAGGTGCCA R: CAGAGCTGATGCTGGAAT | 150/132 | Intron 1 |
rs604168702 | P3-del-16bp | F: CACATCACTACTCCTTCACACAAC R: GCCTCATTCAAGAGTGGTCAGT | 195/179 | Intron 2 |
rs590816164 | P4-ins-14bp | F: ACCCAGATCTTGGCCATTTTCTAT R: AGCCATGCTTTATTTCCAAAGTGG | 312/298 | Intron 2 |
rs1092650847 | P5-del-13bp | F: TCGTTGAAGAAGGCAGTG R: GTGGAGGTGAATAAGTAAGTGA | 185/172 | Intron 4 |
rs594600476 | P6-del-17bp | F: CAGACTCTGGCTCTTCTACTGA R: TGTAAAGCAACGGGACGT | 291/274 | Intron 6 |
Loci | Breeds | Sample Sizes | Genotype and Allele Frequencies | He | Ne | PIC | HWE p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
II | ID | DD | I | D | |||||||
P4-ins-14bp | LFT | 65 | 0 | 0.062 | 0.938 | 0.031 | 0.969 | 0.060 | 1.063 | 0.058 | p > 0.05 |
LXBH | 618 | 0 | 0 | 1.000 | 0 | 1.000 | 0 | 1.000 | 0 | p > 0.05 | |
GSFW | 1243 | 0 | 0.169 | 0.831 | 0.084 | 0.916 | 0.155 | 1.183 | 0.143 | p < 0.05 | |
P5-del-13bp | LFT | 65 | 0.954 | 0.046 | 0 | 0.977 | 0.023 | 0.045 | 1.047 | 0.044 | p > 0.05 |
LXBH | 618 | 0.835 | 0.160 | 0.005 | 0.915 | 0.085 | 0.155 | 1.184 | 0.143 | p > 0.05 | |
GSFW | 1243 | 0.635 | 0.322 | 0.043 | 0.796 | 0.204 | 0.325 | 1.481 | 0.272 | p > 0.05 |
Breeds | LFT | LXBH | GSFW |
---|---|---|---|
LFT | - | 7.9 × 10−5 ** | 0.031 * |
LXBH | 7.5 × 10−5 ** | - | 9.11 × 10−39 ** |
GSFW | 0.024 * | 2.73 × 10−40 ** | - |
Breeds | LFT | LXBH | GSFW |
---|---|---|---|
LFT | - | 0.009 ** | 2.45 × 10−9 ** |
LXBH | 0.035 * | - | 9.41 × 10−20 ** |
GSFW | 4.48 × 10−8 ** | 8.46 × 10−21 ** | - |
Traits | Observed Genotypes (LSM a ± SE) | p-Value | ||
---|---|---|---|---|
II (n) | ID (n) | DD (n) | ||
LXBH yearling rams (77) | ||||
Body weight (kg) | 54.10 b ± 2.32 (60) | 64.18 a ± 3.84 (17) | - | 0.040 |
Body length (cm) | 70.78 b ± 0.87 (60) | 75.82 a ± 1.84 (17) | - | 0.010 |
Chest depth (cm) | 27.28 B ± 0.58 (60) | 30.76 A ± 0.98 (17) | - | 0.005 |
GSFW yearling ewes (155) | ||||
Body weight (kg) | 40.11 a ± 0.55 (103) | 38.08 b ± 0.76 (48) | 35.35 c ± 1.21 (4) | 0.036 |
Chest width (cm) | 26.41 A ± 0.24 (103) | 25.14 B ± 0.26 (48) | 25.00 C ± 0.71 (4) | 0.005 |
Cannon circumference (cm) | 9.14 A ± 0.34 (103) | 9.23 A ± 0.06 (48) | 9.00 B ± 0.00 (4) | 3.53 × 10−4 |
Chest width index (%) | 77.21 A ± 0.62 (103) | 73.64 B ± 0.60 (48) | 74.24 AB ± 3.15 (4) | 4.98 × 10−4 |
GSFW adult ewes (179) | ||||
Chest width (cm) | 28.68 A ± 0.22 (126) | 28.50 A ± 0.35 (46) | 27.14 B ± 0.14 (7) | 8.67 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Zhang, M.; Guo, Z.; Wijayanti, D.; Xu, H.; Jiang, F.; Lan, X. Insertion/Deletion (InDel) Variants within the Sheep Fat-Deposition-Related PDGFD Gene Strongly Affect Morphological Traits. Animals 2023, 13, 1485. https://doi.org/10.3390/ani13091485
Luo Y, Zhang M, Guo Z, Wijayanti D, Xu H, Jiang F, Lan X. Insertion/Deletion (InDel) Variants within the Sheep Fat-Deposition-Related PDGFD Gene Strongly Affect Morphological Traits. Animals. 2023; 13(9):1485. https://doi.org/10.3390/ani13091485
Chicago/Turabian StyleLuo, Yunyun, Mengyang Zhang, Zhengang Guo, Dwi Wijayanti, Hongwei Xu, Fugui Jiang, and Xianyong Lan. 2023. "Insertion/Deletion (InDel) Variants within the Sheep Fat-Deposition-Related PDGFD Gene Strongly Affect Morphological Traits" Animals 13, no. 9: 1485. https://doi.org/10.3390/ani13091485
APA StyleLuo, Y., Zhang, M., Guo, Z., Wijayanti, D., Xu, H., Jiang, F., & Lan, X. (2023). Insertion/Deletion (InDel) Variants within the Sheep Fat-Deposition-Related PDGFD Gene Strongly Affect Morphological Traits. Animals, 13(9), 1485. https://doi.org/10.3390/ani13091485