Evolutionary Analysis of a Parrot Bornavirus 2 Detected in a Sulphur-Crested Cockatoo (Cacatua galerita) Suggests a South American Ancestor
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Case—History
2.2. Molecular Detection
2.3. Sequence and Phylogenetic Analysis
2.4. Selective Pressure and Recombination Analysis
2.5. Phylodynamics and Phylogeography
3. Results
3.1. Clinical Case, Necropsy, and Molecular Detection
3.2. Sequence and Phylogenetic Analysis
3.3. Phylodynamics and Phylogeography
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rubbenstroth, D.; Briese, T.; Dürrwald, R.; Horie, M.; Hyndman, T.H.; Kuhn, J.H.; Nowotny, N.; Payne, S.; Stenglein, M.D.; Tomonaga, K.; et al. ICTV Virus Taxonomy Profile: Bornaviridae. J. Gen. Virol. 2021, 102, 001613. [Google Scholar] [CrossRef] [PubMed]
- Rubbenstroth, D. Avian Bornavirus Research-A Comprehensive Review. Viruses 2022, 14, 1513. [Google Scholar] [CrossRef] [PubMed]
- Hoppes, S.; Gray, P.L.; Payne, S.; Shivaprasad, H.L.; Tizard, I. The Isolation, Pathogenesis, Diagnosis, Transmission, and Control of Avian Bornavirus and Proventricular Dilatation Disease. Vet. Clin. N. Am. Exot. Anim. Pract. 2010, 13, 495–508. [Google Scholar] [CrossRef] [PubMed]
- Hoppes, S.M.; Shivaprasad, H.L. Update on Avian Bornavirus and Proventricular Dilatation Disease: Diagnostics, Pathology, Prevalence, and Control. Vet. Clin. N. Am. Exot. Anim. Pract. 2020, 23, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Honkavuori, K.S.; Shivaprasad, H.L.; Williams, B.L.; Quan, P.L.; Hornig, M.; Street, C.; Palacios, G.; Hutchison, S.K.; Franca, M.; Egholm, M.; et al. Novel Borna Virus in Psittacine Birds with Proventricular Dilatation Disease. Emerg. Infect. Dis. 2008, 14, 1883–1886. [Google Scholar] [CrossRef]
- Kistler, A.L.; Gancz, A.; Clubb, S.; Skewes-Cox, P.; Fischer, K.; Sorber, K.; Chiu, C.Y.; Lublin, A.; Mechani, S.; Farnoushi, Y.; et al. Recovery of Divergent Avian Bornaviruses from Cases of Proventricular Dilatation Disease: Identification of a Candidate Etiologic Agent. Virol. J. 2008, 5, 88. [Google Scholar] [CrossRef]
- Gancz, A.Y.; Clubb, S.; Shivaprasad, H.L. Advanced Diagnostic Approaches and Current Management of Proventricular Dilatation Disease. Vet. Clin. N. Am. Exot. Anim. Pract. 2010, 13, 471–494. [Google Scholar] [CrossRef]
- Payne, S.L.; Delnatte, P.; Guo, J.; Heatley, J.J.; Tizard, I.; Smith, D.A. Birds and Bornaviruses. Anim. Health Res. Rev. 2012, 13, 145–156. [Google Scholar] [CrossRef]
- Staeheli, P.; Rinder, M.; Kaspers, B. Avian Bornavirus Associated with Fatal Disease in Psittacine Birds. J. Virol. 2010, 84, 6269–6275. [Google Scholar] [CrossRef]
- Lierz, M.; Hafez, H.M.; Honkavuori, K.S.; Gruber, A.D.; Olias, P.; Abdelwhab, E.M.; Kohls, A.; Lipkin, W.I.; Briese, T.; Hauck, R. Anatomical Distribution of Avian Bornavirus in Parrots, Its Occurrence in Clinically Healthy Birds and ABV-Antibody Detection. Avian Pathol. 2009, 38, 491–496. [Google Scholar] [CrossRef]
- Donatti, R.V.; Resende, M.; Ferreira, F.C.J.; Marques, M.V.R.; Ecco, R.; Shivaprasad, H.L.; de Resende, J.S.; Martins, N.R.d.S. Fatal Proventricular Dilatation Disease in Captive Native Psittacines in Brazil. Avian Dis. 2014, 58, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Encinas-Nagel, N.; Enderlein, D.; Piepenbring, A.; Herden, C.; Heffels-Redmann, U.; Felippe, P.A.N.; Arns, C.; Hafez, H.M.; Lierz, M. Avian Bornavirus in Free-Ranging Psittacine Birds, Brazil. Emerg. Infect. Dis. 2014, 20, 2103–2106. [Google Scholar] [CrossRef] [PubMed]
- Philadelpho, N.A.; Davies, Y.M.; Guimarães, M.B.; Nuñez, L.F.; Astolfi-Ferreira, C.S.; Parra, S.H.S.; Rubbenstroth, D.; Ferreira, A.J.P. Detection of Avian Bornavirus in Wild and Captive Passeriformes in Brazil. Avian Dis. 2019, 63, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.S.G.; Raso, T.F.; Costa, E.A.; Gómez, S.Y.M.; Martins, N.R.d.S. Parrot Bornavirus in Naturally Infected Brazilian Captive Parrots: Challenges in Viral Spread Control. PLoS ONE 2020, 15, e0232342. [Google Scholar] [CrossRef]
- Philadelpho, N.A.; Rubbenstroth, D.; Guimarães, M.B.; Piantino Ferreira, A.J. Survey of Bornaviruses in Pet Psittacines in Brazil Reveals a Novel Parrot Bornavirus. Vet. Microbiol. 2014, 174, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Weissenböck, H.; Bakonyi, T.; Sekulin, K.; Ehrensperger, F.; Doneley, R.J.T.; Dürrwald, R.; Hoop, R.; Erdélyi, K.; Gál, J.; Kolodziejek, J.; et al. Avian Bornaviruses in Psittacine Birds from Europe and Australia with Proventricular Dilatation Disease. Emerg. Infect. Dis. 2009, 15, 1453–1459. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT Online Service: Multiple Sequence Alignment, Interactive Sequence Choice and Visualization. Brief Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef]
- Darriba, D.; Posada, D.; Kozlov, A.M.; Stamatakis, A.; Morel, B.; Flouri, T. ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein Evolutionary Models. Mol. Biol. Evol. 2020, 37, 291–294. [Google Scholar] [CrossRef]
- Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A Fast, Scalable and User-Friendly Tool for Maximum Likelihood Phylogenetic Inference. Bioinformatics 2019, 35, 4453–4455. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Muhire, B.M.; Varsani, A.; Martin, D.P. SDT: A Virus Classification Tool Based on Pairwise Sequence Alignment and Identity Calculation. PLoS ONE 2014, 9, e108277. [Google Scholar] [CrossRef] [PubMed]
- Weaver, S.; Shank, S.D.; Spielman, S.J.; Li, M.; Muse, S.V.; Kosakovsky Pond, S.L. Datamonkey 2.0: A Modern Web Application for Characterizing Selective and Other Evolutionary Processes. Mol. Biol. Evol. 2018, 35, 773–777. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.P.; Varsani, A.; Roumagnac, P.; Botha, G.; Maslamoney, S.; Schwab, T.; Kelz, Z.; Kumar, V.; Murrell, B. RDP5: A Computer Program for Analyzing Recombination in, and Removing Signals of Recombination from, Nucleotide Sequence Datasets. Virus Evol. 2021, 7, veaa087. [Google Scholar] [CrossRef] [PubMed]
- Bouckaert, R.; Vaughan, T.G.; Barido-Sottani, J.; Duchêne, S.; Fourment, M.; Gavryushkina, A.; Heled, J.; Jones, G.; Kühnert, D.; De Maio, N.; et al. BEAST 2.5: An Advanced Software Platform for Bayesian Evolutionary Analysis. PLoS Comput. Biol. 2019, 15, e1006650. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree, a Graphical Viewer of Phylogenetic Trees (Version 1.4.4.); Institute of Evolutionary Biology, University of Edinburgh: Edinburgh, UK, 2018. [Google Scholar]
- Hadfield, J.; Megill, C.; Bell, S.M.; Huddleston, J.; Potter, B.; Callender, C.; Sagulenko, P.; Bedford, T.; Neher, R.A. Nextstrain: Real-Time Tracking of Pathogen Evolution. Bioinformatics 2018, 34, 4121–4123. [Google Scholar] [CrossRef]
- Köster, J.; Rahmann, S. Snakemake—A Scalable Bioinformatics Workflow Engine. Bioinformatics 2012, 28, 2520–2522. [Google Scholar] [CrossRef]
- Huddleston, J.; Hadfield, J.; Sibley, T.R.; Lee, J.; Fay, K.; Ilcisin, M.; Harkins, E.; Bedford, T.; Neher, R.A.; Hodcroft, E.B. Augur: A Bioinformatics Toolkit for Phylogenetic Analyses of Human Pathogens. J. Open Source Softw. 2021, 6, 2906. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Sagulenko, P.; Puller, V.; Neher, R.A. TreeTime: Maximum-Likelihood Phylodynamic Analysis. Virus Evol. 2018, 4, vex042. [Google Scholar] [CrossRef]
- Philadelpho, N.A.; Chacón, R.D.; Diaz Forero, A.J.; Guimarães, M.B.; Astolfi-Ferreira, C.S.; Piantino Ferreira, A.J. Detection of Aves Polyomavirus 1 (APyV) and Beak and Feather Disease Virus (BFDV) in Exotic and Native Brazilian Psittaciformes. Braz. J. Microbiol. 2022, 53, 1665–1673. [Google Scholar] [CrossRef] [PubMed]
- BirdLife International. Available online: https://www.birdlife.org/ (accessed on 6 October 2023).
- Steinmetz, A.; Pees, M.; Schmidt, V.; Weber, M.; Krautwald-Junghanns, M.-E.; Oechtering, G. Blindness as a Sign of Proventricular Dilatation Disease in a Grey Parrot (Psittacus Erithacus Erithacus). J. Small Anim. Pract. 2008, 49, 660–662. [Google Scholar] [CrossRef] [PubMed]
- Gorbalenya, A.E.; Lauber, C. Phylogeny of Viruses. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Matsvay, A.; Dyachkova, M.; Mikhaylov, I.; Kiselev, D.; Say, A.; Burskaia, V.; Artyushin, I.; Khafizov, K.; Shipulin, G. Complete Genome Sequence, Molecular Characterization and Phylogenetic Relationships of a Novel Tern Atadenovirus. Microorganisms 2021, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Gyuranecz, M.; Foster, J.T.; Dán, Á.; Ip, H.S.; Egstad, K.F.; Parker, P.G.; Higashiguchi, J.M.; Skinner, M.A.; Höfle, U.; Kreizinger, Z.; et al. Worldwide Phylogenetic Relationship of Avian Poxviruses. J. Virol. 2013, 87, 4938–4951. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, W.; Fu, H.; Zou, X.; Zhao, M.; Liang, S.; Gu, C.; Yang, Q.; He, M.; Xiao, Q.; et al. Genomic Analysis of Poxviridae and Exploring Qualified Gene Sequences for Phylogenetics. Comput. Struct. Biotechnol. J. 2021, 19, 5479–5486. [Google Scholar] [CrossRef]
- Sassa, Y.; Horie, M.; Fujino, K.; Nishiura, N.; Okazaki, S.; Furuya, T.; Nagai, M.; Omatsu, T.; Kojima, A.; Mizugami, M.; et al. Molecular Epidemiology of Avian Bornavirus from Pet Birds in Japan. Virus Genes 2013, 47, 173–177. [Google Scholar] [CrossRef]
- Rubbenstroth, D.; Schmidt, V.; Rinder, M.; Legler, M.; Twietmeyer, S.; Schwemmer, P.; Corman, V.M. Phylogenetic Analysis Supports Horizontal Transmission as a Driving Force of the Spread of Avian Bornaviruses. PLoS ONE 2016, 11, e0160936. [Google Scholar] [CrossRef]
- Sa-Ardta, P.; Rinder, M.; Sanyathitiseree, P.; Weerakhun, S.; Lertwatcharasarakul, P.; Lorsunyaluck, B.; Schmitz, A.; Korbel, R. First Detection and Characterization of Psittaciform Bornaviruses in Naturally Infected and Diseased Birds in Thailand. Vet. Microbiol. 2019, 230, 62–71. [Google Scholar] [CrossRef]
- Chare, E.R.; Gould, E.A.; Holmes, E.C. Phylogenetic Analysis Reveals a Low Rate of Homologous Recombination in Negative-Sense RNA Viruses. J. Gen. Virol. 2003, 84, 2691–2703. [Google Scholar] [CrossRef]
- Schierup, M.H.; Mordhorst, C.H.; Muller, C.P.; Christensen, L.S. Evidence of Recombination among Early-Vaccination Era Measles Virus Strains. BMC Evol. Biol. 2005, 5, 52. [Google Scholar] [CrossRef]
- Suzuki, Y.; Kobayashi, Y.; Horie, M.; Tomonaga, K. Origin of an Endogenous Bornavirus-like Nucleoprotein Element in Thirteen-Lined Ground Squirrels. Genes Genet. Syst. 2014, 89, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Komorizono, R.; Sassa, Y.; Horie, M.; Makino, A.; Tomonaga, K. Evolutionary Selection of the Nuclear Localization Signal in the Viral Nucleoprotein Leads to Host Adaptation of the Genus Orthobornavirus. Viruses 2020, 12, 1291. [Google Scholar] [CrossRef] [PubMed]
- Cadar, D.; Schmidt-Chanasit, J.; Tappe, D. Genomic and Micro-Evolutionary Features of Mammalian 2 Orthobornavirus (Variegated Squirrel Bornavirus 1, VSBV-1). Microorganisms 2021, 9, 1141. [Google Scholar] [CrossRef] [PubMed]
- Leroy, E.M.; Baize, S.; Mavoungou, E.; Apetrei, C. Sequence Analysis of the GP, NP, VP40 and VP24 Genes of Ebola Virus Isolated from Deceased, Surviving and Asymptomatically Infected Individuals during the 1996 Outbreak in Gabon: Comparative Studies and Phylogenetic Characterization. J. Gen. Virol. 2002, 83, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Furuse, Y.; Suzuki, A.; Oshitani, H. Origin of Measles Virus: Divergence from Rinderpest Virus between the 11th and 12th Centuries. Virol. J. 2010, 7, 52. [Google Scholar] [CrossRef]
- He, M.; Ding, N.-Z.; He, C.-Q.; Yan, X.-C.; Teng, C.-B. Dating the Divergence of the Infectious Hematopoietic Necrosis Virus. Infect. Genet. Evol. 2013, 18, 145–150. [Google Scholar] [CrossRef]
- He, M.; An, T.-Z.; Teng, C.-B. Evolution of Mammalian and Avian Bornaviruses. Mol. Phylogenet. Evol. 2014, 79, 385–391. [Google Scholar] [CrossRef]
- Wertheim, J.O.; Kosakovsky Pond, S.L. Purifying Selection Can Obscure the Ancient Age of Viral Lineages. Mol. Biol. Evol. 2011, 28, 3355–3365. [Google Scholar] [CrossRef]
- Hyndman, T.H.; Shilton, C.M.; Stenglein, M.D.; Wellehan, J.F.X. Divergent Bornaviruses from Australian Carpet Pythons with Neurological Disease Date the Origin of Extant Bornaviridae Prior to the End-Cretaceous Extinction. PLoS Pathog. 2018, 14, e1006881. [Google Scholar] [CrossRef]
- Hernández, L.H.A.; da Paz, T.Y.B.; Silva, S.P.d.; Silva, F.S.d.; Barros, B.C.V.d.; Nunes, B.T.D.; Casseb, L.M.N.; Medeiros, D.B.A.; Vasconcelos, P.F.d.C.; Cruz, A.C.R. First Genomic Evidence of a Henipa-like Virus in Brazil. Viruses 2022, 14, 2167. [Google Scholar] [CrossRef]
- Da Paz, T.Y.B.; Hernández, L.H.A.; Silva, S.P.d.; Silva, F.S.d.; Barros, B.C.V.d.; Casseb, L.M.N.; Guimarães, R.J.d.P.S.e.; Vasconcelos, P.F.d.C.; Cruz, A.C.R. Novel Rodent Arterivirus Detected in the Brazilian Amazon. Viruses 2023, 15, 1150. [Google Scholar] [CrossRef] [PubMed]
- Ellwanger, J.H.; Kulmann-Leal, B.; Kaminski, V.L.; Valverde-Villegas, J.M.; Veiga, A.B.G.D.; Spilki, F.R.; Fearnside, P.M.; Caesar, L.; Giatti, L.L.; Wallau, G.L.; et al. Beyond Diversity Loss and Climate Change: Impacts of Amazon Deforestation on Infectious Diseases and Public Health. An. Acad. Bras. Cienc. 2020, 92, e20191375. [Google Scholar] [CrossRef] [PubMed]
- Retel, C.; Märkle, H.; Becks, L.; Feulner, P.G.D. Ecological and Evolutionary Processes Shaping Viral Genetic Diversity. Viruses 2019, 11, 220. [Google Scholar] [CrossRef]
- Simmonds, P.; Aiewsakun, P.; Katzourakis, A. Prisoners of War—Host Adaptation and Its Constraints on Virus Evolution. Nat. Rev. Microbiol. 2019, 17, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Randolph, S.E.; Dobson, A.D.M. Pangloss Revisited: A Critique of the Dilution Effect and the Biodiversity-Buffers-Disease Paradigm. Parasitology 2012, 139, 847–863. [Google Scholar] [CrossRef] [PubMed]
- Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global Effects of Land Use on Local Terrestrial Biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef]
- Mollentze, N.; Streicker, D.G. Viral Zoonotic Risk Is Homogenous among Taxonomic Orders of Mammalian and Avian Reservoir Hosts. Proc. Natl. Acad. Sci. USA 2020, 117, 9423–9430. [Google Scholar] [CrossRef]
- Pavlin, B.I.; Schloegel, L.M.; Daszak, P. Risk of Importing Zoonotic Diseases through Wildlife Trade, United States. Emerg. Infect. Dis. 2009, 15, 1721–1726. [Google Scholar] [CrossRef]
- Norris, K.; Evans, M.R. Ecological Immunology: Life History Trade-Offs and Immune Defense in Birds. Behav. Ecol. 2000, 11, 19–26. [Google Scholar] [CrossRef]
- Rush, E.R.; Dale, E.; Aguirre, A.A. Illegal Wildlife Trade and Emerging Infectious Diseases: Pervasive Impacts to Species, Ecosystems and Human Health. Animals 2021, 11, 1821. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, J.; Kojima, S.; Mukai, Y.; Tomonaga, K.; Horie, M. 100-My History of Bornavirus Infections Hidden in Vertebrate Genomes. Proc. Natl. Acad. Sci. USA 2021, 118, e2026235118. [Google Scholar] [CrossRef] [PubMed]
Selective Pressure | |||||||||||||||||||||||
MEME | |||||||||||||||||||||||
BUSTED (ALL) | |||||||||||||||||||||||
Protein | Nucleoprotein | Matrix | |||||||||||||||||||||
Genotype | Position | 216 | 255 | 265 | 269 | 270 | 271 | 272 | 273 | 276 | 280 | 26 | 32 | 34 | 46 | 50 | 58 | 65 | 72 | 77 | 84 | 94 | 98 |
Strain | D | L | K | D | T | T | A | K | A | D | I | T | H | K | Q | V | V | T | F | V | K | K | |
PaBV-2 | USP-1295_Cacatua_galerita_Brazil_2019 | * | * | * | * | V | * | T | * | * | * | * | * | * | R | * | * | * | * | * | * | * | * |
1791-99_Psittacus_erithacus_Austria_1999 | * | * | * | * | V | * | T | * | * | * | * | * | * | * | * | M | * | * | * | * | * | * | |
H03-2346_Psittacus_erithacus_Switzerland_2003 | * | * | * | * | V | * | T | * | * | * | * | * | * | * | * | * | * | * | L | * | * | * | |
Fester-ABRC-96-95_Probosciger_aterrimus_USA_2006 | * | * | * | * | V | * | T | * | * | * | * | * | * | R | R | * | * | * | * | * | * | * | |
bil_Aratinga_solstitialis_USA_2006 | * | * | * | * | V | * | T | * | * | * | V | * | * | * | * | * | * | * | * | * | * | * | |
931-08_Cacatua_moluccensis_Australia_2008 | * | * | * | * | V | * | T | * | * | * | * | * | * | * | E | * | * | * | * | * | * | * | |
17864_Nymphicus_hollandicus_Germany_2011 | * | * | * | * | V | * | T | * | * | * | * | I | * | R | * | * | * | * | * | * | * | * | |
NTUCL52_Pionites_leucogaster_Taiwan_2017 | * | * | * | * | I | * | T | * | * | * | * | * | * | R | * | * | * | * | * | * | * | * | |
PaBV-3 | KD_Ara_chloroptera_USA_2007 | * | * | * | N | I | * | T | T | * | N | * | * | * | R | * | * | I | * | L | I | * | * |
1367_Ara_ararauna_USA_2008 | * | * | * | * | I | * | T | T | * | * | * | * | * | R | * | * | I | * | L | I | * | * | |
PaBV-4 | 40-03_Poicephalus_rufiventris_Austria_2003 | * | * | * | * | M | * | * | * | * | * | * | * | * | * | * | * | * | * | L | * | * | * |
KVI-446902_Ara_ararauna_Israel_2004 | * | * | * | * | * | * | * | * | * | * | * | A | * | R | * | * | * | * | * | * | * | * | |
447-05B_Ara_severa_Austria_2005 | * | * | * | * | * | I | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | R | |
261-06P_Ara_ararauna_Austria_2006 | * | V | * | * | * | * | * | * | * | * | * | * | * | R | * | * | * | * | * | * | * | * | |
AG5_Psittacus_erithacus_USA_2008 | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | G | * | * | * | * | * | R | |
6758_Ara_ararauna_Germany_2008 | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | |
USP/NP-166/BRAZIL/2013_Cacatua_alba_Brazil_2013 | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | |
16042_Aratinga_solstitialis_Thailand_2016 | * | * | * | * | * | * | * | * | * | * | * | * | R | * | * | * | * | * | * | * | R | * | |
NTUCL7_Poicephalus_gulielmi_Taiwan_2016 | * | * | * | * | * | A | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | |
DR-15_Cacatua_galerita_Germany_2017 | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | I | * | * | * | * | |
PaBV-1 | VTH_Eolophus_roseicapillus_Israel_2006 | * | * | * | E | I | * | T | * | T | * | * | * | * | * | * | * | * | * | * | * | E | * |
M25_Diopsittaca_nobilis_USA_2008 | * | * | R | * | V | * | T | * | * | * | * | * | * | R | * | * | * | * | * | * | * | * | |
16234_Nestor_notabilis_Germany_2011 | * | * | * | E | I | * | * | * | T | * | * | * | * | * | * | * | * | * | * | * | * | * | |
PaBV-7 | 16667a_Cacatua_moluccensis_Germany_2010 | * | * | R | E | * | * | * | * | T | E | * | * | R | * | * | * | * | L | * | * | * | * |
PaBV-8 | USP/NP-42/BRAZIL/2012_Amazona_aestiva_Brazil_2012 | E | * | * | * | V | * | T | * | * | * | * | I | * | * | * | * | * | * | * | * | * | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chacón, R.D.; Sánchez-Llatas, C.J.; Diaz Forero, A.J.; Guimarães, M.B.; Pajuelo, S.L.; Astolfi-Ferreira, C.S.; Ferreira, A.J.P. Evolutionary Analysis of a Parrot Bornavirus 2 Detected in a Sulphur-Crested Cockatoo (Cacatua galerita) Suggests a South American Ancestor. Animals 2024, 14, 47. https://doi.org/10.3390/ani14010047
Chacón RD, Sánchez-Llatas CJ, Diaz Forero AJ, Guimarães MB, Pajuelo SL, Astolfi-Ferreira CS, Ferreira AJP. Evolutionary Analysis of a Parrot Bornavirus 2 Detected in a Sulphur-Crested Cockatoo (Cacatua galerita) Suggests a South American Ancestor. Animals. 2024; 14(1):47. https://doi.org/10.3390/ani14010047
Chicago/Turabian StyleChacón, Ruy D., Christian J. Sánchez-Llatas, Andrea J. Diaz Forero, Marta B. Guimarães, Sarah L. Pajuelo, Claudete S. Astolfi-Ferreira, and Antonio J. Piantino Ferreira. 2024. "Evolutionary Analysis of a Parrot Bornavirus 2 Detected in a Sulphur-Crested Cockatoo (Cacatua galerita) Suggests a South American Ancestor" Animals 14, no. 1: 47. https://doi.org/10.3390/ani14010047
APA StyleChacón, R. D., Sánchez-Llatas, C. J., Diaz Forero, A. J., Guimarães, M. B., Pajuelo, S. L., Astolfi-Ferreira, C. S., & Ferreira, A. J. P. (2024). Evolutionary Analysis of a Parrot Bornavirus 2 Detected in a Sulphur-Crested Cockatoo (Cacatua galerita) Suggests a South American Ancestor. Animals, 14(1), 47. https://doi.org/10.3390/ani14010047