Dimorphic Regulation of the MafB Gene by Sex Steroids in Hamsters, Mesocricetus auratus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Hamsters
2.2. RNA Isolation and cDNA Synthesis
2.3. Molecular Cloning
2.4. Sequencing and Bioinformatic Analysis
2.5. MafB Phylogenetic Tree and Three-Dimensional Structure Prediction
2.6. Gene Expression Analysis
2.7. Statistical Analysis
3. Results
3.1. cDNA Cloning of Hamster MafB
3.2. Characterization of MafB Protein from Hamsters
3.3. Phylogenetic Analysis of MafB Proteins in Mammals and Three-Dimensional Structure of Hamster MafB Protein
3.4. MafB Gene Expression in Hamsters
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoshida, T.; Ohkumo, T.; Ishibashi, S.; Yasuda, K. The 5′-AT-rich half-site of Maf recognition element: A functional target for bZIP transcription factor Maf. Nucleic Acids Res. 2005, 33, 3465. [Google Scholar] [CrossRef]
- Fujino, M.; Ojima, M.; Takahashi, S. Exploring Large MAF Transcription Factors: Functions, Pathology, and Mouse Models with Point Mutations. Genes 2023, 14, 1883. [Google Scholar] [CrossRef] [PubMed]
- Pogenberg, V.; Consani Textor, L.; Vanhille, L.; Holton, S.J.; Sieweke, M.H.; Wilmanns, M. Design of a bZip transcription factor with homo/heterodimer-induced DNA-binding preference. Structure 2014, 22, 466. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.W.; Eisenbart, J.D.; Cordes, S.P.; Barsh, G.S.; Stoffel, M.; Le Beau, M.M. Human KRML (MAFB): cDNA cloning, genomic structure, and evaluation as a candidate tumor suppressor gene in myeloid leukemias. Genomics 1999, 59, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Serria, M.S.; Nakabayashi, H.; Nishi, S.; Sakai, M. Molecular cloning and functional characterization of the mouse mafB gene. Gene 2000, 242, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Shawki, H.H.; Oishi, H.; Usui, T.; Kitadate, Y.; Basha, W.A.; Abdellatif, A.M.; Hasegawa, K.; Okada, R.; Mochida, K.; El-Shemy, H.A.; et al. MAFB is dispensable for the fetal testis morphogenesis and the maintenance of spermatogenesis in adult mice. PLoS ONE 2018, 13, e0190800. [Google Scholar] [CrossRef] [PubMed]
- Artner, I.; Le Lay, J.; Hang, Y.; Elghazi, L.; Schisler, J.C.; Henderson, E.; Sosa-Pineda, B.; Stein, R. MafB: An activator of the glucagon gene expressed in developing islet alpha- and beta-cells. Diabetes 2006, 55, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Artner, I.; Blanchi, B.; Raum, J.C.; Guo, M.; Kaneko, T.; Cordes, S.; Sieweke, M.; Stein, R. MafB is required for islet beta cell maturation. Proc. Natl. Acad. Sci. USA 2007, 104, 3853–3858. [Google Scholar] [CrossRef] [PubMed]
- Moriguchi, T.; Hamada, M.; Morito, N.; Terunuma, T.; Hasegawa, K.; Zhang, C.; Yokomizo, T.; Esaki, R.; Kuroda, E.; Yoh, K.; et al. MafB is essential for renal development and F4/80 expression in macrophages. Mol. Cell. Biol. 2006, 26, 5715–5727. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J.H.; Lee, J.; Jin, H.M.; Kook, H.; Kim, K.K.; Lee, S.Y.; Kim, N. MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood 2007, 109, 3253–3259. [Google Scholar] [CrossRef]
- Kelly, L.M.; Englmeier, U.; Lafon, I.; Sieweke, M.H.; Graf, T. MafB is an inducer of monocytic differentiation. EMBO J. 2000, 19, 1987–1997. [Google Scholar] [CrossRef]
- Gao, X.; Fang, X.; Huang, D.; Zhang, S.; Zeng, H. Multicentric carpotarsal osteolysis syndrome with variants of MAFB gene: A case report and literature review. Pediatr. Rheumatol. Online J. 2024, 22, 37. [Google Scholar] [CrossRef]
- Sato, Y.; Tsukaguchi, H.; Morita, H.; Higasa, K.; Tran, M.T.N.; Hamada, M.; Usui, T.; Morito, N.; Horita, S.; Hayashi, T.; et al. A mutation in transcription factor MAFB causes Focal Segmental Glomerulosclerosis with Duane Retraction Syndrome. Kidney Int. 2018, 94, 396–407. [Google Scholar] [CrossRef]
- Auffray, C.; Fogg, D.; Garfa, M.; Elain, G.; Join-Lambert, O.; Kayal, S.; Sarnacki, S.; Cumano, A.; Lauvau, G.; Geissmann, F. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007, 317, 666–670. [Google Scholar] [CrossRef]
- Hamada, M.; Tsunakawa, Y.; Jeon, H.; Yadav, M.K.; Takahashi, S. Role of MafB in macrophages. Exp. Anim. 2020, 69, 1–10. [Google Scholar] [CrossRef]
- Suzuki, K.; Numata, T.; Suzuki, H.; Raga, D.D.; Ipulan, L.A.; Yokoyama, C.; Matsushita, S.; Hamada, M.; Nakagata, N.; Nishinakamura, R.; et al. Sexually dimorphic expression of Mafb regulates masculinization of the embryonic urethral formation. Proc. Natl. Acad. Sci. USA 2014, 111, 16407–16412. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Luo, J.; Xiang, H.; Wang, S.; Shen, L.; Long, C.; Liu, F.; Lin, T.; He, D.; Liu, X.; et al. Expression of Mafb is down-regulated in the foreskin of children with hypospadias. J. Pediatr. Urol. 2021, 17, 70.e1–70.e6. [Google Scholar] [CrossRef]
- Mares, L.; Vilchis, F.; Chavez, B.; Ramos, L. Molecular genetic analysis of AKR1C2-4 and HSD17B6 genes in subjects 46,XY with hypospadias. J. Pediatr. Urol. 2020, 16, 689.e1–689.e12. [Google Scholar] [CrossRef]
- Avivi, A.; Oster, H.; Joel, A.; Beiles, A.; Albrecht, U.; Nevo, E. Circadian genes in a blind subterranean mammal III: Molecular cloning and circadian regulation of cryptochrome genes in the blind subterranean mole rat, Spalax ehrenbergi superspecies. J. Biol. Rhythm. 2004, 19, 22–34. [Google Scholar] [CrossRef]
- Andreychev, A.V. Daily and seasonal feeding activity of the greater mole-rat (Spalax microphtalmus, Rodentia, Spalacidae). Biol. Bull. 2019, 46, 1172–1181. [Google Scholar] [CrossRef]
- Shirama, K.; Harada, T.; Kohda, M.; Hokano, M. Fine structure of melanocytes and macrophages in the Harderian gland of the mouse. Acta Anat. 1988, 131, 192–199. [Google Scholar] [CrossRef]
- Sabry, I.; Al-Azemi, M.; Al-Ghaith, L. The Harderian gland of the Cheesman’s gerbil (Gerbillus cheesmani) of the Kuwaiti desert. Eur. J. Morphol. 2000, 38, 97–108. [Google Scholar] [CrossRef]
- Hussein, O.A.; Elgamal, D.A.; Elgayar, S.A. Structure of the secretory cells of male and female adult guinea pigs Harderian gland. Tissue Cell 2015, 47, 323–335. [Google Scholar] [CrossRef]
- Hoffman, R. Influence of some endocrine glands, hormones and blinding on the histology and porphyrins of the Harderian glands of golden hamsters. Am. J. Anat. 1972, 132, 463–478. [Google Scholar] [CrossRef]
- McMasters, K.M.; Hoffman, R.A. Harderian gland: Regulation of sexual “type” by gonads and pineal gland. Biol. Reprod. 1984, 31, 579–585. [Google Scholar] [CrossRef]
- Vilchis, F.; Hernandez, A.; Perez, A.E.; Perez-Palacios, G. Hormone regulation of the rodent Harderian gland: Binding properties of the androgen receptor in the male golden hamster. J. Endocrinol. 1987, 112, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Vilchis, F.; Perez-Palacios, G. Steroid hormone receptors and the sexual phenotype of the Harderian gland in hamsters. J. Endocrinol. 1989, 121, 149–156. [Google Scholar] [CrossRef]
- Vilchis, F.; Chavez, B.; Cerbon, M.A.; Perez-Palacios, G. The Harderian gland as a target for steroid hormone action: Role and characteristics of intracellular receptors. In Harderian Glands: Porphyrin Metabolism, Behavioral and Endocrine Effects; Webb, S.M., Hoffman, R.A., Puig-Domingo, M.L., Reiter, R.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 297–316. [Google Scholar]
- Buzzell, G.; Hida, A.; Uchijima, Y.; Seyama, Y. Effects of the photoperiod and of castration on alkyldiacylglycerol in the Harderian gland of the male golden hamster. Comp. Biochem. Physiol. A 1999, 124 (Suppl. S1), S124. [Google Scholar] [CrossRef]
- Mares, L.; Vilchis, F.; Chavez, B.; Ramos, L. Expression and regulation of ABCG2/BCRP1 by sex steroids in the Harderian gland of the Syrian hamster (Mesocricetus auratus). Comp. Biolchem. Physiol. Part A Mol. Integr. Physiol. 2019, 342, 279–289. [Google Scholar] [CrossRef]
- Mares, L.; Ramos, L. Harderian SOX9: Molecular characterization and its dimorphic expression in hamster. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2021, 258, 110981. [Google Scholar] [CrossRef]
- Ramos, L. Dimorphic frataxin and its gene regulation by sex steroids in hamsters. Mol. Genet. Genom. 2023, 298, 615. [Google Scholar] [CrossRef]
- Spike, R.C.; Johnston, H.S.; McGadey, J.; Moore, M.R.; Thompson, G.G.; Payne, A.P. Quantitative studies on the effects of hormones on structure and porphyrin biosynthesis in the Harderian gland of the female golden hamster: I. The effects of ovariectomy and nitrogen administration. J. Anat. 1985, 142, 59–72. Available online: http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1166363/ (accessed on 1 January 2024).
- Spike, R.C.; Johnston, H.S.; McGadey, J.; Moore, M.R.; Thompson, G.G.; Payne, A.P. Quantitative studies on the effects of hormones on structure and porphyrin biosynthesis in the harderian gland of the female golden hamster. II. The time course of changes after ovariectomy. J. Anat. 1986, 145, 67–77. Available online: http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1166493/ (accessed on 1 January 2024).
- Mares, L.; Vilchis, F.; Chavez, B.; Ramos, L. Isolation and sex steroid effects on the expression of the ATP-binding cassette transporter ABCB6 in Harderian glands of hamster (Mesocricetus auratus). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2019, 232, 40–46. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the Expasy Server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar] [CrossRef]
- Higgins, D.G.; Sharp, P.M. CLUSTAL: A package for performing multiple sequence alignment on a microcomputer. Gene 1988, 73, 237–244. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Franz, M.; Rodriguez, H.; Lopes, C.; Zuberi, K.; Montojo, J.; Bader, G.D.; Morris, Q. GeneMANIA update 2018. Nucleic Acids Res. 2018, 46, W60–W64. [Google Scholar] [CrossRef] [PubMed]
- Almagro Armenteros, J.J.; Sonderby, C.K.; Sonderby, S.K.; Nielsen, H.; Winther, O. DeepLoc: Prediction of protein subcellular localization using deep learning. Bioinformatics 2017, 33, 3387–3395. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.E.; Chivian, D.; Baker, D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004, 32, W526–W531. [Google Scholar] [CrossRef]
- DeLano, W.L. PyMOL: A New Open-Source Molecular Graphics Tool; CCP4 Newsletter on Protein Crystallography; DeLano Scientific: San Carlos, CA, USA, 2002; Volume 40, pp. 82–92. [Google Scholar]
- Sarrazin, S.; Mossadegh-Keller, N.; Fukao, T.; Aziz, A.; Mourcin, F.; Vanhille, L.; Kelly Modis, L.; Kastner, P.; Chan, S.; Duprez, E.; et al. MafB restricts M-CSF-dependent myeloid commitment divisions of hematopoietic stem cells. Cell 2009, 138, 300–313. [Google Scholar] [CrossRef]
- Miyai, M.; Hamada, M.; Moriguchi, T.; Hiruma, J.; Kamitani-Kawamoto, A.; Watanabe, H.; Hara-Chikuma, M.; Takahashi, K.; Takahashi, S.; Kataoka, K. Transcription Factor MafB Coordinates Epidermal Keratinocyte Differentiation. J. Investig. Dermatol. 2016, 136, 1848–1857. [Google Scholar] [CrossRef]
- Katoh, M.C.; Jung, Y.; Ugboma, C.M.; Shimbo, M.; Kuno, A.; Basha, W.A.; Kudo, T.; Oishi, H.; Takahashi, S. MafB Is Critical for Glucagon Production and Secretion in Mouse Pancreatic alpha Cells In Vivo. Mol. Cell. Biol. 2018, 38, e00504-17. [Google Scholar] [CrossRef] [PubMed]
- Hikichi, H.; Seto, S.; Wakabayashi, K.; Hijikata, M.; Keicho, N. Transcription factor MAFB controls type I and II interferon response-mediated host immunity in Mycobacterium tuberculosis-infected macrophages. Front. Microbiol. 2022, 13, 962306. [Google Scholar] [CrossRef] [PubMed]
- Sakai, M.; Imaki, J.; Yoshida, K.; Ogata, A.; Matsushima-Hibaya, Y.; Kuboki, Y.; Nishizawa, M.; Nishi, S. Rat maf related genes: Specific expression in chondrocytes, lens and spinal cord. Oncogene 1997, 14, 745–750. [Google Scholar] [CrossRef]
- Katzenback, B.A.; Karpman, M.; Belosevic, M. Distribution and expression analysis of transcription factors in tissues and progenitor cell populations of the goldfish (Carassius auratus L.) in response to growth factors and pathogens. Mol. Immunol. 2011, 48, 1224–1235. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, T.A.; Zhao, L.; Artner, I.; Jarrett, H.W.; Friedman, D.; Means, A.; Stein, R. Members of the large Maf transcription family regulate insulin gene transcription in islet beta cells. Mol. Cell. Biol. 2003, 23, 6049–6062. [Google Scholar] [CrossRef] [PubMed]
- Hang, Y.; Stein, R. MafA and MafB activity in pancreatic beta cells. Trends Endocrinol. Metab. 2011, 22, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Xiafukaiti, G.; Maimaiti, S.; Ogata, K.; Kuno, A.; Kudo, T.; Shawki, H.H.; Oishi, H.; Takahashi, S. MafB Is Important for Pancreatic beta-Cell Maintenance under a MafA-Deficient Condition. Mol. Cell. Biol. 2019, 39, e00080-19. [Google Scholar] [CrossRef] [PubMed]
- Russell, R.; Carnese, P.P.; Hennings, T.G.; Walker, E.M.; Russ, H.A.; Liu, J.S.; Giacometti, S.; Stein, R.; Hebrok, M. Loss of the transcription factor MAFB limits beta-cell derivation from human PSCs. Nat. Commun. 2020, 11, 2742. [Google Scholar] [CrossRef]
- Kiss, M.; Czimmerer, Z.; Nagy, L. The role of lipid-activated nuclear receptors in shaping macrophage and dendritic cell function: From physiology to pathology. J. Allergy Clin. Immunol. 2013, 132, 264–286. [Google Scholar] [CrossRef]
- Matsushita, S.; Suzuki, K.; Ogino, Y.; Hino, S.; Sato, T.; Suyama, M.; Matsumoto, T.; Omori, A.; Inoue, S.; Yamada, G. Androgen Regulates Mafb Expression Through its 3′UTR During Mouse Urethral Masculinization. Endocrinology 2016, 157, 844–857. [Google Scholar] [CrossRef]
- Ramos, L.; Mares, L. Hamster DAX1: Molecular insights, specific expression, and its role in the Harderian gland. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2022, 263, 111096. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, L. Dimorphic Regulation of the MafB Gene by Sex Steroids in Hamsters, Mesocricetus auratus. Animals 2024, 14, 1728. https://doi.org/10.3390/ani14121728
Ramos L. Dimorphic Regulation of the MafB Gene by Sex Steroids in Hamsters, Mesocricetus auratus. Animals. 2024; 14(12):1728. https://doi.org/10.3390/ani14121728
Chicago/Turabian StyleRamos, Luis. 2024. "Dimorphic Regulation of the MafB Gene by Sex Steroids in Hamsters, Mesocricetus auratus" Animals 14, no. 12: 1728. https://doi.org/10.3390/ani14121728
APA StyleRamos, L. (2024). Dimorphic Regulation of the MafB Gene by Sex Steroids in Hamsters, Mesocricetus auratus. Animals, 14(12), 1728. https://doi.org/10.3390/ani14121728