Effect of 3-Nitropropionic Acid at Different Doses on In Vitro Rumen Fermentation, Digestibility, and Methane Emissions of Grazing Yak and Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Treatment and Incubation
2.2. Sampling and Measurements
2.3. Statistical Analysis
3. Results
3.1. Effects of 3NPA on Ruminal pH and VFA Concentration
3.2. Effects of 3NPA on Ruminal Dry Matter Digestibility, Total Gas, CH4, and H2 Production
4. Discussion
4.1. Effect of 3NPA on In Vitro Rumen Gas Production and Dry Matter Digestibility of Grazing Yak
4.2. Effect of 3NPA on In Vitro Rumen Fermentation Characteristics of Grazing Cattle
4.3. Comparison between Yak and Cattle in In Vitro Rumen Fermentation Characteristics with 3NPA Treatment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amon, B.; Çinar, G.; Anderl, M.; Dragoni, F.; Kleinberger-Pierer, M.; Hörtenhuber, S. Inventory reporting of livestock emissions: The impact of the IPCC 1996 and 2006 Guidelines. Environ. Res. Lett. 2021, 16, 075001. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Cao, Z.J.; Wang, Y.L.; Wang, Y.J.; Yang, H.J.; Li, S.L. Nitrocompounds as potential methanogenic inhibitors in ruminant animals: A review. Anim. Feed. Sci. Technol. 2018, 236, 107–114. [Google Scholar] [CrossRef]
- Ochoa-García, P.A.; Arevalos-Sánchez, M.M.; Ruiz-Barrera, O.; Anderson, R.C.; Maynez-Pérez, A.O.; Rodríguez-Almeida, F.A.; Chávez-Martínez, A.; Gutiérrez-Bañuelos, H.; Corral-Luna, A. In vitro reduction of methane production by 3-nitro-1-propionic acid is dose-dependent. J. Anim. Sci. 2019, 97, 1317–1324. [Google Scholar] [CrossRef] [PubMed]
- Latham, E.A.; Anderson, R.C.; Pinchak, W.E.; Nisbet, D.J. Insights on alterations to the rumen ecosystem by nitrate and nitrocompounds. Front. Microbiol. 2016, 7, 228. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, K.A.; Ungerfeld, E.M.; Abdalla, A.L.; Alvarez, C.; Arndt, C.; Becquet, P.; Benchaar, C.; Berndt, A.; Mauricio, R.M.; McAllister, T.A.; et al. Invited review: Current enteric methane mitigation options. J. Dairy Sci. 2022, 105, 9297–9326. [Google Scholar] [CrossRef] [PubMed]
- Arndt, C.; Hristov, A.N.; Price, W.J.; McClelland, S.C.; Pelaez, A.M.; Cueva, S.F.; Oh, J.; Dijkstra, J.; Bannink, A.; Bayat, A.R.; et al. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050. Proc. Natl. Acad. Sci. USA 2022, 119, e2111294119. [Google Scholar] [CrossRef]
- Patra, A.K.; Yu, Z. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol. 2012, 78, 4271–4280. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-García, P.A.; Anderson, R.C.; Alonso Rodríguez-Almeida, F.; Omar Maynez-Pérez, A.; Felix-Portillo, M.; Božić, A.K.; María Arevalos-Sánchez, M.; Vargas-Bello-Pérez, E.; Muro-Reyes, A.; Corral-Luna, A. Effect of Ethyl Nitroacetate, Ethyl 2-Nitropropionate and 3-Nitropropionic Acid on Ruminal Fermentation Characteristics and Dry Matter Degradability under In Vitro Conditions. Preprints 2023, 2023040717. [Google Scholar] [CrossRef]
- Ochoa-García, P.A.; Anderson, R.C.; Arévalos-Sánchez, M.M.; Rodríguez-Almeida, F.A.; Félix-Portillo, M.; Muro-Reyes, A.; Božić, A.K.; Arzola-Álvarez, C.; Corral-Luna, A. Astragallus mollissimus plant extract: A strategy to reduce ruminal methanogenesis. Trop. Anim. Health Prod. 2021, 53, 436. [Google Scholar] [CrossRef]
- Patra, A.K. Enteric methane mitigation technologies for ruminant livestock: A synthesis of current research and future directions. Environ. Monit. Assess. 2012, 184, 1929–1952. [Google Scholar] [CrossRef]
- Króliczewska, B.; Pecka-Kiełb, E.; Bujok, J. Strategies Used to Reduce Methane Emissions from Ruminants: Controversies and Issues. Agriculture 2023, 13, 602. [Google Scholar] [CrossRef]
- Alemu, A.W.; Shreck, A.L.; Booker, C.W.; McGinn, S.M.; Pekrul, L.K.; Kindermann, M.; Beauchemin, K.A. Use of 3-nitrooxypropanol in a commercial feedlot to decrease enteric methane emissions from cattle fed a corn-based finishing diet. J. Anim. Sci. 2021, 99, skaa394. [Google Scholar] [CrossRef] [PubMed]
- Vyas, D.; Alemu, A.W.; McGinn, S.M.; Duval, S.M.; Kindermann, M.; Beauchemin, K.A. The combined effects of supplementing monensin and 3-nitrooxypropanol on methane emissions, growth rate, and feed conversion efficiency in beef cattle fed high-forage and high-grain diets. J. Anim. Sci. 2018, 9, 2923–2938. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Long, R.; Warzecha, C.M.; Coverdale, J.A.; Latham, E.A.; Hume, M.E.; Callaway, T.R.; O’Neil, M.R.; Beier, R.C.; Anderson, R.C.; et al. Characterization of bovine ruminal and equine cecal microbial populations enriched for enhanced nitro-toxin metabolizing activity. Anaerobe 2014, 26, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.C.; Rasmussen, M.A.; Allison, M.J. Metabolism of the plant toxins nitropropionic acid and nitropropanol by ruminal microorganisms. Appl. Environ. Microbiol. 1993, 59, 3056–3061. [Google Scholar] [CrossRef] [PubMed]
- Correa, A.C.; Trachsel, J.; Allen, H.K.; Corral-Luna, A.; Gutierrez-Bañuelos, H.; Ochoa-Garcia, P.A.; Ruiz-Barrera, O.; Hume, M.E.; Callaway, T.R.; Harvey, R.B.; et al. Effect of sole or combined administration of nitrate and 3-nitro-1-propionic acid on fermentation and Salmonella survivability in alfalfa-fed rumen cultures in vitro. Bioresour. Technol. 2017, 229, 69–77. [Google Scholar] [CrossRef]
- Guo, W.; Bi, S.; Kang, J.; Zhang, Y.; Long, R.; Huang, X.; Shan, M.N.; Anderson, R.C. Bacterial communities related to 3-nitro-1-propionic acid degradation in the rumen of grazing ruminants in the Qinghai-Tibetan Plateau. Anaerobe 2018, 54, 42–54. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, L.; Ke, S.; Chen, X.; Kenéz, Á.; Xu, W.; Wang, D.; Zhang, F.; Li, Y.; Cui, Z.; et al. Yak rumen microbiome elevates fiber degradation ability and alters rumen fermentation pattern to increase feed efficiency. Anim. Nutr. 2022, 11, 201–214. [Google Scholar] [CrossRef]
- Kh, M. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Kang, S.; Wanapat, M.; Viennasay, B. Supplementation of banana flower powder pellet and plant oil sources on in vitro ruminal fermentation, digestibility, and methane production. Trop. Anim. Health Prod. 2016, 48, 1673–1678. [Google Scholar] [CrossRef]
- Ellett, M.D.; Parsons, C.L.M.; Hay, J.M.; Daniels, K.M. Persistence of sugars used for intestinal permeability measures in an in vitro rumen environment. JDS Commun. 2022, 3, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ungerfeld, E.M.; Degen, A.A.; Jing, X.; Guo, W.; Zhou, J.; Huang, X.; Mudassar, S.; Shi, F.; Bi, S.; et al. Ratios of rumen inoculum from Tibetan and Small-tailed Han sheep influenced in vitro fermentation and digestibility. Anim. Feed. Sci. Technol. 2020, 267, 114562. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, D.; Wang, L.; Hao, J.; Wang, J.; Zhou, X.; Wang, W.; Qiu, Q.; Huang, X.; Zhou, J.; et al. Convergent Evolution of Rumen Microbiomes in High-Altitude Mammals. Curr. Biol. 2016, 26, 1873–1879. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 2016; ISBN 978-0-935584-87-5. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K.; Yu, Z. Effective reduction of enteric methane production by a combination of nitrate and saponin without adverse effect on feed degradability, fermentation, or bacterial and archaeal communities of the rumen. Bioresour. Technol. 2013, 148, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.C.; Krueger, N.A.; Stanton, T.B.; Callaway, T.R.; Edrington, T.S.; Harvey, R.B.; Jung, Y.S.; Nisbet, D.J. Effects of select nitrocompounds on in vitro ruminal fermentation during conditions of limiting or excess added reductant. Bioresour. Technol. 2008, 99, 8655–8661. [Google Scholar] [CrossRef] [PubMed]
- Bharanidharan, R.; Lee, C.H.; Thirugnanasambantham, K.; Ibidhi, R.; Woo, Y.W.; Lee, H.; Kim, J.G.; Kim, K.H. Feeding Systems and Host Breeds Influence Ruminal Fermentation, Methane Production, Microbial Diversity and Metagenomic Gene Abundance. Front. Microbiol. 2021, 12, 701081. [Google Scholar] [CrossRef] [PubMed]
- Miguel, M.A.; Lee, S.S.; Mamuad, L.L.; Choi, Y.J.; Jeong, C.D.; Son, A.; Cho, K.K.; Kim, E.T.; Kim, S.B.; Lee, S.S. Enhancing Butyrate Production, Ruminal Fermentation and Microbial Population through Supplementation with Clostridium saccharobutylicum. J. Microbiol. Biotechnol. 2019, 29, 1083–1095. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.Y.; Zhang, X.M.; Wang, M.; Wang, R.; Jiang, Z.Y.; Tan, Z.L.; Gao, F.X.; Muhammed, A. Molecular hydrogen produced by elemental magnesium inhibits rumen fermentation and enhances methanogenesis in dairy cows. J. Dairy Sci. 2019, 102, 5566–5576. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Wang, Y.L.; Wang, W.K.; Chen, Y.Y.; Si, X.M.; Wang, Y.J.; Wang, W.; Cao, Z.J.; Li, S.L.; Yang, H.J. The antimethanogenic nitrocompounds can be cleaved into nitrite by rumen microorganisms: A comparison of nitroethane, 2-nitroethanol, and 2-nitro-1-propanol. Metabolites 2020, 10, 15. [Google Scholar] [CrossRef]
- Marais, J.P.; Therion, J.J.; Mackie, R.I.; Kistner, A.; Dennison, C. Effect of nitrate and its reduction products on the growth and activity of the rumen microbial population. Br. J. Nutr. 1988, 59, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Priest, F.G. Extracellular enzyme synthesis in the genus Bacillus. Bacteriol. Rev. 1977, 41, 711–753. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Hu, Z.; Zhang, S.; Cheng, G.; Hou, Q.; Wang, Y.; Yan, Z. A Study on the Mechanism Regulating Acetate to Propionate Ratio in Rumen Fermentation by Dietary Carbohydrate Type. Adv. Biosci. Biotechnol. 2020, 11, 369–390. [Google Scholar] [CrossRef]
- Ungerfeld, E.M. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: A meta-analysis. Front. Microbiol. 2015, 6, 37. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, Z.G.; Pei, C.F.; Degen, A.; Hao, L.Z.; Cao, X.L.; Liu, H.S.; Zhou, J.W.; Long, R.J. A comparison between yaks and Qaidam cattle in in vitro rumen fermentation, methane emission, and bacterial community composition with poor quality substrate. Livest. Sci. 2018, 208, 14–21. [Google Scholar] [CrossRef]
- Zhou, J.W.; Liu, H.; Zhong, C.L.; Degen, A.A.; Yang, G.; Zhang, Y.; Qian, J.L.; Wang, W.W.; Hao, L.Z.; Qiu, Q.; et al. Apparent digestibility, rumen fermentation, digestive enzymes and urinary purine derivatives in yaks and Qaidam cattle offered forage-concentrate diets differing in nitrogen concentration. Livest. Sci. 2018, 208, 14–21. [Google Scholar] [CrossRef]
- Teng, P.Y.; Kim, W.K. Roles of nitrocompounds in inhibition of foodborne bacteria, parasites, and methane production in economic animals. Animals 2021, 11, 923. [Google Scholar] [CrossRef] [PubMed]
- Božic, A.K.; Gutiérrez-Bañuelos, H.; Corral-Luna, A.; Carstens, G.; Arévalos-Sánchez, M.M.; Félix-Portillo, M.; Muro-Reyes, A.; Arzola-Álvarez, C.; Anderson, R.C.; Harvey, R.B. Dynamics of Gastrointestinal Activity and Ruminal Absorption of the Methane-Inhibitor, Nitroethane, in Cattle. Front. Vet. Sci. 2022, 9, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Mitsumori, M.; Sun, W. Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Asian-Australas. J. Anim. Sci. 2008, 21, 144–154. [Google Scholar] [CrossRef]
- Patra, A.K.; Puchala, R. Methane mitigation in ruminants with structural analogues and other chemical compounds targeting archaeal methanogenesis pathways. Biotechnol. Adv. 2023, 69, 108268. [Google Scholar] [CrossRef]
Item | Oat Hay | Pasture |
---|---|---|
DM | 94.07 | 93.93 |
CP | 7.85 | 7.08 |
NDF | 53.47 | 63.11 |
ADF | 32.53 | 35.74 |
ADL | 6.45 | 7.82 |
EE | 2.16 | 1.25 |
Ash | 11.15 | 8.32 |
Item | Incubation Time/h | 3-Nitropropionic Acid Dose (mmol/L) | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cattle | Yak | Dose | Species | D×S | |||||||
0 | 8 | 16 | 0 | 8 | 16 | ||||||
pH | 12 | 7.13 | 7.11 | 7.09 | 7.05 | 7.07 | 7.09 | 0.01 | 0.12 | 0.08 | 0.07 |
24 | 7.12 | 7.09 | 7.08 | 7.05 | 7.03 | 7.02 | 0.02 | 0.05 | 0.04 | 0.06 | |
48 | 7.06 | 7.02 | 7.04 | 7.02 | 7.02 | 7.03 | 0.01 | 0.2 | 0.1 | 0.06 | |
72 | 7.05 | 7.01 | 6.98 | 6.95 | 6.98 | 7.01 | 0.01 | 0.1 | 0.07 | 0.06 | |
Total VFA | 12 | 30.57 a | 25.19 b | 14.16 c | 40.87 a | 30.17 b | 28.68 b | 1.97 | <0.01 | <0.01 | 0.1 |
24 | 53.48 a | 40.47 b | 34.81 c | 57.81 a | 60.22 a | 49.14 b | 2.17 | <0.01 | <0.01 | 0.02 | |
48 | 76.4 | 90.16 | 89.97 | 70.34 | 83.52 | 70.74 | 2.08 | 0.06 | <0.01 | 0.09 | |
72 | 87.71 | 94.96 | 97.36 | 106.9 | 102.1 | 90.1 | 1.82 | 0.14 | 0.04 | <0.01 | |
Acetate | 12 | 20.97 a | 19.03 a | 11.17 b | 28.93 a | 21.56 b | 20.72 b | 1.29 | <0.01 | <0.01 | 0.38 |
24 | 36.69 a | 29.15 b | 25.86 c | 39.85 a | 37.27 b | 34.11 c | 1.17 | <0.01 | <0.01 | <0.01 | |
48 | 45.24 | 57.94 | 57.89 | 47.01 | 51.24 | 40.07 | 1.64 | 0.2 | <0.01 | <0.01 | |
72 | 54.17 b | 58.98 a | 61.14 a | 70.69 a | 62.34 a | 52.68 b | 1.33 | 0.09 | 0.07 | <0.01 | |
Propionate | 12 | 7.13 a | 2.76 b | 1.1 c | 8.16 a | 3.64 b | 3.91 b | 0.59 | <0.01 | <0.01 | 0.2 |
24 | 13.4 a | 7.11 b | 5.17 b | 12.42 a | 14.12 a | 8.81 b | 0.79 | <0.01 | <0.01 | 0.03 | |
48 | 23.55 | 25.27 | 24.62 | 16.35 b | 24.19 a | 23.14 a | 0.72 | <0.01 | <0.01 | 0.02 | |
72 | 25.58 b | 27.62 ab | 29.67 a | 25.92 b | 29.42 a | 27.3 ab | 0.42 | <0.01 | 0.9 | 0.02 | |
Butyrate | 12 | 2.48 | 3.13 | 1.89 | 3.6 | 4.96 | 4.06 | 0.25 | 0.65 | <0.01 | 0.1 |
24 | 3.39 | 4.21 | 4.05 | 5.54 | 8.83 | 6.23 | 0.43 | 0.33 | <0.01 | 0.97 | |
48 | 7.61 | 6.96 | 7.46 | 6.98 | 8.09 | 7.66 | 0.13 | 0.4 | 0.4 | 0.24 | |
72 | 7.96 ab | 8.36 a | 6.55 b | 9.93 ab | 10.4 a | 9.29 b | 0.27 | 0.01 | <0.01 | 0.61 | |
A:P | 12 | 2.94 c | 7 b | 10.1 a | 3.55 b | 5.92 a | 5.29 a | 0.6 | <0.01 | <0.01 | <0.01 |
24 | 2.74 b | 4.1 a | 4.95 a | 3.21 a | 2.64 b | 3.87 a | 0.19 | <0.01 | <0.01 | <0.01 | |
48 | 1.92 b | 2.29 a | 2.35 a | 2.88 a | 2.12 b | 1.73 c | 0.09 | <0.01 | 0.6 | <0.01 | |
72 | 2.12 | 2.13 | 2.06 | 2.68 a | 2.1 b | 1.93 c | 0.04 | <0.01 | 0.02 | <0.01 |
Item | Incubation Time/h | 3-Nitropropionic Acid Dose (mmol/L) | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cattle | Yak | Dose | Species | D×S | |||||||
0 | 8 | 16 | 0 | 8 | 16 | ||||||
DMD, % | 12 | 39.2 | 39.8 | 37.7 | 38.0 | 36.6 | 37.3 | 0.33 | 0.11 | 0.01 | 0.54 |
24 | 41.9 | 40.1 | 39.9 | 42.4 a | 40.5 ab | 39.5 b | 0.42 | 0.02 | 0.81 | 0.66 | |
48 | 50.8 a | 43.2 b | 44.9 b | 51.8 a | 44.5 b | 43.1 b | 0.89 | <0.01 | 0.87 | 0.33 | |
72 | 59.2 a | 46.2 b | 45.9 b | 59.4 a | 50.1 b | 46.2 c | 1.45 | <0.01 | 0.01 | 0.01 | |
Total gas/mL, g of degraded DM | 12 | 193 a | 185 a | 150 b | 216 a | 171 b | 157 b | 9.99 | <0.01 | 0.74 | 0.45 |
24 | 253 a | 216 b | 185 b | 394 a | 266 b | 196 c | 31.16 | <0.01 | <0.01 | <0.01 | |
48 | 399 a | 287 b | 263 b | 507 a | 364 b | 280 c | 38.19 | <0.01 | <0.01 | 0.03 | |
72 | 448 a | 375 b | 402 b | 496 a | 395 b | 357 c | 11.42 | <0.01 | 0.03 | <0.01 | |
H2/mL, g of degraded DM | 12 | 3.46 b | 8.35 a | 9.11 a | 0.09 b | 8.48 a | 5.66 a | 1.45 | <0.01 | <0.01 | 0.99 |
24 | 0.04 b | 2.13 a | 1.78 a | 0.07 c | 1.47 ab | 1.03 b | 0.36 | <0.01 | 0.04 | 0.14 | |
48 | 0.02 b | 1.35 a | 1.03 a | 0.02 b | 0.28 a | 0.17 a | 0.23 | <0.01 | <0.01 | <0.01 | |
72 | 0.01 b | 9.61 a | 9.95 a | 0.16 b | 7.32 a | 6.15 a | 0.99 | <0.01 | <0.01 | <0.01 | |
CH4/mL, g of degraded DM | 12 | 16.3 a | 0 b | 0 b | 30.4 a | 31.3 a | 0.84 b | 6.15 | <0.01 | <0.01 | 0.03 |
24 | 9.69 a | 0 b | 0 b | 21.6 a | 21.8 a | 0.87 b | 4.28 | <0.01 | <0.01 | <0.01 | |
48 | 18.2 a | 0.93 b | 0 c | 20.1 a | 24.0 a | 8.34 b | 4.19 | <0.01 | <0.01 | 0.22 | |
72 | 11.8 a | 0.66 b | 0 c | 65.9 a | 12.6 b | 1.14 c | 5.64 | <0.01 | <0.01 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Wang, W.; Zhang, Y.; Zhou, M. Effect of 3-Nitropropionic Acid at Different Doses on In Vitro Rumen Fermentation, Digestibility, and Methane Emissions of Grazing Yak and Cattle. Animals 2024, 14, 1804. https://doi.org/10.3390/ani14121804
Guo W, Wang W, Zhang Y, Zhou M. Effect of 3-Nitropropionic Acid at Different Doses on In Vitro Rumen Fermentation, Digestibility, and Methane Emissions of Grazing Yak and Cattle. Animals. 2024; 14(12):1804. https://doi.org/10.3390/ani14121804
Chicago/Turabian StyleGuo, Wei, Weiwei Wang, Ying Zhang, and Mi Zhou. 2024. "Effect of 3-Nitropropionic Acid at Different Doses on In Vitro Rumen Fermentation, Digestibility, and Methane Emissions of Grazing Yak and Cattle" Animals 14, no. 12: 1804. https://doi.org/10.3390/ani14121804
APA StyleGuo, W., Wang, W., Zhang, Y., & Zhou, M. (2024). Effect of 3-Nitropropionic Acid at Different Doses on In Vitro Rumen Fermentation, Digestibility, and Methane Emissions of Grazing Yak and Cattle. Animals, 14(12), 1804. https://doi.org/10.3390/ani14121804