Genome-Wide Association Study for Weight Loss at the End of Dry-Curing of Hams Produced from Purebred Heavy Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Trial
2.2. Measurement of Ham Weight Loss at the End of Dry-Curing
2.3. Genotyping
2.4. Genetic Parameters and Genome-Wide Association Study for Ham Weight Loss at the End of Dry-Curing
2.5. Candidate Gene Search for Ham Weight Loss at the End of Dry-Curing and Gene Network Analysis
3. Results and Discussion
3.1. Descriptive Statistics and Heritability for Ham Weight Loss at the End of Dry-Curing
3.2. Genome-Wide Association Study for Ham Weight Loss at the End of Dry-Curing
3.3. Genetic Marker Locations, Candidate Genes and Gene Network Analysis
SSC | Position (Mb) | Gene | Name | Function | Reference |
---|---|---|---|---|---|
1 | 6.875–6.875 | AGPAT4 | 1-acylglycerol-3-phosphate O-acyltransferases 4 | Fat content and composition traits; fatty acid composition | [67] |
1 | 6.919–6.919 | MAP3K4 | Mitogen-activated protein kinase 4 | Feed efficiency traits | [94,96] |
1 | 7.424–7.448 | IGF2R | Insulin-like growth factor 2 | Growth performance and carcass traits, muscle deposition, fat metabolism, meat production, and quality | [69] |
1 | 15.228–15.231 | MTHFD1L | Methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1 like | Ham weight loss at first salting | [10] |
2 | 0.270–0.281 | PTDSS2 | Phosphatidylserine synthase 2 | Backfat thickness, fat deposition | [68] |
2 | 0.303–0.303 | HRAS | HRas proto-onco, GTPase | Backfat thickness at slaughter, loin depth | [9,68] |
2 | 0.466–0.466 | TALDO1 | Transaldolase 1 | Lipid biosynthesis | [72] |
2 | 0.545–0.545 | TSPAN4 | Tetraspanin 4 | Cell development, activation, growth, and motility | [71] |
2 | 0.633–0.633 | AP2A2 | Adaptor-related protein complex 2 subunit alpha 2 | Linking lipids in the cell membrane | [93] |
2 | 0.917–0.917 | BRSK2 | BR serine/threonine kinase 2 | Backfat thickness | [68] |
2 | 0.963–0.963 | MOB2 | MOB kinase activator 2 | Feed efficiency | [95] |
2 | 1.02–1.02 | DUSP8 | Dual specificity phosphatase 8 | Ham weight loss at first salting | [10] |
2 | 1.251–1.251 | TNNI2 | Troponin I2, fast skeletal type | Backfat thickness at slaughter; drip loss | [73,74,75] |
2 | 1.264–1.289 | LSP1 | Lymphocyte-specific protein 1 | Skeletal muscle development | [91] |
2 | 1.251–1.251 | SYT8 | Synaptotagmin 8 | Lipid metabolism | [76,77] |
3 | 11.578–11.643 | GTF2IRD1 | GTF2I repeat domain-containing 1 | Intramuscular fat content | [80] |
3 | 11.674–11.786 | GTF2I | General transcription factor IIi | Intramuscular fat content | [80] |
5 | 63.717–63.717 | LPCAT3 | Lysophosphatidylcholine acyltransferase 3 | Intramuscular and subcutaneous adipocytes | [70] |
5 | 63.794–63.794 | ATN1 | Atrophin 1 | Fat deposition in the early stages of development | [86] |
5 | 63.860–63.860 | GNB3 | G protein subunit beta 3 | Energy homeostasis and promotion of lipolysis | [87] |
5 | 63.860–63.860 | CDCA3 | Cell Division Cycle-Associated 3 | Body weight | [90] |
6 | 6.697–6.697 | CMIP | C-Maf-Inducing Protein | Lipid metabolism | [81] |
8 | 3.245–3.317 | SORCS2 | Sortilin-related VPS10 domain-containing receptor 2 | Backfat traits | [83] |
8 | 128.628–128.795 | CCSER1 | Coiled-coil serine rich protein 1 | Backfat thickness | [85] |
8 | 131.075–131.075 | SPP1 | Secreted phosphoprotein 1 | Body length, backfat thickness, loin muscle area | [89] |
8 | 131.392–131.410 | SPARCL1 | SPARC-like 1 | Calcium ion binding activity, proteolysis | [58] |
12 | 55.166–55.166 | MYH8 | Myosin heavy chain 8 | Calcium ion binding activity, proteolysis | [59] |
13 | 25.730–25.730 | ULK4 | Unc-51-like kinase 4 | Feed efficiency traits | [94] |
13 | 25.864–25.930 | TRAK1 | Trafficking kinesin protein 1 | Feed efficiency traits | [94] |
15 | 34.488–34.886 | CSMD1 | CUB and sushi multiple domains 1 | Cellular functions control, interaction with growth factors | [92] |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Y.; Zhou, R.; Li, K. Future livestock breeding: Precision breeding based on multi-omics information and population personalization. J. Integr. Agric. 2017, 16, 2784–2791. [Google Scholar] [CrossRef]
- Ruan, D.; Zhuang, Z.; Ding, R.; Qiu, Y.; Zhou, S.; Wu, J.; Xu, C.; Hong, L.; Huang, S.; Zheng, E.; et al. Weighted single-step GWAS identified candidate genes associated with growth traits in a Duroc pig population. Genes 2021, 12, 117. [Google Scholar] [CrossRef]
- Palombo, V.; D’Andrea, M.; Licastro, D.; Dal Monego, S.; Sgorlon, S.; Sandri, M.; Stefanon, B. Single-step genome wide association study identifies QTL signals for untrimmed and trimmed thigh weight in Italian crossbred pigs for dry-cured ham production. Animals 2021, 11, 1612. [Google Scholar] [CrossRef]
- Lopez, B.I.; An, N.; Srikanth, K.; Lee, S.; Oh, J.-D.; Shin, D.-H.; Park, W.; Chai, H.-H.; Park, J.-E.; Lim, D. Genomic prediction based on SNP functional annotation using imputed whole-genome sequence data in Korean Hanwoo cattle. Front. Genet. 2021, 11, 603822. [Google Scholar] [CrossRef] [PubMed]
- Ros-Freixedes, R.; Johnsson, M.; Whalen, A.; Chen, C.-Y.; Valente, B.D.; Herring, W.O.; Gorjanc, G.; Hickey, J.M. Genomic prediction with whole-genome sequence data in intensely selected pig lines. Genet. Sel. Evol. 2022, 54, 65. [Google Scholar] [CrossRef]
- Chakraborty, D.; Sharma, N.; Kour, S.; Sodhi, S.S.; Gupta, M.K.; Lee, S.J.; Son, Y.O. Applications of OMICS technology for livestock selection and improvement. Front. Genet. 2022, 13, 774113. [Google Scholar] [CrossRef]
- Samorè, A.B.; Fontanesi, L. Genomic selection in pigs: State of the art and perspectives. Ital. J. Anim. Sci. 2016, 15, 211–232. [Google Scholar] [CrossRef]
- Sanchez, M.-P.; Tribout, T.; Iannuccelli, N.; Bouffaud, M.; Servin, B.; Tenghe, A.; Dehais, P.; Muller, N.; Del Schneider, M.; Mercat, M.-J.; et al. A genome-wide association study of production traits in a commercial population of large white pigs: Evidence of haplotypes affecting meat quality. Genet. Sel. Evol. 2014, 46, 12. [Google Scholar] [CrossRef]
- Sevillano, C.A.; ten Napel, J.; Guimarães, S.E.; Silva, F.F.; Calus, M.P. Effects of alleles in crossbred pigs estimated for genomic prediction depend on their breed-of-origin. BMC Genom. 2018, 19, 740. [Google Scholar] [CrossRef]
- Bergamaschi, M.; Maltecca, C.; Fix, J.; Schwab, C.; Tiezzi, F. Genome-wide association study for carcass quality traits and growth in purebred and crossbred pigs. J. Anim. Sci. 2020, 98, skz360. [Google Scholar] [CrossRef]
- Fontanesi, L.; Schiavo, G.; Gallo, M.; Baiocco, C.; Galimberti, G.; Bovo, S.; Russo, V.; Buttazzoni, L. Genome-wide association study for ham weight loss at first salting in Italian large white pigs: Towards the genetic dissection of a key trait for dry-cured ham production. Anim. Genet. 2016, 48, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Fontanesi, L.; Schiavo, G.; Galimberti, G.; Bovo, S.; Russo, V.; Gallo, M.; Buttazzoni, L. A genome-wide association study for a proxy of intermuscular fat level in the Italian large white breed identifies genomic regions affecting an important quality parameter for dry-cured hams. Anim. Genet. 2017, 48, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Bertolini, F.; Schiavo, G.; Galimberti, G.; Bovo, S.; D’Andrea, M.; Gallo, M.; Buttazzoni, L.; Rothschild, M.F.; Fontanesi, L. Genome-wide association studies for seven production traits highlight genomic regions useful to dissect dry-cured ham quality and production traits in Duroc heavy pigs. Animal 2018, 12, 1777–1784. [Google Scholar] [CrossRef] [PubMed]
- Stalder, K.J.; Moeller, S.J.; Rothschild, M.F. Associations between two gene markers and traits affecting fresh and dry-cured ham processing quality. Meat Sci. 2005, 69, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Renaville, B.; Piasentier, E.; Fan, B.; Vitale, M.; Prandi, A.; Rothschild, M.F. Candidate gene markers involved in San Daniele Ham Quality. Meat Sci. 2010, 85, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Centro Ricerche Produzioni Animali. Suinicoltura Italiana e Costo di Produzione; Brochure No. 1; Centro Ricerche Produzioni Animali: Reggio Emilia, Italy, 2010. [Google Scholar]
- ISMEA. Istituto di Servizi per il Mercato Agricolo Alimentare, Tendenze e Dinamiche Recenti—Suino; ISMEA: Rome, Italy, 2023. [Google Scholar]
- Buttazzoni, L.; Gallo, M.; Baiocco, C.; Carchedi, C. La selezione per la qualità della carne suina destinata alla trasformazione. Riv. Suinic. 1993, 34, 139–145. [Google Scholar]
- Malgwi, I.H.; Gallo, L.; Halas, V.; Bonfatti, V.; Carcò, G.; Sasso, C.P.; Carnier, P.; Schiavon, S. The implications of changing age and weight at slaughter of heavy pigs on carcass and green ham quality traits. Animals 2021, 11, 2447. [Google Scholar] [CrossRef] [PubMed]
- Schiavon, S.; Malgwi, I.H.; Giannuzzi, D.; Galassi, G.; Rapetti, L.; Carnier, P.; Halas, V.; Gallo, L. Impact of rearing strategies on the metabolizable energy and SID lysine partitioning in pigs growing from 90 to 200 kg in body weight. Animals 2022, 12, 689. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (NRC). Nutrient Requirements of Swine, 11th ed.; National Academy Press: Washington, DC, USA, 2012. [Google Scholar]
- Schiavon, S.; Bona, M.D.; Carcò, G.; Carraro, L.; Bunger, L.; Gallo, L. Effects of feed allowance and indispensable amino acid reduction on feed intake, growth performance and carcass characteristics of growing pigs. PLoS ONE 2018, 13, e0195645. [Google Scholar] [CrossRef]
- Prosciutto Veneto Berico-Euganeo. Protected Designation of Origin. Publication Pursuant to Article 4 of the Council Regulation (EEC) No. 2081/92 of July, 14th 1992. Official Journal of the European Union, 1—55. 1992. Available online: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/3339 (accessed on 28 March 2024).
- Toscano, A.; Giannuzzi, D.; Malgwi, I.H.; Halas, V.; Carnier, P.; Gallo, L.; Schiavon, S. Impact of innovative rearing strategies for the Italian heavy pigs: Technological traits and chemical composition of dry–cured hams. Meat Sci. 2023, 204, 109266. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 15 January 2024).
- Sargolzaei, M.; Chesnais, J.P.; Schenkel, F.S. A new approach for efficient genotype imputation using information from relatives. BMC Genom. 2014, 15, 478. [Google Scholar] [CrossRef] [PubMed]
- Misztal, I.; Tsuruta, S.; Lourenco, D.; Masuda, Y.; Aguilar, I.; Legarra, A.; Vitezica, Z. Manual for BLUPf90 Family of Programs. 2018. Available online: http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all7.pdf (accessed on 8 April 2024).
- VanRaden, P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Misztal, I.; Aguilar, I.; Legarra, A.; Muir, W.M. Genome-wide association mapping including phenotypes from relatives without genotypes. Genet. Res. 2012, 94, 73–83. [Google Scholar] [CrossRef]
- Veroneze, R.; Bastiaansen, J.W.M.; Knol, E.F.; Guimarães, S.E.F.; Silva, F.F.; Harlizius, B.; Lopes, M.S.; Lopes, P.S. Linkage disequilibrium patterns and persistence of phase in purebred and crossbred pig (Sus scrofa) populations. BMC Genet. 2014, 15, 126. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, I.; Legarra, A.; Cardoso, F.; Masuda, Y.; Lourenco, D.; Misztal, I. Frequentist P-values for large-scale-single step genome-wide association, with an application to birth weight in American Angus cattle. Genet. Sel. Evol. 2019, 51, 28. [Google Scholar] [CrossRef] [PubMed]
- Gualdrón Duarte, J.L.; Cantet, R.J.C.; Bates, R.O.; Ernst, C.W.; Raney, N.E.; Steibel, J.P. Rapid screening for phenotype-genotype associations by linear transformations of genomic evaluations. BMC Bioinform. 2014, 15, 246. [Google Scholar] [CrossRef]
- Fontanesi, L.; Schiavo, G.; Galimberti, G.; Calò, D.G.; Scotti, E.; Martelli, P.L.; Buttazzoni, L.; Casadio, R.; Russo, V. A genome wide association study for backfat thickness in Italian Large White pigs highlights new regions affecting fat deposition including neuronal genes. BMC Genom. 2012, 13, 583. [Google Scholar] [CrossRef]
- Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature 2007, 447, 661–678. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.D. qqman: An R package for visualizing GWAS results using Q-Q and Manhattan plots. J. Open Source Softw. 2018, 3, 731. [Google Scholar] [CrossRef]
- Sollero, B.P.; Junqueira, V.S.; Gomes, C.C.; Caetano, A.R.; Cardoso, F.F. Tag SNP selection for prediction of tick resistance in Brazilian Braford and Hereford cattle breeds using Bayesian methods. Genet. Sel. Evol. 2017, 49, 49. [Google Scholar] [CrossRef]
- Warde-Farley, D.; Donaldson, S.L.; Comes, O.; Zuberi, K.; Badrawi, R.; Chao, P.; Franz, M.; Grouios, C.; Kazi, F.; Lopes, C.T.; et al. The GeneMania prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010, 38, W214–W220. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Bosi, P.; Russo, V. The production of the heavy pig for high quality processed products. Ital. J. Anim. Sci. 2004, 3, 309–321. [Google Scholar] [CrossRef]
- Bonfatti, V.; Carnier, P. Prediction of dry-cured ham weight loss and prospects of use in a pig breeding program. Animal 2020, 14, 1128–1138. [Google Scholar] [CrossRef]
- Bonfatti, V.; Rostellato, R.; Carnier, P. Estimation of additive and dominance genetic effects on body weight, carcass and ham quality traits in heavy pigs. Animals 2021, 11, 481. [Google Scholar] [CrossRef]
- Bonfatti, V.; Faggion, S.; Boschi, E.; Carnier, P. Infrared predictions are a valuable alternative to actual measures of dry-cured ham weight loss in the training of genome-enabled prediction models. Animals 2022, 12, 814. [Google Scholar] [CrossRef] [PubMed]
- Carnier, P.; Cassandro, M.; Knol, E.; Padoan, D. Genetic parameters for some carcass and fresh ham traits of crossbred Goland pigs. In Recent Progress in Animal Science; Piva, G., Bertoni, G., Masoero, F., Bani, P., Calamari, L., Eds.; Franco Angeli Edizioni: Milano, Italy, 1999; pp. 221–223. [Google Scholar]
- Ehret, G.B. Genome-wide association studies: Contribution of Genomics to understanding blood pressure and essential hypertension. Curr. Hypertens. Rep. 2010, 12, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Devlin, B.; Roeder, K. Genomic control for association studies. Biometrics 1999, 55, 997–1004. [Google Scholar] [CrossRef]
- Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006, 38, 904–909. [Google Scholar] [CrossRef]
- Hinrichs, A.L.; Larkin, E.K.; Suarez, B.K. Population stratification and patterns of linkage disequilibrium. Genet. Epidemiol. 2009, 33, S88–S92. [Google Scholar] [CrossRef]
- Lemos, M.V.; Chiaia, H.L.; Berton, M.P.; Feitosa, F.L.; Aboujaoud, C.; Camargo, G.M.; Baldi, F. Genome-wide association between single nucleotide polymorphisms with beef fatty acid profile in Nellore cattle using the single step procedure. BMC Genom. 2016, 17, 213. [Google Scholar] [CrossRef]
- Marques, D.B.; Bastiaansen, J.W.; Broekhuijse, M.L.; Lopes, M.S.; Knol, E.F.; Harlizius, B.; Guimarães, S.E.; Silva, F.F.; Lopes, P.S. Weighted single-step GWAS and gene network analysis reveal new candidate genes for semen traits in pigs. Genet. Sel. Evol. 2018, 50, 40. [Google Scholar] [CrossRef] [PubMed]
- Botelho, M.E.; Lopes, M.S.; Mathur, P.K.; Knol, E.F.; Fonseca e Silva, F.; Lopes, P.S.; Gimarães, S.E.; Marques, D.B.D.; Veroneze, R. Weighted genome-wide association study reveals new candidate genes related to boar taint compounds. Livest. Sci. 2022, 257, 104845. [Google Scholar] [CrossRef]
- John, S.; Sabo, P.J.; Thurman, R.E.; Sung, M.-H.; Biddie, S.C.; Johnson, T.A.; Hager, G.L.; Stamatoyannopoulos, J.A. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat. Genet. 2011, 43, 264–268. [Google Scholar] [CrossRef]
- Pennacchio, L.A.; Bickmore, W.; Dean, A.; Nobrega, M.A.; Bejerano, G. Enhancers: Five essential questions. Nat. Rev. Genet. 2013, 14, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Lenhard, B.; Sandelin, A.; Carninci, P. Metazoan promoters: Emerging characteristics and insights into transcriptional regulation. Nat. Rev. Genet. 2012, 13, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Grosschedl, R.; Birnstiel, M.L. Spacer DNA sequences upstream of the T-A-T-A-A-A-T-A sequence are essential for promotion of H2A histone gene transcription in vivo. Proc. Natl. Acad. Sci. USA 1980, 77, 7102–7106. [Google Scholar] [CrossRef]
- Furlong, E.E.; Levine, M. Developmental enhancers and chromosome topology. Science 2018, 361, 1341–1345. [Google Scholar] [CrossRef] [PubMed]
- Girardini, K.N.; Olthof, A.M.; Kanadia, R.N. Introns: The “dark matter” of the eukaryotic genome. Front. Genet. 2023, 14, 1150212. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Hou, L.; Yin, Y.; Wang, B.; Liu, C.; Zhou, W.; Niu, P.; Li, Q.; Huang, R.; Li, P. Genome-wide association study reveals new QTL and functional candidate genes for the number of ribs and carcass length in pigs. Anim. Genet. 2023, 54, 435–445. [Google Scholar] [CrossRef]
- Kawasaki, K.; Weiss, K.M. Evolutionary genetics of vertebrate tissue mineralization: The origin and evolution of the secretory calcium-binding phosphoprotein family. J. Exp. Zool. B Mol. Dev. Evol. 2005, 306, 295–316. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Barroso, M.Á.; Caraballo, C.; Silió, L.; Rodríguez, C.; Nuñez, Y.; Sánchez-Esquiliche, F.; Matos, G.; García-Casco, J.M.; Muñoz, M. Differences in the loin tenderness of Iberian pigs explained through dissimilarities in their transcriptome expression profile. Animals 2020, 10, 1715. [Google Scholar] [CrossRef]
- Toldrá, F.; Flores, M. The role of muscle proteases and lipases in flavor development during the processing of dry-cured ham. Crit. Rev. Food Sci. Nutr. 1998, 38, 331–352. [Google Scholar] [CrossRef] [PubMed]
- Čandek-Potokar, M.; Škrlep, M. Factors in pig production that impact the quality of dry-cured ham: A review. Animal 2012, 6, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Melody, J.L.; Lonergan, S.M.; Rowe, L.J.; Huiatt, T.W.; Mayes, M.S.; Huff-Lonergan, E. Early post-mortem biochemical factors influence tenderness and water-holding capacity of three porcine muscles. J. Anim. Sci. 2004, 82, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.G.; Lonergan, S.M.; Gardner, M.A.; Huff-Lonergan, E. Contribution of postmortem changes of integrin, desmin and μ-calpain to variation in water holding capacity of pork. Meat Sci. 2006, 74, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Lawson, M.A. The role of integrin degradation in post-mortem drip loss in pork. Meat Sci. 2004, 68, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Sturaro, E. Caratteristiche Tecnologiche e Qualitative di Cosce Suine Fresche Destinate Alla Trasformazione in Prodotti Tipici Stagionati: Aspetti Genetici e Relazioni con la Qualità del Prodotto Finale. Ph.D. Thesis, University of Padua, Padua, Italy, 2004. [Google Scholar]
- Ministerial Decree 5/12/2019, n. 12390. Requisiti di conformità del tipo genetico impiegato per la riproduzione dei suini utilizzati nel circuito delle DOP. Available online: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/14781#:~:text=D.M.%20N.-,12390%20del%2005%2F12%2F2019%20%2D%20Requisiti%20di%20conformit%C3%A0%20del,utilizzati%20nel%20circuito%20delle%20DOP (accessed on 18 April 2024).
- Molinero, E.; Pena, R.N.; Estany, J.; Ros-Freixedes, R. Identification of a missense variant in the porcine AGPAT gene family associated with intramuscular fat content through whole-genome sequencing. Anim. Genet. 2022, 53, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Gozalo-Marcilla, M.; Buntjer, J.; Johnsson, M.; Batista, L.; Diez, F.; Werner, C.R.; Chen, C.-Y.; Gorjanc, G.; Mellanby, R.J.; Hickey, J.M.; et al. Genetic architecture and major genes for backfat thickness in pig lines of diverse genetic backgrounds. Genet. Sel. Evol. 2021, 53, 76. [Google Scholar] [CrossRef]
- Duo, T.; Liu, X.; Mo, D.; Bian, Y.; Cai, S.; Wang, M.; Li, R.; Zhu, Q.; Tong, X.; Liang, Z.; et al. Single-base editing in IGF2 improves meat production and intramuscular fat deposition in Liang Guang small spotted pigs. J. Anim. Sci. Biotechnol. 2023, 14, 141. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.; Chen, W.; Li, J.; Shan, T. CRTC3 regulates the lipid metabolism and adipogenic differentiation of porcine intramuscular and subcutaneous adipocytes by activating the calcium pathway. J. Agric. Food Chem. 2021, 69, 7243–7255. [Google Scholar] [CrossRef]
- Kwak, W.; Kim, J.; Kim, D.; Hong, J.S.; Jeong, J.H.; Kim, H.; Cho, S.; Kim, Y.Y. Genome-wide DNA methylation profiles of small intestine and liver in fast-growing and slow-growing weaning piglets. Asian-Australas. J. Anim. Sci. 2014, 27, 1532–1539. [Google Scholar] [CrossRef]
- Moriyama, T.; Tanaka, S.; Nakayama, Y.; Fukumoto, M.; Tsujimura, K.; Yamada, K.; Bamba, T.; Yoneda, Y.; Fukusaki, E.; Oka, M. Two isoforms of TALDO1 generated by alternative translational initiation show differential nucleocytoplasmic distribution to regulate the global metabolic network. Sci. Rep. 2016, 6, 34648. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Yang, H.; Li, Y.; Xiong, Y.Z.; Zuo, B. Temporal expression of TnI fast and slow isoforms in biceps femoris and masseter muscle during pig growth. Animal 2010, 4, 1541–1546. [Google Scholar] [CrossRef]
- Yang, H.; Xu, Z.Y.; Lei, M.G.; Li, F.E.; Deng, C.Y.; Xiong, Y.Z.; Zuo, B. Association of 3 polymorphisms in porcine troponin I genes (TNNI1 and TNNI2) with meat quality traits. J. Appl. Genet. 2010, 51, 51–57. [Google Scholar] [CrossRef]
- Ngu, N.; Nhan, N. Analysis of troponin I gene polymorphisms and meat quality in Mongcai pigs. S. Afr. J. Anim. Sci. 2012, 42, 288–295. [Google Scholar] [CrossRef]
- Xu, Z.; Wei, G.; Chepelev, I.; Zhao, K.; Felsenfeld, G. Mapping of INS promoter interactions reveals its role in long-range regulation of SYT8 transcription. Nat. Struct. Mol. Biol. 2011, 18, 372–378. [Google Scholar] [CrossRef]
- Moghadam, P.K.; Jackson, M.B. The functional significance of synaptotagmin diversity in neuroendocrine secretion. Front. Endocrinol. 2013, 4, 124. [Google Scholar] [CrossRef]
- Palmer, S.J.; Tay, E.S.E.; Santucci, N.; Cuc Bach, T.T.; Hook, J.; Lemckert, F.A.; Jamieson, R.V.; Gunnning, P.W.; Hardeman, E.C. Expression of GTF2IRD1, the Williams syndrome-associated gene, during mouse development. Gene Expr. Patterns 2007, 7, 396–404. [Google Scholar] [CrossRef]
- Mera, L. GTF2IRD1 Is a PRDM16-Interacting Transcription Factor That Represses TGF-β-Mediated Inhibition of Beige Fat Differentiation; University of California: San Francisco, CA, USA, 2014. [Google Scholar]
- Ding, R.; Yang, M.; Quan, J.; Li, S.; Zhuang, Z.; Zhou, S.; Zheng, E.; Hong, L.; Li, Z.; Cai, G.; et al. Single-locus and multi-locus genome-wide association studies for intramuscular fat in Duroc Pigs. Front. Genet. 2019, 10, 619. [Google Scholar] [CrossRef]
- González-Prendes, R.; Quintanilla, R.; Amills, M. Investigating the genetic regulation of the expression of 63 lipid metabolism genes in the pig skeletal muscle. Anim. Genet. 2017, 48, 606–610. [Google Scholar] [CrossRef]
- Subkhangulova, A.; Malik, A.R.; Hermey, G.; Popp, O.; Dittmar, G.; Rathjen, T.; Poy, M.N.; Stumpf, A.; Beed, P.S.; Schmitz, D.; et al. SORCS1 and SORCS3 control energy balance and orexigenic peptide production. EMBO Rep. 2018, 19, e44810. [Google Scholar] [CrossRef]
- Ding, R.; Zhuang, Z.; Qiu, Y.; Ruan, D.; Wu, J.; Ye, J.; Cao, L.; Zhou, S.; Zheng, E.; Huang, W.; et al. Identify known and novel candidate genes associated with backfat thickness in Duroc pigs by large-scale genome-wide association analysis. J. Anim. Sci. 2022, 100, skac012. [Google Scholar] [CrossRef]
- Júnior, G.A.; Costa, R.B.; de Camargo, G.M.; Carvalheiro, R.; Rosa, G.J.; Baldi, F.; Garcia, D.A.; Gordo, D.G.; Espigolan, R.; Takada, L.; et al. Genome scan for post-mortem carcass traits in Nellore cattle. J. Anim. Sci. 2016, 94, 4087–4095. [Google Scholar] [CrossRef]
- Xue, Y.; Li, C.; Duan, D.; Wang, M.; Han, X.; Wang, K.; Qiao, R.; Li, X.-J.; Li, X.-L. Genome-wide association studies for growth-related traits in a crossbreed pig population. Anim. Genet. 2020, 52, 217–222. [Google Scholar] [CrossRef]
- Serão, N.V.L.; Veroneze, R.; Ribeiro, A.M.F.; Verardo, L.L.; Braccini Neto, J.; Gasparino, E.; Campos, C.F.; Lopes, P.S.; Guimarães, S.E.F. Candidate gene expression and intramuscular fat content in pigs. J. Anim. Breed. Genet. 2010, 128, 28–34. [Google Scholar] [CrossRef]
- Nowacka-Woszuk, J.; Szczerbal, I.; Fijak-Nowak, H.; Switonski, M. Chromosomal localization of 13 candidate genes for human obesity in the pig genome. J. Appl. Genet. 2008, 49, 373–377. [Google Scholar] [CrossRef]
- Yoshitake, H.; Rittling, S.R.; Denhardt, D.T.; Noda, M. Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc. Natl. Acad. Sci. USA 1999, 96, 8156–8160. [Google Scholar] [CrossRef]
- Han, S.-H.; Shin, K.-Y.; Lee, S.-S.; Ko, M.-S.; Oh, H.-S.; Cho, I.-C. Porcine SPP1 gene polymorphism association with phenotypic traits in the Landrace × Jeju (Korea) black pig F2 population. Mol. Biol. Rep. 2012, 39, 7705–7709. [Google Scholar] [CrossRef]
- Vahedi, S.M.; Salek Ardestani, S.; Karimi, K.; Banabazi, M.H. Weighted single-step GWAS for body mass index and scans for recent signatures of selection in Yorkshire pigs. J. Hered. 2022, 113, 325–335. [Google Scholar] [CrossRef]
- Albuquerque, A.; Óvilo, C.; Núñez, Y.; Benítez, R.; López-Garcia, A.; García, F.; do Félix, M.; Laranjo, M.; Charneca, R.; Martins, J.M. Transcriptomic profiling of skeletal muscle reveals candidate genes influencing muscle growth and associated lipid composition in Portuguese local pig breeds. Animals 2021, 11, 1423. [Google Scholar] [CrossRef]
- Akyuz, E.; Bell, S.M. The diverse role of CUB and sushi multiple domains 1 (CSMD1) in human diseases. Genes 2022, 13, 2332. [Google Scholar] [CrossRef]
- Kim, S.-S.; Kim, S.-R.; Kim, J.-R.; Moon, J.-K.; Choi, B.-H.; Lee, J.-W.; Kim, K.-S.; Kim, T.-H.; Kim, H.-J.; Lee, C.-K. Differences in hepatic gene expression as a major distinguishing factor between Korean native pig and Yorkshire. Biosci. Biotechnol. Biochem. 2011, 75, 451–458. [Google Scholar] [CrossRef]
- Sahana, G.; Kadlecová, V.; Hornshøj, H.; Nielsen, B.; Christensen, O.F. A genome-wide association scan in pig identifies novel regions associated with feed efficiency trait. J. Anim. Sci. 2013, 91, 1041–1050. [Google Scholar] [CrossRef]
- Mota, L.F.; Santos, S.W.; Júnior, G.A.; Bresolin, T.; Mercadante, M.E.; Silva, J.A.; Cyrillo, J.N.; Monteiro, F.M.; Carvalheiro, R.; Albuquerque, L.G. Meta-analysis across Nellore cattle populations identifies common metabolic mechanisms that regulate feed efficiency-related traits. BMC Genom. 2022, 23, 424. [Google Scholar] [CrossRef]
- Banerjee, P.; Okstoft Carmelo, V.A.; Kadarmideen, H.N. Genome-wide epistatic interaction networks affecting feed efficiency in Duroc and Landrace pigs. Front. Genet. 2020, 11, 121. [Google Scholar] [CrossRef]
- Cai, W.; Casey, D.S.; Dekkers, J.C. Selection response and genetic parameters for residual feed intake in Yorkshire swine. J. Anim. Sci. 2008, 86, 287–298. [Google Scholar] [CrossRef]
- Hsu, W.-L.; Young, J.; Mauch, E.D.; Dekkers, J.C. Analysis of ten generations of selection for residual feed intake in Yorkshire pigs. Iowa State Univ. Anim. Ind. Rep. 2015, 12, R3032. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faggion, S.; Bonfatti, V.; Carnier, P. Genome-Wide Association Study for Weight Loss at the End of Dry-Curing of Hams Produced from Purebred Heavy Pigs. Animals 2024, 14, 1983. https://doi.org/10.3390/ani14131983
Faggion S, Bonfatti V, Carnier P. Genome-Wide Association Study for Weight Loss at the End of Dry-Curing of Hams Produced from Purebred Heavy Pigs. Animals. 2024; 14(13):1983. https://doi.org/10.3390/ani14131983
Chicago/Turabian StyleFaggion, Sara, Valentina Bonfatti, and Paolo Carnier. 2024. "Genome-Wide Association Study for Weight Loss at the End of Dry-Curing of Hams Produced from Purebred Heavy Pigs" Animals 14, no. 13: 1983. https://doi.org/10.3390/ani14131983
APA StyleFaggion, S., Bonfatti, V., & Carnier, P. (2024). Genome-Wide Association Study for Weight Loss at the End of Dry-Curing of Hams Produced from Purebred Heavy Pigs. Animals, 14(13), 1983. https://doi.org/10.3390/ani14131983