Evolution, Diversity, and Conservation of Herpetofauna
Acknowledgments
Conflicts of Interest
References
- Jiang, J.; Cai, B.; Wang, B.; Chen, W.; Wen, Z.; Zhang, D. New vertebrate forms discovered in China in 2021. Biodivers. Sci. 2022, 30, 22225. [Google Scholar] [CrossRef]
- Pan, T.; Zhang, C.; Orozco Terwengel, P.; Wang, H.; Ding, L.; Yang, L.; Hu, C.; Li, W.; Zhou, W.; Wu, X.; et al. Comparative phylogeography reveals dissimilar genetic differentiation patterns in two sympatric amphibian species. Integr. Zool. 2023. [Google Scholar] [CrossRef]
- Zhu, W.; Chang, L.; Zhang, M.; Chen, Q.; Sui, L.; Shen, C.; Jiang, J. Microbial diversity in mountain-dwelling amphibians: The combined effects of host and climatic factors. iScience 2024, 27, 109907. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Chang, L.; Shi, S.; Lu, N.; Du, S.; Li, J.; Jiang, J.; Wang, B. Gut microbiota reflect adaptation of cave-dwelling tadpoles to resource scarcity. ISME J. 2024, 18, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.-D.; Zhang, B.-L.; Zhou, W.-W.; Li, Y.-X.; Jin, J.-Q.; Shao, Y.; Yang, H.-C.; Liu, Y.-H.; Yan, F.; Chen, H.-M. Selection and environmental adaptation along a path to speciation in the Tibetan frog Nanorana parkeri. Proc. Natl. Acad. Sci. USA 2018, 115, E5056–E5065. [Google Scholar] [PubMed]
- Yan, C.; Wu, W.; Dong, W.; Zhu, B.; Chang, J.; Lv, Y.; Yang, S.; Li, J.-T. Temperature acclimation in hot-spring snakes and the convergence of cold response. Innovation 2022, 3, 100295. [Google Scholar] [CrossRef]
- Peng, C.; Wu, D.-D.; Ren, J.-L.; Peng, Z.-L.; Ma, Z.; Wu, W.; Lv, Y.; Wang, Z.; Deng, C.; Jiang, K. Large-scale snake genome analyses provide insights into vertebrate development. Cell 2023, 186, 2959–2976.e22. [Google Scholar] [CrossRef]
- Chang, L.; Chen, Q.; Wang, B.; Liu, J.; Zhang, M.; Zhu, W.; Jiang, J. Single cell RNA analysis uncovers the cell differentiation and functionalization for air breathing of frog lung. Commun. Biol. 2024, 7, 665. [Google Scholar] [CrossRef]
- Wei, X.; Fu, S.; Li, H.; Liu, Y.; Wang, S.; Feng, W.; Yang, Y.; Liu, X.; Zeng, Y.-Y.; Cheng, M.; et al. Single-cell Stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration. Science 2022, 377, eabp9444. [Google Scholar] [CrossRef]
- Joven, A.; Elewa, A.; Simon, A. Model systems for regeneration: Salamanders. Development 2019, 146, dev167700. [Google Scholar] [CrossRef]
- Han, X.; Sun, B.; Zhang, Q.; Teng, L.; Zhang, F.; Liu, Z. Metabolic regulation reduces the oxidative damage of arid lizards in response to moderate heat events. Integr. Zool. 2023. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Zhang, C.; Pan, X.; Storey, K.B.; Zhang, W. Distinct metabolic responses to thermal stress between invasive freshwater turtle Trachemys scripta elegans and native freshwater turtles in China. Integr. Zool. 2024. [Google Scholar] [CrossRef] [PubMed]
- Luedtke, J.A.; Chanson, J.; Neam, K.; Hobin, L.; Maciel, A.O.; Catenazzi, A.; Borzée, A.; Hamidy, A.; Aowphol, A.; Jean, A.; et al. Ongoing declines for the world’s amphibians in the face of emerging threats. Nature 2023, 622, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Plasman, M.; Gonzalez-Voyer, A.; Bautista, A.; DÍAz De La Vega-PÉRez, A.H. Flexibility in thermal requirements: A comparative analysis of the wide-spread lizard genus Sceloporus. Integr. Zool. 2024. [Google Scholar] [CrossRef]
- Mi, C.; Ma, L.; Yang, M.; Li, X.; Meiri, S.; Roll, U.; Oskyrko, O.; Pincheira-Donoso, D.; Harvey, L.P.; Jablonski, D.; et al. Global Protected Areas as refuges for amphibians and reptiles under climate change. Nat. Commun. 2023, 14, 1389. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, H.B.; Gidiş, M.; McCartney-Melstad, E.; Neal, K.M.; Oyamaguchi, H.M.; Tellez, M.; Toffelmier, E.M. Conservation genetics and genomics of amphibians and reptiles. Annu. Rev. Anim. Biosci. 2015, 3, 113–138. [Google Scholar] [CrossRef]
- Shi, S.-C.; Vogel, G.; Ding, L.; Rao, D.-Q.; Liu, S.; Zhang, L.; Wu, Z.-J.; Chen, Z.-N. Description of a new cobra (Naja Laurenti, 1768; Squamata, Elapidae) from China with designation of a neotype for Naja atra. Animals 2022, 12, 3481. [Google Scholar] [CrossRef] [PubMed]
- Nazarov, R.A.; Abduraupov, T.V.; Shepelya, E.Y.; Gritsina, M.A.; Melnikov, D.A.; Buehler, M.D.; Lapin, J.D.; Poyarkov, N.A.; Grismer, J.L. The fergana valley is an isolate of biodiversity: A discussion of the endemic herpetofauna and description of two new species of Alsophylax (Sauria: Gekkonidae) from eastern Uzbekistan. Animals 2023, 13, 2516. [Google Scholar] [CrossRef]
- Li, W.; Hou, X.; Zhu, Y.; Du, J.; Xu, C.; Yang, J.; Li, Y. eDNA Metabarcoding Reveals the Species–Area Relationship of Amphibians on the Zhoushan Archipelago. Animals 2024, 14, 1519. [Google Scholar] [CrossRef]
- Chu, Z.; Wang, Z.; Zheng, Y.; Xia, Y.; Guo, X. Sex-Linked Loci on the W Chromosome in the Multi-Ocellated Racerunner (Eremias multiocellata) Confirm Genetic Sex-Determination Stability in Lacertid Lizards. Animals 2023, 13, 2180. [Google Scholar] [CrossRef]
- Kundu, S.; Mukherjee, T.; Kim, A.R.; Lee, S.-R.; Mukherjee, A.; Jung, W.-K.; Kim, H.-W. Mitochondrial DNA and Distribution Modelling Evidenced the Lost Genetic Diversity and Wild-Residence of Star Tortoise, Geochelone elegans (Testudines: Testudinidae) in India. Animals 2023, 13, 150. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Huang, A.; He, Z.; Ao, L.; Ge, F.; Fan, X.; Zeng, B.; Yang, M.; Yang, D.; Ni, Q.; et al. Complete Mitogenomes of Polypedates Tree Frogs Unveil Gene Rearrangement and Concerted Evolution within Rhacophoridae. Animals 2022, 12, 2449. [Google Scholar] [CrossRef] [PubMed]
- Pröhl, H.; Rodríguez, A. Importance of Genetic–Fitness Correlations for the Conservation of Amphibians. Animals 2023, 13, 3564. [Google Scholar] [CrossRef] [PubMed]
- Lu, N.; Chen, B.; Qing, J.; Lei, J.; Wang, T.; Shi, H.; Wang, J. Transcriptome Analyses Provide Insights into the Auditory Function in Trachemys scripta elegans. Animals 2022, 12, 2410. [Google Scholar] [CrossRef]
- Ootawa, T.; Wu, S.; Sekio, R.; Smith, H.; Islam, M.Z.; Nguyen, H.T.; Uno, Y.; Shiraishi, M.; Miyamoto, A. Characterization of Vasoreactivity in a Semi-Arboreal Snake, the Tokara Habu (Protobothrops tokarensis). Animals 2023, 13, 3629. [Google Scholar] [CrossRef]
- Xu, R.; Dujsebayeva, T.N.; Chen, D.; Mijidsuren, B.; Xu, F.; Guo, X. Phylogeography and Ecological Niche Modeling of the Alashan Pit Viper (Gloydius cognatus; Reptilia, Viperidae) in Northwest China and Adjacent Areas. Animals 2023, 13, 3726. [Google Scholar] [CrossRef]
- Zhang, X.-L.; Alvarez, F.; Whiting, M.J.; Qin, X.-D.; Chen, Z.-N.; Wu, Z.-J. Climate Change and Dispersal Ability Jointly Affects the Future Distribution of Crocodile Lizards. Animals 2022, 12, 2731. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Lee, P.; Chen, H.; Yan, F.; Huang, J.; He, Y.; Wu, R.; Yuan, Z. Validation and development of eDNA metabarcoding primers for comprehensive assessment of Chinese amphibians. Integr. Zool. 2024. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Zhao, T.; Zhao, C.; Li, C.; Xie, F.; Liu, J.; Jiang, J. How will warming affect the growth and body size of the largest extant amphibian? More than the temperature-size rule. Sci. Total Environ. 2022, 859 Pt 1, 160105. [Google Scholar] [CrossRef]
- Bravo, G.A.; Schmitt, C.J.; Edwards, S.V. What have we learned from the first 500 avian genomes? Annu. Rev. Ecol. Evol. Syst. 2021, 52, 611–639. [Google Scholar] [CrossRef]
- Wilmanski, T.; Diener, C.; Rappaport, N.; Patwardhan, S.; Wiedrick, J.; Lapidus, J.; Earls, J.C.; Zimmer, A.; Glusman, G.; Robinson, M.; et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat. Metab. 2021, 3, 274–286. [Google Scholar] [CrossRef] [PubMed]
- De Vadder, F.; Kovatcheva-Datchary, P.; Goncalves, D.; Vinera, J.; Zitoun, C.; Duchampt, A.; Bäckhed, F.; Mithieux, G. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014, 156, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Grice, E.A.; Segre, J.A. The Human Microbiome: Our Second Genome. Annu. Rev. Genom. Hum. Genet. 2012, 13, 151–170. [Google Scholar] [CrossRef] [PubMed]
- Park, J.K.; Do, Y. The difference and variation of gut bacterial community and host physiology can support adaptation during and after overwintering in frog population. Integr. Zool. 2024. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Shi, Y.; Wang, J.; Niu, Z.; Wei, L.; Tian, H.; Yu, F.; Gao, L. The intestinal microbiota and metabolic profiles of Strauchbufo raddei underwent adaptive changes during hibernation. Integr. Zool. 2023. [Google Scholar] [CrossRef] [PubMed]
- Wan, B.; Chen, G.; Poon, E.S.K.; Fung, H.S.; Lau, A.; Sin, S.Y.W. Environmental factors and host sex influence the skin microbiota structure of Hong Kong newt (Paramesotriton hongkongensis) in a coldspot of chytridiomycosis in subtropical East Asia. Integr. Zool. 2024. [Google Scholar] [CrossRef] [PubMed]
- Weitzman, C.L.; Brown, G.P.; Gibb, K.; Christian, K. Cutaneous shedding in amphibians causes shifts in bacterial microbiomes. Integr. Zool. 2024. [Google Scholar] [CrossRef] [PubMed]
- Greenspan, S.E.; Migliorini, G.H.; Lyra, M.L.; Pontes, M.R.; Carvalho, T.; Ribeiro, L.P.; Moura-Campos, D.; Haddad, C.F.B.; Toledo, L.F.; Romero, G.Q.; et al. Warming drives ecological community changes linked to host-associated microbiome dysbiosis. Nat. Clim. Chang. 2020, 10, 1057–1061. [Google Scholar] [CrossRef]
- Bletz, M.C.; Perl, R.G.B.; Bobowski, B.T.; Japke, L.M.; Tebbe, C.C.; Dohrmann, A.B.; Bhuju, S.; Geffers, R.; Jarek, M.; Vences, M. Amphibian skin microbiota exhibits temporal variation in community structure but stability of predicted Bd-inhibitory function. ISME J. 2017, 11, 1521–1534. [Google Scholar] [CrossRef]
- Harris, R.N.; Brucker, R.M.; Walke, J.B.; Becker, M.H.; Schwantes, C.R.; Flaherty, D.C.; Lam, B.A.; Woodhams, D.C.; Briggs, C.J.; Vredenburg, V.T.; et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 2009, 3, 818–824. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Wang, B.; Jiang, J. Evolution, Diversity, and Conservation of Herpetofauna. Animals 2024, 14, 2004. https://doi.org/10.3390/ani14132004
Zhu W, Wang B, Jiang J. Evolution, Diversity, and Conservation of Herpetofauna. Animals. 2024; 14(13):2004. https://doi.org/10.3390/ani14132004
Chicago/Turabian StyleZhu, Wei, Bin Wang, and Jianping Jiang. 2024. "Evolution, Diversity, and Conservation of Herpetofauna" Animals 14, no. 13: 2004. https://doi.org/10.3390/ani14132004
APA StyleZhu, W., Wang, B., & Jiang, J. (2024). Evolution, Diversity, and Conservation of Herpetofauna. Animals, 14(13), 2004. https://doi.org/10.3390/ani14132004