Characterizing the Phan Rang Sheep: A First Look at the Y Chromosome, Mitochondrial DNA, and Morphometrics
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Information on Morphometric Features
2.2. Animal Selection and Total DNA Extraction
2.3. PCR Amplification and Sequencing
2.4. Phylogenetic Analysis of the D-Loop Region
2.5. Statistical Analyses of the D-Loop Data
2.6. Y Chromosome Marker Haplotype Assignment
3. Results
3.1. Morphometric Features
3.2. Phylogenetic Relationships of Phan Rang Sheep Based on the D-Loop Data
3.3. Sequence Variability and Diversity Analysis of the Phan Rang Sheep
3.4. Dynamic and Historical Profile of the Phan Rang Sheep
3.5. Lineages of the Phan Rang Male Sheep
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeder, M.A. Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact. Proc. Natl. Acad. Sci. USA 2008, 105, 11597–11604. [Google Scholar] [CrossRef] [PubMed]
- Dermici, S.; Koban Baştanlar, E.; Dağtaş, N.D.; Pişkin, E.; Engin, A.; Ozer, F.; Yüncü, E.; Doğan, S.A.; Togan, I. Mitochondrial DNA diversity of modern, ancient and wild sheep (Ovis gmelinii anatolica) from Turkey: New insights on the evolutionary history of sheep. PLoS ONE 2013, 8, 381952. [Google Scholar]
- Lv, F.H.; Peng, W.F.; Yang, J.; Zhao, Y.X.; Li, W.R.; Liu, M.J.; Ma, Y.H.; Zhao, Q.J.; Yang, G.L.; Wang, F.; et al. Mitogenomic Meta-Analysis Identifies Two Phases of Migration in the History of Eastern Eurasian Sheep. Mol. Biol. Evol. 2015, 32, 2515–2533. [Google Scholar] [CrossRef]
- Seixas, L.; de Melo, C.B.; Tanure, C.B.; Peripolli, V.; McManus, C. Heat tolerance in Brazilian hair sheep. Asian-Australas. J. Anim. Sci. 2017, 30, 593–601. [Google Scholar] [CrossRef]
- Berihulay, H.; Abied, A.; He, X.; Jiang, L.; Ma, Y. Adaptation mechanisms of small ruminants to environmental heat stress. Animals 2019, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Viet Nam Livestock: 2022 Viet Nam National Livestock Statistic Report. Available online: http://channuoivietnam.com/thong-ke-chan-nuoi/ (accessed on 2 April 2023).
- Le, M.C.; Le, D.D. Sheep Raising Techniques; Vietnam Agriculture Publishing House: Hanoi, Vietnam, 2005; pp. 12–14. (In Vietnamese) [Google Scholar]
- Nguyen, T.T.N.; Le, T.H.; Tran, T.T.H.; Luu, Q.T.; Nguyen, D.T.; Nguyen, X.T.; Nguyen, A.S.; Hoong, V.N.; Nguyen, H.Q.; Ha, V.N. Effects of heatwaves on hospital admissions for cardiovascular and respiratory diseases, in Southern Vietnam, 2010–2018: Time series analysis. Int. J. Environ. Res. Public Health. 2023, 20, 3908. [Google Scholar]
- Vietnam Ministry of Natural Resources and Environmental. Climate Change and Sea Level Rise Scenarios for Vietnam; Ministry of Natural Resources and Environmental: Hanoi, Vietnam, 2016; p. 50. [Google Scholar]
- Bui, V.L. Assessment of Phan Rang sheep’s Adaptability to Thua Thien Hue Raising Conditions. Ph.D. Thesis, Hue University, Hue, Vietnam, 2014. [Google Scholar]
- Ngo, T.V. Investigation of Growth, Reproduction, Meat Production Capacity and Solutions to Improving Meat Production in Phan Rang Sheep. Ph.D. Thesis, National Institute of Animal Science, Hanoi, Vietnam, 2014. [Google Scholar]
- Le, V.L.; Dam, V.T.; Nguyen, K.D. Biological Characteristics and Prospects of Developing Phan Rang Sheep Herd in Report on Genetic Conservation of Genetic Resources of Vietnam Livestock; Vietnam Agriculture Publishing House: Hanoi, Vietnam, 1994. [Google Scholar]
- Doan, D.V.; Vuong, N.L.; Ho, Q.A. An evaluation of Phan Rang sheep conformation. Vietnam. J. Anim. Husb. Tech. 2006, 10, 11–13. [Google Scholar]
- Rakib, M.R.H.; Desha, N.H.; Rahman, M.Z.; Kabir, M.A.; Yasmin, F.; Alam, M.A.; Akther, S.; Sultana, N. Environmental adaptability, morphometric features with reproductive and productive potentialities of indigenous sheep in Bangladesh. J. Adv. Vet. Anim. Res. 2022, 9, 649–662. [Google Scholar] [CrossRef] [PubMed]
- Do, T.T. Performance of F1 sheep (Dorper crossbred with Phan rang) raised at Ninh Thuan animal husbandry technology advance transfer station. Master’s Thesis, Vietnam Academy of Agriculture, Hanoi, Vietnam, 2014. [Google Scholar]
- Avise, J.C. Mitochondrial DNA and the evolutionary genetics of higher animals. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 1986, 312, 325–342. [Google Scholar] [PubMed]
- Mortiz, C.; Dowling, T.E.; Brown, W.M. Evolution of animal mitochondrial DNA: Relevance for population biology and systematics. Annu. Rev. Ecol. Evol. Syst. 1987, 18, 269–292. [Google Scholar] [CrossRef]
- Galtier, N.; Nabholz, B.; Glémin, S.; Hurst, G.D.D. Mitochondrial DNA as a marker of molecular diversity: A reappraisal. Mol. Ecol. 2009, 18, 4541–4550. [Google Scholar] [CrossRef] [PubMed]
- Niemi, M.; Bläuer, A.; Iso-Touru, T.; Nyström, V.; Harjula, J.; Taavitsainen, J.P.; Storå, J.; Lidén, K.; Kantanen, J. Mitochondrial DNA and Y-chromosome diversity in ancient populations of domestic sheep (Ovis aries) in Finland: Comparison with contemporary sheep breeds. Genet Sel. Evol. 2013, 45, 2. [Google Scholar] [CrossRef] [PubMed]
- Kvie, K.S.; Heggenes, J.; Roed, K.H. Merging and comparing three mitochondrial markers for phylogenetic studies of Eurasian reindeer (Rangifer tarandus). Ecol. Evol. 2016, 6, 4347–4358. [Google Scholar] [CrossRef] [PubMed]
- Spielmann, G.; Diedrich, J.; Haszprunar, G.; Busch, U.; Huber, I. Comparison of three DNA marker regions for identification of food relevant crustaceans of the order Decapoda. Eur. Food. Res. Technol. 2018, 245, 987–995. [Google Scholar] [CrossRef]
- Habza-Kowalska, E.; Grela, M.; Gryzinska, M.; Listos, P. Molecular techniques for detecting food adulteration. Med. Weter. 2019, 75, 404–409. [Google Scholar] [CrossRef]
- Mousumee, M.A.; Hossain, M.M.; Bhuiyan, M.S.A. Genetic diversity and maternal origin of indigenous sheep of Bangladesh using mitochondrial DNA. Iran. J. Appl. Anim. Sci. 2010, 11, 311–318. [Google Scholar]
- Ferencakovic, M.; Curik, I.; Pérez-Pardal, L.; Royo, L.J.; Cubric-Curik, V.; Fernández, I.; Alvarez, I.; Kostelic, A.; Sprem, N.; Krapinec, K.; et al. Mitochondrial DNA and Y-chromosome diversity in East Adriatic sheep. Anim. Genet. 2013, 44, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ding, X.; Zeng, Y.; Yue, Y.; Guo, X.; Guo, T.; Chu, M.; Wang, F.; Han, J.; Feng, R.; et al. Genetic Diversity and Phylogenetic Evolution of Tibetan Sheep Based on mtDNA D-Loop Sequences. PLoS ONE 2016, 11, e0159308. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.; Budisatria, I.G.S.; Widayanti, R.; Artama, W.T. The genetic profiles and maternal origin of local sheep breeds on Java Island (Indonesia) based on complete mitochondrial DNA D-loop sequences. Vet. World. 2020, 13, 2625–2634. [Google Scholar] [CrossRef] [PubMed]
- Kamalakkannan, R.; Kumar, S.; Bhavana, K.; Prabhu, V.R.; Machado, C.B.; Singha, H.S.; Sureshgopi, D.; Vijay, V.; Nagarajan, M. Evidence for independent domestication of sheep mtDNA lineage A in India and introduction of lineage B through Arabian sea route. Sci. Rep. 2021, 11, 19733. [Google Scholar] [CrossRef] [PubMed]
- Meadows, J.R.; Hanotte, O.; Drögemüller, C.; Calvo, J.; Godfrey, R.; Coltman, D.; Maddox, J.F.; Marzanov, N.; Kantanen, J.; Kijas, J.W. Globally dispersed Y chromosomal haplotypes in wild and domestic sheep. Anim Genet. 2006, 37, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Peng, W.F.; Yang, G.L.; Lv, F.H.; Liu, M.J.; Li, W.R.; Liu, Y.G.; Li, J.Q.; Wang, F.; Shen, Z.Q.; et al. Y chromosome haplotype diversity of domestic sheep (Ovis aries) in northern Eurasia. Anim. Genet. 2014, 45, 903–907. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, L.; Yan, W.; Li, S.; Wang, J.; Liu, X.; Hu, J.; Luo, Y. Y chromosomal haplotype characteristics of domestic sheep (Ovis aries) in China. Gene. 2015, 565, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Xie, X.L.; Wang, D.F.; Zhao, C.; Lv, F.H.; Li, X.; Yang, J.; Yu, J.L.; Shen, M.; Gao, L.; et al. Paternal Origins and Migratory Episodes of Domestic Sheep. Curr. Biol. 2020, 30, 4085–4095. [Google Scholar] [CrossRef] [PubMed]
- Machová, K.; Málková, A.; Vostrý, L. Sheep post-domestication expansion in the context of mitochondrial and Y chromosome, haplogroups and haplotypes. Genes. 2022, 13, 613. [Google Scholar] [CrossRef]
- Duong, V.T.; Beynen, A.C. Growth performance of lambs in PhangRang, Vietnam: Effects of a dietary supplement containing prickly-pear cactus. Trop. Anim. Health Prod. 2005, 37, 237–244. [Google Scholar]
- Khuc, T.H.; Do, T.T.V.; Sporndly, E.; Ledin, I.; Wredle, E. Effect of adaptation strategies when feeding fresh cassava foliage on intake and physiological responses of lambs. Trop. Anim. Health Prod. 2012, 44, 267–276. [Google Scholar]
- Nguyen, H.V.; Nguyen, T.M.; Le, T.H.; Van, N.P.; Tran, N.L.; Dinh, V.D.; Vo, T.M.T.; Ho, L.Q.C.; Ngo, M.D.; Van, L.B.; et al. The status of sheep husbandry and the growth and reproductive performance of Phan Rang sheep raised in Ninh-Thuan province. Vietnam. J. Anim. Husb. Sci. Tech. 2024, 295, 25–31. [Google Scholar]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA 11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.; Clamp, M.; Barton, G.J. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef]
- Matschiner, M.; Mendes, F.K.; Müller, N.F.; Ogilvie, H.A.; du Plessis, L.; Popinga, A.; Rambaut, A.; Rasmussen, D.; Siveroni, I.; Suchard, M.A.; et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2019, 15, e1006650. [Google Scholar]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Tarlykov, P.; Atavliyeva, S.; Auganova, D.; Akhmetollayev, I.; Loshakova, T.; Varfolomeev, V.; Ramankulov, Y. Mitochondrial DNA analysis of ancient sheep from Kazakhstan: Evidence for early sheep introduction. Heliyon 2021, 7, e08011. [Google Scholar] [CrossRef] [PubMed]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Leigh, J.W.; Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Salim, B.; Alasmari, S.; Mohamed, N.S.; Ahmed, M.A.; Nakao, R.; Hanotte, O. Genetic variation and demographic history of Sudan desert sheep reveal two diversified lineages. BMC Genom. 2023, 24, 118. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.L.; Nguyen, N.C.; Huynh, T.T.H. Mitochondrial DNA insertions into nuclear genome (numts) in Vietnam sheep: Implications and caveats for utility of the mitochondrial DNA markers in genetic diversity studies in sheep. Vietnam. J. Biotechnol. 2023, 21, 655–667. [Google Scholar] [CrossRef]
- Fu, Y.X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background growth, hitchhiking and background selection. Genetics 1997, 147, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Tajima, F. Effect of non-random sampling on the estimation of parameters in population genetics. Genet Res. 1995, 66, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Soriano, A.; Ramos-Onsins, S.E.; Rozas, J.; Calafell, F.; Navarro, A. Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination. Genetics 2008, 179, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Kalds, P.; Huang, S.H.; Chen, Y.L.; Wang, X.L. Ovine HOXB13: Expanding the gene repertoire of sheep tail patterning and implications in genetic improvement. Common. Biol. 2022, 5, 1196. [Google Scholar] [CrossRef] [PubMed]
Morphometrics | Male (30) | Female (30) | ||
---|---|---|---|---|
Mean ± Standard Deviation | Coefficient of Variance | Mean ± Standard Deviation | Coefficient of Variance | |
Body weight (kg) | 41.8 ± 4.5 | 10.8 | 33.3 ± 4.6 | 13.9 |
Body diagonal length (cm) | 72.6 ± 3.7 | 5.1 | 66.1 ± 3.3 | 5.0 |
Sternum height (cm) | 41.9 ± 3.3 | 7.8 | 38.2 ± 1.8 | 4.7 |
Chest width (cm) | 68.1 ± 3.3 | 4.9 | 62.2 ± 3.3 | 5.3 |
Heart girth (cm) | 17.9 ± 1.7 | 9.7 | 12.8 ± 0.5 | 4.2 |
Tail length (cm) | 35.2 ± 4.6 | 13.0 | 27.3 ± 3.0 | 13.9 |
Head length (cm) | 22.9 ± 1.7 | 7.5 | 20.3 ± 1.3 | 6.6 |
Head width (cm) | 11.4 ± 0.7 | 6.2 | 10.3 ± 0.5 | 4.6 |
Ear length (cm) | 16.3 ± 2.5 | 15.3 | 13.1 ± 1.1 | 8.7 |
Cannon circumference (cm) | 11.9 ± 1.3 | 10.8 | 10.6 ± 0.7 | 6.7 |
MtDNA Haplogroup B | MtDNA Haplogroup A | Total | |
---|---|---|---|
Sample size | 49 | 19 | 68 |
Number of polymorphic sites | 19 | 6 | 50 |
Number of haplotypes | 14 | 2 | 16 |
Haplotype diversity | 0.670.0046 | 0.49 0.0046 | 0.79 |
Mean of nucleotide differences | 6.14 | 2.95 | 18.86 |
Nucleotide diversity | 0.00576 ± 0.0000002 | 0.00276 ± 0.0000001 | 0.01770 ± 0.0000020 |
Fu’s Fs statistic | 0.209 (0.140) | 7.096 (0.009) | 9.676 (p > 0.01) |
Fu and Li’s D test statistics | 0.13395 (p > 0.1, not significant) | 1.25359 (0.1 > p > 0.05, not significant) | 1.69095 (p < 0.02) |
Fu and Li’s F test statistics | 0.67502 (p > 0.1, not significant) | 1.78939 (p > 0.01) | 2.42545 (p > 0.01) |
Tajima’s D test | 1.40120 (p > 0.1, not significant) | 2.32066 (p < 0.05) | 2.56444 (p < 0.05) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luong, N.N.; Ha, H.T.T.; Huy, N.X.; Loi, B.V.; Van, N.H.; Quang, H.T.; Loc, N.H. Characterizing the Phan Rang Sheep: A First Look at the Y Chromosome, Mitochondrial DNA, and Morphometrics. Animals 2024, 14, 2020. https://doi.org/10.3390/ani14142020
Luong NN, Ha HTT, Huy NX, Loi BV, Van NH, Quang HT, Loc NH. Characterizing the Phan Rang Sheep: A First Look at the Y Chromosome, Mitochondrial DNA, and Morphometrics. Animals. 2024; 14(14):2020. https://doi.org/10.3390/ani14142020
Chicago/Turabian StyleLuong, Nguyen Ngoc, Huynh Thi Thu Ha, Nguyen Xuan Huy, Bui Van Loi, Nguyen Huu Van, Hoang Tan Quang, and Nguyen Hoang Loc. 2024. "Characterizing the Phan Rang Sheep: A First Look at the Y Chromosome, Mitochondrial DNA, and Morphometrics" Animals 14, no. 14: 2020. https://doi.org/10.3390/ani14142020
APA StyleLuong, N. N., Ha, H. T. T., Huy, N. X., Loi, B. V., Van, N. H., Quang, H. T., & Loc, N. H. (2024). Characterizing the Phan Rang Sheep: A First Look at the Y Chromosome, Mitochondrial DNA, and Morphometrics. Animals, 14(14), 2020. https://doi.org/10.3390/ani14142020