Select Venous Analytes and Fibrinogen Determination Using Two Methods in Brown Pelicans
Abstract
:Simple Summary
Abstract
1. Implications
2. Introduction
3. Material and Methods
3.1. Sample Collection and Processing
3.2. Hemolysis Assessment
3.3. Abaxis VSpro Fibrinogen
3.4. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- BirdLife International. Pelecanus occidentalis. In The IUCN Red List of Threatened Species 2018: E.T22733989A132663224; IUCN Biodiversity Assessment & Knowledge Team, Red List Unit: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- DDT—A Brief History and Status. EPA Website. Available online: https://www.epa.gov/ingredients-used-pesticide-products/ddt-brief-history-and-status#:~:text=DDT%20(dichloro%2Ddiphenyl%2Dtrichloroethane,both%20military%20and%20civilian%20populations (accessed on 30 May 2024).
- Selman, W.; Hess, T.J.; Salyers, B.; Salyers, C. Short-term response of Brown Pelicans (Pelecanus occidentalis) to oil spill rehabilitation and translocation. Southeast. Nat. 2012, 11, G1–G16. [Google Scholar] [CrossRef]
- Raynor, E.J.; Pierce, A.R.; Owen, T.M.; Leumas, C.M.; Rohwer, F.C. Short-term demographic responses of a coastal waterbird community after two major hurricanes. Waterbirds 2013, 36, 88–93. [Google Scholar] [CrossRef]
- Kinney, M.E. The effects of capture, restraint, and transport on hematologic, plasma biochemical, and blood gas values in Dalmatian pelicans (Pelecanus crispus). J. Avian Med. Surg. 2018, 32, 95–101. [Google Scholar] [CrossRef]
- Georgieva, T.M.; Koinarski, V.N.; Urumova, V.S.; Marutsov, P.D.; Christov, T.T.; Nikolov, J.; Chaprazov, T.; Walshe, K.; Karov, R.S.; Georgiev, I.P.; et al. Effects of Escherichia coli infection and Eimeria tenella invasion on blood concentrations of some positive acute phase proteins (haptoglobin (PIT 54), fibrinogen and ceruloplasmin) in chickens. Rev. Med. Vet. 2010, 161, 84. [Google Scholar]
- Hawkey, C.; Hart, M.G. An analysis of the incidence of hyperfibrinogenaemia in birds with bacterial infections. Avian Pathol. 1988, 17, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Petzinger, C.; Larner, C.; Heatley, J.J.; Bailey, C.A.; MacFarlane, R.D.; Bauer, J.E. Conversion of a-linolenic acid to long-chain omega-3 fatty acid derivatives and alterations of HDL density subfractions and plasma lipids with dietary polyunsaturated fatty acids in Monk parrots (Myiopsitta monachus). J. Anim. Physiol. Anim. Nutr. 2014, 98, 262–270. [Google Scholar] [CrossRef]
- Zaias, J.; Fox, W.P.; Cray, C.; Altman, N.H. Hematologic, plasma protein, and biochemical profiles of brown pelicans (Pelecanus occidentalis). Am. J. Vet. Res. 2000, 61, 771–774. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, L.M.; Norton, T.M.; Cray, C.; Oliva, M.; Jodice, P.G. Health assessments of brown pelican (Pelecanus occidentalis) nestlings from colonies in South Carolina and Georgia, USA. J. Zoo Wildl. Med. 2014, 45, 802–812. [Google Scholar] [CrossRef] [PubMed]
- Jodice, P.G.; Lamb, J.S.; Satgé, Y.G.; Fiorello, C. Blood biochemistry and hematology of adult and chick brown pelicans in the northern Gulf of Mexico: Baseline health values and ecological relationships. Conserv. Physiol. 2022, 10, coac064. [Google Scholar] [CrossRef]
- Wolf, S.H.; Schreiber, R.W.; Kahana, L.; Torres, J.J. Seasonal, sexual and age-related variation in the blood composition of the brown pelican (Pelecanus occidentalis). Comp. Biochem. Physiol. Part A Physiol. 1985, 82, 837–846. [Google Scholar] [CrossRef]
- Rettenmund, C.L.; Heatley, J.J.; Russell, K.E. Comparison of two analyzers to determine selected venous blood analytes of Quaker parrots (Myiopsitta monachus). J. Zoo Wildl. Med. 2014, 45, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.B.; Akter, M.A.; Saha, M.; Mishra, P.; Hoda, N.; Alam, M.M. Clinicopathological evaluation on capture myopathy due to chemical immobilization in spotted deer. Turk. J. Vet. Res. 2019, 3, 73–79. [Google Scholar]
- Breed, D.; Meyer, L.C.; Steyl, J.C.; Goddard, A.; Burroughs, R.; Kohn, T.A. Conserving wildlife in a changing world: Understanding capture myopathy—A malignant outcome of stress during capture and translocation. Conserv. Physiol. 2019, 7, coz027. [Google Scholar] [CrossRef]
- Phillips, B.E.; Cannizzo, S.A.; Godfrey, M.H.; Stacy, B.A.; Harms, C.A. Exertional myopathy in a juvenile green sea turtle (Chelonia mydas) entangled in a large mesh gillnet. Case Rep. Vet. Med. 2015, 2015, 604320. [Google Scholar] [CrossRef]
- Spraker, T.; Fowler, M. Zoo and wild animal medicine: Current therapy. In Stress and Capture Myopathy in Artiodactylids; WB Saunders: Philadelphia, PA, USA, 1993; pp. 481–488. [Google Scholar]
- Cray, C.; Tatum, L.M. Applications of protein electrophoresis in avian diagnostics. J. Avian Med. Surg. 1998, 12, 4–10. [Google Scholar]
- Hawkey, C.; Samour, H.J.; Henderson, G.M.; Hart, M.G. Haematological findings in captive gentoo penguins (Pygoscelis papua) with bumblefoot. Avian Pathol. 1985, 14, 251–256. [Google Scholar] [CrossRef]
- Davalos, D.; Akassoglou, K. Fibrinogen as a key regulator of inflammation in disease. In Seminars in Immunopathology; Springer: Berlin/Heidelberg, Germany, 2012; Volume 34, pp. 43–62. [Google Scholar]
- Harr, K.E. Clinical chemistry of companion avian species: A review. Vet. Clin. Pathol. 2002, 31, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Drew, M.L.; Joyner, K.; Lobingier, R. Laboratory reference intervals for a group of captive thick-billed parrots (Rhynchopsitta pachyrhyncha). J. Assoc. Avian Vet. 1993, 7, 35–38. [Google Scholar] [CrossRef]
- Polo, F.J.; Peinado, V.I.; Viscor, G.; Palomeque, J. Hematologic and plasma chemistry values in captive psittacine birds. Avian Dis. 1998, 42, 523–535. [Google Scholar] [CrossRef]
- Godwin, J.S.; Jacobson, E.R.; Gaskin, J.M. Effects of Pacheco’s parrot disease virus on hematologic and blood chemistry values of Quaker parrots (Myopsitta monachus). J. Zoo Anim. Med. 1982, 13, 127–132. [Google Scholar] [CrossRef]
- Krajewski, T.; Nowak, P.; Cierniewski, C.S. Chemical structure and properties of duck and goose fibrinogen. Biochim. Biophys. Acta (BBA) Protein Struct. 1980, 622, 94–104. [Google Scholar] [CrossRef]
- Pindyck, J.; Mosesson, M.W.; Bannerjee, D.; Galanakis, D. The structural characteristics of chicken fibrinogen. Biochim. Biophys. Acta (BBA) Protein Struct. 1977, 492, 377–386. [Google Scholar] [CrossRef]
- Cardinali, B.; Profumo, A.; Aprile, A.; Byron, O.; Morris, G.; Harding, S.E.; Stafford, W.F.; Rocco, M. Hydrodynamic and mass spectrometry analysis of nearly-intact human fibrinogen, chicken fibrinogen, and of a substantially monodisperse human fibrinogen fragment X. Arch. Biochem. Biophys. 2010, 493, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Keel Scoring Chart for Birds at North Carolina Zoo. Available online: https://nagonline.net/wp-content/uploads/2016/08/Keel-Scoring-Chart-for-Birds.jpg (accessed on 1 June 2024).
- Ripplinger, E.N.; Gruber, E.J.; Correa, M.T.; Martin, M.P.; Crespo, R. Evaluation and establishment of reference intervals using the i-STAT1 blood chemistry analyzer in turkeys. Poult. Sci. 2023, 102, 102806. [Google Scholar] [CrossRef]
- Epstein, K.L.; Brainard, B.M. An evaluation of the Abaxis VSPro for the measurement of equine plasma fibrinogen concentrations. Equine Vet. J. 2012, 44, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.R.; Callas, P.W.; Jenny, N.S.; Tracy, R.P. Longitudinal stability of coagulation, fibrinolysis, and inflammation factors in stored plasma samples. Thromb. Haemost. 2001, 86, 1495–1500. [Google Scholar] [CrossRef] [PubMed]
- Plumhoff, E.A.; Masoner, D.; Dale, J.D. Preanalytic laboratory errors: Identification and prevention. Mayo Clin. Commun. 2008, 33, 1–7. [Google Scholar]
- Rousselet, G.A.; Pernet, C.R.; Wilcox, R.R. The percentile bootstrap: A primer with step-by-step instructions in R. Adv. Methods Pract. Psychol. Sci. 2021, 4. [Google Scholar] [CrossRef]
- Greenacre, C.B.; Flatland, B.; Souza, M.J.; Fry, M.M. Comparison of avian biochemical test results with Abaxis VetScan and Hitachi 911 analyzers. J. Avian Med. Surg. 2008, 22, 291–299. [Google Scholar] [CrossRef]
- Geffre, A.; Friedrichs, K.; Harr, K.; Concordet, D.; Trumel, C.; Braun, J.P. Reference values: A review. Vet. Clin. Pathol. 2009, 38, 288–298. [Google Scholar] [CrossRef]
- Friedrichs, K.R.; Harr, K.E.; Freeman, K.P.; Szladovits, B.; Walton, R.M.; Barnhart, K.F.; Blanco-Chavez, J. ASVCP reference interval guidelines: Determination of de novo reference intervals in veterinary species and other related topics. Vet. Clin. Pathol. 2012, 41, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Miesbach, W.; Schenk, J.; Alesci, S.; Lindhoff-Last, E. Comparison of the fibrinogen Clauss assay and the fibrinogen PT derived method in patients with dysfibrinogenemia. Thromb. Res. 2010, 126, e428–e433. [Google Scholar] [CrossRef] [PubMed]
- Morrisey, J.K.; Paul-Murphy, J.; Fialkowski, J.P.; Hart, A.; Darien, B.J. Estimation of prothrombin times of Hispaniolan Amazon parrots (Amazona ventralis) and umbrella cockatoos (Cacatua alba). J. Avian Med. Surg. 2003, 17, 72–77. [Google Scholar] [CrossRef]
- Metzner, M.; Horber, J.; Rademacher, G.; Klee, W. Application of the glutaraldehyde test in cattle. J. Vet. Med. Ser. A 2007, 54, 449–454. [Google Scholar] [CrossRef]
Collection Dates and Sample Handling Timeline | |||
---|---|---|---|
Collection Date | Number of Birds Sampled | Time after Collection of Sodium Citrate Decanting and Freezing | Time after Collection to VSPro Fibrinogen Testing |
12/31/14 | 24 | <24 h | 36 days & 53 days |
1/6/15 | 20 | <36 h | Split 39 days & 40 days |
1/21/15 | 18 | 48 h | 15 days & 31 days |
1/28/15 | 9 | <24 h | Split 5 days & 17 days |
Reference Intervals | ||||
---|---|---|---|---|
Analyte | N | Mean | 95% Confidence Interval | 95% Reference Interval |
iSTAT Data | ||||
Anion Gap 1 (mmol/L) | 68 | 21.5 | 20.60–22.34 | 12–29 |
Base Excess 1 (mmol/L) | 67 | −4.4 | −5.5–−3.3 | −14–5 |
Chloride 2 (mmol/L) | 65 | 108.4 | 107.81–109.08 | 103–115 |
Glucose 2 (mg/dL) | 67 | 258 | 248.9–268.0 | 179–376 |
Hemoglobin 2 (g/dL) | 68 | 13.4 | 13.05–13.68 | 10.5–16.0 |
Bicarbonate 1 (mmol/L) | 67 | 21 | 20.1–21.9 | 13.4–29.4 |
Hematocrit 2 (%) | 68 | 39.3 | 38.38–40.24 | 31–47 |
Ionized Calcium 1 (mmol/L) | 60 | 1.26 | 1.226–1.287 | 0.99–1.52 |
Potassium 2 (mmol/L) | 69 | 4.3 | 4.09–4.43 | 2.6–6.4 |
Lactate 1 (mmol/L) | 69 | 8.7 | 7.99–9.41 | 3.3–16.3 |
PCO2 1 (mmHg) | 67 | 36.2 | 35.00–37.37 | 26.2–47.4 |
PCO2 4 (mmHg) | 65 | 41.3 | 39.94–42.66 | 28.7–53.6 |
PO2 1 (mmHg) | 69 | 43.3 | 42.0–45.0 | 30–61 |
PO2 4 (mmHg) | 67 | 54.4 | 52.29–56.52 | 36–76 |
sO2 1 (%) | 65 | 77.3 | 75.61–78.91 | 62–93 |
Sodium 2 (mmol/L) | 68 | 145.5 | 144.90–146.02 | 140–150 |
pH 1,5 | 63 | 7.36 | 7.350–7.379 | 7.24–7.49 |
pH 4 | 65 | 7.33 | 7.310–7.342 | 7.19–7.49 |
TCO2 1 (mmol/L) | 67 | 22.1 | 21.15–22.97 | 14–31 |
TCO2 4 (mmol/L) | 68 | 20.3 | 19.60–21.02 | 13–28 |
Abaxis VS2 Chemistry Data | ||||
Creatine Kinase (U/L) | 68 | 1263 | 1150.0–1375.0 | 478–2511 |
Creatinine 3 (mg/dL) | 66 | 0.34 | 0.321–0.364 | 0.2–0.5 |
Glucose (mg/dL) | 69 | 258 | 248.5–267.9 | 178–374 |
Aspartate Aminotransferase 3 (U/L) | 69 | 629.7 | 545.18–714.27 | 142–1872 |
Blood Urea Nitrogen *** (mg/dL) | 67 | <0.3 | <0.3 | <0.3 |
Total Calcium 3 (mmol/L) | 68 | 10.4 | 10.26–10.47 | 9.7–11.5 |
Potassium (mmol/L) | 70 | 4.6 | 4.41–4.76 | 3.2–6.4 |
Phosphorus (mg/dL) | 68 | 2.8 | 2.54–3.04 | 0.3–5.2 |
Sodium (mmol/L) | 70 | 146.4 | 145.70–147.01 | 141–153 |
Total Protein (g/dL) | 69 | 4.6 | 4.45–4.67 | 3.8–5.8 |
Uric Acid 3 (mg/dL) | 68 | 7.2 | 6.18–8.23 | 1.9–19.2 |
Fibrinogen data | ||||
Fibrinogen-HP 3 (mg/dL) | 70 | 250 | 218–279 | 100–500 |
Fibrinogen-VS pro (mg/dL) | 59 | 140 | 133–147 | 70–210 |
Manually determined data | ||||
PCV 3 (%) | 66 | 46.4 | 45.23–47.59 | 33–54 |
Total Solids 3 (g/dL) | 23 | 4.6 | 4.47–4.80 | 4.0–5.3 |
Temperature (°C) | 68 | 104.2 | 103.83–104.53 | 100.9–107.1 |
Bland–Altman Results | ||||
---|---|---|---|---|
Parameter | n | Bias | 95% Limits of Agreement | Agreement Level |
Glucose VS2 vs. Chem8 | 67 | −1.6 | −30.9–27.6 | Good |
PCV vs. Hct | 64 | −6.8 | −13.4–−0.1 | Poor |
Fibrinogen HP vs. VSPro | 56 | −112.0 | −362.1–138.2 | Poor |
Sodium VS2 vs. Chem8 | 60 | 1.1 | −3.9–6.1 | Good |
Potassium VS2 vs. Chem8 | 60 | 0.31 | −0.34–0.96 | Good |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gessner-Knepel, A.; Gentry, J.; Schmalz, S.; Russell, K.E.; Heatley, J.J. Select Venous Analytes and Fibrinogen Determination Using Two Methods in Brown Pelicans. Animals 2024, 14, 2364. https://doi.org/10.3390/ani14162364
Gessner-Knepel A, Gentry J, Schmalz S, Russell KE, Heatley JJ. Select Venous Analytes and Fibrinogen Determination Using Two Methods in Brown Pelicans. Animals. 2024; 14(16):2364. https://doi.org/10.3390/ani14162364
Chicago/Turabian StyleGessner-Knepel, Amelia, Jordan Gentry, Sharon Schmalz, Karen E. Russell, and J. Jill Heatley. 2024. "Select Venous Analytes and Fibrinogen Determination Using Two Methods in Brown Pelicans" Animals 14, no. 16: 2364. https://doi.org/10.3390/ani14162364
APA StyleGessner-Knepel, A., Gentry, J., Schmalz, S., Russell, K. E., & Heatley, J. J. (2024). Select Venous Analytes and Fibrinogen Determination Using Two Methods in Brown Pelicans. Animals, 14(16), 2364. https://doi.org/10.3390/ani14162364