The Effects of Hemp Hay (Canapa sativa L.) in the Diets of Grazing Goats on Milk Production and Fatty Acid Profile
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Diet and Feed Analysis
2.3. Milk Sampling and Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bailoni, L.; Bacchin, E.; Trocino, A.; Arango, S. Hemp (Cannabis sativa L.) Seed and Co-Products Inclusion in Diets for Dairy Ruminants: A Review. Animals 2021, 11, 856. [Google Scholar] [CrossRef] [PubMed]
- Rapetti, L.; Colombini, S.; Battelli, G.; Castiglioni, B.; Turri, F.; Galassi, G.; Battelli, M.; Crovetto, G.M. Effect of linseeds and hemp seeds on Milk production, energy and nitrogen balance, and methane emissions in the dairy goat. Animals 2021, 11, 2717. [Google Scholar] [CrossRef]
- Butler, G. Manipulating dietary PUFA in animal feed: Implications for human health. Proc. Nutr. Soc. 2013, 73, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Tudisco, R.; Calabrò, S.; Cutrignelli, M.I.; Grossi, M.; Musco, N.; Piccolo, V.; Infascelli, F. Extruded linseed in the diet of grazing goats: Effects on milk Conjugated Linoleic Acid. In Trends in Veterinary Sciences: Current Aspects in Veterinary Morphophysiology, Biochemistry, Animal Production, Food Hygiene and Clinical Sciences; Springer: Berlin/Heidelberg, Germany, 2013; pp. 181–185. [Google Scholar]
- Musco, N.; Tudisco, R.; Esposito, G.; Iommelli, P.; Totakul, P.; D’Aniello, B.; Lombardi, P.; Amato, R.; Wanapat, M.; Infascelli, F. Effects of Linseed Supplementation on Milk Production, Composition, Odd- and Branched-Chain Fatty Acids, and on Serum Biochemistry in Cilentana Grazing Goats. Animals 2022, 12, 783. [Google Scholar] [CrossRef]
- Kouba, M.; Mourot, J. A review of nutritional effects on fat composition of animal products with special emphasis on n-3 polyunsaturated fatty acids. Biochimie 2011, 93, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Chilliard, Y.; Glasser, F.; Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lip. Sci. Tech. 2007, 109, 828–855. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the safety of hemp (Cannabis genus) for use as animal feed. EFSA J. 2011, 9, 1–41. [Google Scholar]
- Klir, Ž.; Novoselec, J.; Antunović, Z. An overview on the use of hemp (Cannabis sativa L.) in animal nutrition. Poljoprivreda 2019, 25, 52–61. [Google Scholar] [CrossRef]
- Serrapica, F.; Masucci, F.; Raffrenato, E.; Sannino, M.; Vastolo, A.; Barone, C.M.A.; Di Francia, A. High fiber cakes from mediterranean multipurpose oilseeds as protein sources for ruminants. Animals 2019, 9, 918. [Google Scholar] [CrossRef]
- Irawan, A.; Puerto-Hernandez, G.M.; Ford, H.R.; Busato, S.; Ates, S.; Cruickshank, J.; Ranches, J.; Estill, C.T.; Trevisi, E.; Bionaz, M. Feeding spent hemp biomass to lactating dairy cows: Effects on performance, milk components and quality, blood parameters, and nitrogen metabolism. J. Dairy Sci. 2023, 107, 258–277. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 19th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3598. [Google Scholar] [CrossRef] [PubMed]
- INRA; Noziere, P.; Sauvant, D.; Delaby, L. INRA Feeding System for Ruminants; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018; 640p, ISBN 978-90-8686-292-4. [Google Scholar]
- Zicarelli, F.; Addi, L.; Tudisco, R.; Calabrò, S.; Lombardi, P.; Cutrignelli, M.I.; Moniello, G.; Grossi, M.; Tozzi, B.; Musco, N.; et al. The influence of diet supplementation with Saccharomyces cerevisiae or Saccharomyces cerevisiae plus Aspergillus oryzae on milk yield of Cilentana grazing dairy goats. Small Rumin. Res. 2016, 135, 90–94. [Google Scholar] [CrossRef]
- Hara, A.; Radin, N.S. Lipid extraction of tissues with a low-toxicitysolvent. Anal. Biochem. 1978, 90, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Chouinard, P.Y.; Corneau, L.; Barbano, D.M.; Metzger, L.E.; Bauman, D.E. Conjugated linoleic acids alter milk fatty acid composition and inhibit milk fat secretion in dairy cows. J. Nutr. 1999, 129, 1579–1584. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Banakar, P.S.; Tyagi, A.K.; Sharma, H. Intra-species variation in fatty acid profile and nutritional indices of cattle (Bos indicus), buffalo (Bubalus bubalis) and goat (Capra hircus) ghee deciphered using GC-FID and FT-IR spectroscopy. Int. Dairy J. 2022, 129, 105342. [Google Scholar] [CrossRef]
- Tudisco, R.; Morittu, V.M.; Addi, L.; Moniello, G.; Grossi, M.; Musco, N.; Grazioli, R.; Mastellone, V.; Pero, M.E.; Lombardi, P.; et al. Influence of Pasture on Stearoyl-CoA Desaturase and miRNA 103 Expression in Goat Milk: Preliminary Results. Animals 2019, 9, 606. [Google Scholar] [CrossRef] [PubMed]
- Lo Presti, V.; Tudisco, R.; Di Rosa, A.R.; Musco, N.; Iommelli, P.; Infascelli, F.; Grossi, M.; Ferrara, M.; Chiofalo, B.; Lombardi, P.; et al. Influence of season on milk fatty acid profile and sensory characteristics of grazing goats in a Mediterranean environment: A sustainable agro-food system. Anim. Prod. Sci. 2023, 63, 689–703. [Google Scholar] [CrossRef]
- Meľuchová, B.; Blaško, J.; Kubinec, R.; Górová, R.; Dubravská, J.; Margetín, M.; Soják, L. Seasonal variations in fatty acid composition of pasture forage plants and CLA content in ewe milk fat. Small Rum. Res. 2008, 78, 56–65. [Google Scholar] [CrossRef]
- Cabiddu, A.; Decandia, M.; Addis, M.; Piredda, G.; Pirisi, A.; Molle, G. Managing Mediterranean pastures in order to enhance the level of beneficial fatty acids in sheep milk. Small Rum. Res. 2005, 59, 169–180. [Google Scholar] [CrossRef]
- Ran, T.; Xu, Z.; Yang, W.; Liu, D.; Wu, D. Partially substituting alfalfa hay with hemp forage in the diet of goats improved feed efficiency, ruminal fermentation pattern and microbial profiles. Anim. Nutr. 2024, 17, 49–60. [Google Scholar] [CrossRef]
- Cavaliere, G.; Trinchese, G.; Musco, N.; Infascelli, F.; De Filippo, C.; Mastellone, V.; Morittu, V.M.; Lombardi, P.; Tudisco, R.; Grossi, M.; et al. Milk from cows fed a diet with a high forage: Concentrate ratio improves inflammatory state, oxidative stress, and mitochondrial function in rats. J. Dairy Sci. 2018, 101, 1843–1851. [Google Scholar] [CrossRef]
- Trinchese, G.; Cavaliere, G.; Penna, E.; De Filippo, C.; Cimmino, F.; Catapano, A.; Musco, N.; Tudisco, R.; Lombardi, P.; Infascelli, F.; et al. Milk from cow fed with high forage/concentrate ratio diet: Beneficial effect on rat skeletal muscle inflammatory state and oxidative stress through modulation of mitochondrial functions and AMPK activity. Front. Phys. 2019, 9, 1969. [Google Scholar] [CrossRef]
- Tudisco, R.; Chiofalo, B.; Addi, L.; Lo Presti, V.; Rao, R.; Calabro’, S.; Musco, N.; Grossi, M.; Cutrignelli, M.I.; Mastellone, V.; et al. Effect of hydrogenated palm oil dietary supplementation on milk yield and composition, fatty acids profile and Stearoyl-CoA desaturase expression in goat milk. Small Rum. Res. 2015, 132, 72–78. [Google Scholar] [CrossRef]
- Iommelli, P.; Infascelli, L.; Tudisco, R.; Capitanio, F. The Italian Cilentana goat breed: Productive performances and economic perspectives of goat farming in marginal areas. Trop. Anim. Health Prod. 2022, 54, 304. [Google Scholar] [CrossRef]
- Karlsson, L.; Finell, M.; Martinsson, K. Effects of increasing amounts of hempseed cake in the diet of dairy cows on the production and composition of milk. Animal 2010, 4, 1854–1860. [Google Scholar] [CrossRef]
- Cozma, A.; Andrei, S.; Pintea, A.; Miere, D.; Filip, L.; Loghin, F.; Ferlay, A. 2015. Effect of hemp seed oil supplementation on plasma lipid profile, liver function, milk fatty acid, 56 cholesterol, and vitamin A concentrations in Carpathian goats. Czech J. Anim. Sci. 2015, 60, 289–301. [Google Scholar] [CrossRef]
- Mierlita, D. Effects of diets containing hemp seeds or hemp cake on fatty acid composition and oxidative stability of sheep milk. S. Afr. J. Anim. Sci. 2018, 48, 504–515. [Google Scholar] [CrossRef]
- Cremonesi, P.; Conte, G.; Severgnini, M.; Turri, F.; Capra, E.; Rapetti, L.; Colombini, S.; Chessa, S.; Batelli, G.; Alves, S.P.; et al. Evaluation of the effects of different diets on microbiome diversity and the fatty acid composition of rumen liquor in dairy goats. Animal 2018, 12, 1856–1866. [Google Scholar] [CrossRef]
- Mierlita, D.; Mierlita, S.; Struti, D.I.; Mintas, O.S. Effects of hemp seed on the production, fatty acid profile, and antioxidant capacity of milk from goats fed hay or a mixed shrubs–grass rangeland. Animals 2023, 13, 3435. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; O’Keefe, J.H. Good Fats versus Bad Fats: A Comparison of Fatty Acids in the Promotion of Insulin Resistance, Inflammation, and Obesity. Mo. Med. 2017, 114, 303–307. [Google Scholar]
- Tham, Y.Y.; Choo, Q.C.; Muhammad, T.S.T.; Chew, C.H. Lauric acid alleviates insulin resistance by improving mitochondrial biogenesis in THP-1 macrophages. Mol. Biol. Rep. 2020, 47, 9595–9607. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Cao, X.; Gao, J. C24:0 avoids cold exposure-induced oxidative stress and fatty acid β-oxidation damage. iScience 2021, 24, 103409. [Google Scholar] [CrossRef] [PubMed]
- DiNicolantonio, J.J.; O’Keefe, J.H. Importance of maintaining a low omega–6/omega–3 ratio for reducing inflammation. Openheart 2018, 5, e000946. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The Healthiest Diet for You: Scientific Aspects; MDPI: Basel, Switzerland, 2022; Volume 2, pp. 10–16. [Google Scholar] [CrossRef]
- Tudisco, R.; Chiofalo, B.; Lo Presti, V.; Morittu, V.M.; Moniello, G.; Grossi, M.; Infascelli, F. Influence of feeding linseed on SCD activity in grazing goat mammary glands. Animals 2019, 9, 786. [Google Scholar] [CrossRef] [PubMed]
- Pipoyan, D.; Stepanyan, S.; Stepanyan, S.; Beglaryan, M.; Costantini, L.; Molinari, R.; Merendino, N. The Effect of Trans Fatty Acids on Human Health: Regulation and Consumption Patterns. Foods 2021, 10, 2452. [Google Scholar] [CrossRef] [PubMed]
- Morais, J.S.; Bezerra, L.R.; Silva, A.M.A.; Araújo, M.J.; Oliveira, R.L.; Edvan, R.L.; Lanna, D.P.D. Production, composition, fatty acid profile and sensory analysis of goat milk in goats fed buriti oil. J. Anim. Sci. 2017, 95, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Tallima, H.; El Ridi, R. Arachidonic acid: Physiological roles and potential health benefits—A review. J. Adv. Res. 2018, 11, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Mollica, M.P.; Trinchese, G.; Cimmino, F.; Penna, E.; Cavaliere, G.; Tudisco, R.; Musco, N.; Manca, C.; Catapano, A.; Monda, M.; et al. Milk Fatty Acid Profiles in Different Animal Species: Focus on the Potential Effect of Selected PUFAs on Metabolism and Brain Functions. Nutrients 2021, 13, 1111. [Google Scholar] [CrossRef]
- Taber, L.; Chiu, C.H.; Whelan, J. Assessment of the arachidonic acid content in foods commonly consumed in the American diet. Lipids 1998, 33, 1151–1157. [Google Scholar] [CrossRef]
- Oh, J.; Hristov, A.N. Effects of plant-derived bio-active compounds on rumen fermentation, nutrient utilization, immune response, and productivity of ruminant animals. In Medicinal and Aromatic Crops: Production, Phytochemistry, and Utilization; American Chemical Society: Washington, DC, USA, 2016; Volume 11, pp. 167–186. [Google Scholar]
- Allam, S.; El-Elaime, R. Impact of garlic, Lemongrass, Peppermint and Rosemary as feed additives on Performance of growing Barki lambs. Egypt. J. Nut. Feed. 2020, 23, 359–367. [Google Scholar] [CrossRef]
- Amany, A.; Khayyal, M.; El-Badawy, M.; Ashmawy, T.A.M. Effect of rosemary or laurel leaves as feed additives on performance of growing lambs. Egypt. J. Nut. Feed. 2021, 24, 343–356. [Google Scholar]
- Khattab, H.M.M.; Badr, A.M.; Abdelfarrag, M.M.; Singe, A.M. The Supplementary Effect of Some Medicinal Plant Mixtures on the Productive Performance of Saidi Lambs. Acta Sci. Vet. Sci. 2022, 4, 3–12. [Google Scholar] [CrossRef]
Pasture | Barley/Corn Mix | Hemp Hay | Alfalfa Hay | |
---|---|---|---|---|
CP | 160.2 ± 1.3 | 100.4 ± 0.9 | 207.7 ± 2.7 | 194.5 ± 2.6 |
EE | 22.6 ± 0.3 | 31.6 ± 2.6 | 21.2 ± 0.7 | 16.8 ± 0.8 |
NDF | 481.8 ± 5.1 | 165.2 ± 1.3 | 401.5 ± 2.4 | 413.5 ± 2.3 |
ADF | 429.4 ± 2.51 | 45.1 ± 1.7 | 318.4 ± 5.2 | 344.1 ± 4.9 |
ADL | 46.2 ± 2.9 | 5.3 ± 2.2 | 33.4 ± 6.0 | 51.7 ± 2.7 |
Ash | 72.5 ± 2.2 | 10.5 ± 1.5 | 101.9 ± 1.4 | 99.5 ± 1.9 |
UFL/kg DM | 0.76 | 1.04 | 0.78 | 0.77 |
Pasture | BCM | HH | AH | ||||
---|---|---|---|---|---|---|---|
April | May | June | July | ||||
SFA | 39.2A | 22.3 D | 26.4C | 34.6B | 20.0 | 39.0 | 25.3 |
MUFA | 22.8A | 11.2C | 17.8B | 16.4B | 21.5 | 23.5 | 8.2 |
PUFA | 38.0D | 65.5A | 55.8B | 49.0C | 58.5 | 37.5 | 66.5 |
n6 PUFA | 16.2C | 24.1B | 29.9A | 10.31D | 55.4 | 8.3 | 17.1 |
n3 PUFA | 21.3D | 40.1A | 25.3C | 37.9B | 1.6 | 15.6 | 34.8 |
H | C | RMSE | |
---|---|---|---|
Body weight | 49.1 | 49.2 | 6.3 |
Milk yield | 1954.0 a | 1731.0 b | 503.5 |
Protein | 3.26 | 3.16 | 0.20 |
Fat | 2.99 | 3.07 | 1.74 |
Lactose | 4.15 | 4.05 | 0.18 |
Item | Group Effect | Time Effect | G × T | RMSE | ||
---|---|---|---|---|---|---|
Group H | Group C | p | p | p | ||
SFA | ||||||
C4:0 | 3.041 | 3.214 | NS | *** | NS | 0.774 |
C6:0 | 1.737 | 1.824 | NS | NS | *** | 0.190 |
C8:0 | 2.421 | 2.682 | NS | *** | *** | 0.364 |
C10:0 | 10.80 | 10.70 | NS | *** | *** | 1.063 |
C11:0 | 0.089 | 0.251 | *** | *** | *** | 0.066 |
C12:0 | 3.687 | 4.658 | *** | * | *** | 0.677 |
C13:0 | 0.055 | 0.112 | *** | *** | *** | 0.022 |
C14:0 | 9.585 | 10.995 | *** | *** | *** | 0.835 |
C15:0 | 0.699 | 0.822 | *** | *** | *** | 0.109 |
C16:0 | 29.17 | 27.93 | * | NS | NS | 2.299 |
C17:0 | 0.650 | 0.860 | *** | *** | *** | 0.196 |
C18:0 | 13.26 | 11.23 | *** | *** | * | 2.085 |
C20:0 | 0.186 | 0.197 | NS | ** | NS | 0.042 |
C22:0 | 0.103 | 0.124 | *** | *** | * | 0.022 |
C24:0 | 0.039 | 0.030 | *** | * | *** | 0.009 |
MUFA | ||||||
C14:1 | 0.166 | 0.294 | *** | ** | ** | 0.074 |
C16:1 | 0.617 | 0.471 | *** | *** | *** | 0.072 |
C17:1 | 0.024 | 0.019 | ** | NS | NS | 0.005 |
C18:1 CIS6 | 0.118 | 0.113 | NS | *** | * | 0.023 |
C18:1 trans 9 | 0.276 | 0.315 | NS | *** | NS | 0.134 |
C18:1 trans 11 (TVA) | 1.437 | 1.320 | NS | ** | NS | 0.267 |
C18:1 CIS9 | 17.13 | 16.89 | NS | ** | ** | 1.155 |
C18:1 CIS10 | 0.323 | 0.341 | NS | *** | * | 0.099 |
C18:1 CIS11 | 0.199 | 0.143 | *** | *** | *** | 0.053 |
C18:1 CIS12 | 0.083 | 0.069 | * | *** | * | 0.022 |
C22:1 | 0.016 | 0.012 | NS | NS | NS | 0.009 |
C24:1 | 0.021 | 0.027 | * | ** | NS | 0.008 |
PUFA | ||||||
C18:2 TRANS n6 | 0.116 | 0.135 | NS | *** | *** | 0.046 |
C18:2 CIS n6 (LA) | 1.726 | 1.980 | *** | *** | *** | 0.238 |
C18:3 n6 | 0.031 | 0.026 | NS | *** | NS | 0.014 |
C18:3 n3 (ALA) | 0.808 | 0.792 | NS | *** | NS | 0.149 |
CLA1 | 0.239 | 0.333 | *** | *** | NS | 0.064 |
CLA2 | 0.219 | 0.161 | *** | *** | *** | 0.034 |
C20:2 n6 | 0.022 | 0.037 | *** | *** | *** | 0.010 |
C20:3 n6 | 0.019 | 0.019 | NS | * | NS | 0.020 |
C20:4 n6 (AA) | 0.108 | 0.125 | *** | *** | NS | 0.017 |
C22:2 n6 | 0.017 | 0.017 | NS | ** | NS | 0.007 |
C20:5 n3 (EPA) | 0.053 | 0.044 | * | *** | ** | 0.013 |
Item | Group H | Group C | Group Effect | Time Effect | G × T | RMSE |
---|---|---|---|---|---|---|
SFA | 75.52 | 75.64 | NS | *** | * | 1.107 |
MUFA | 20.42 | 20.04 | NS | *** | *** | 1.105 |
PUFA | 3.38 | 3.67 | *** | *** | *** | 0.325 |
n6 | 2.05 | 2.34 | *** | *** | *** | 0.237 |
n3 | 0.871 | 0.837 | NS | *** | NS | 0.151 |
CLAs | 0.459 | 0.494 | NS | *** | NS | 0.073 |
PUFA/SFA | 0.044 | 0.048 | ** | *** | *** | 0.044 |
n6/n3 | 2.40 | 2.98 | *** | *** | ** | 0.515 |
LA/ALA | 2.17 | 2.66 | *** | ** | ** | 0.523 |
AA/EPA | 2.31 | 3.19 | *** | *** | ** | 0.837 |
DFA | 37.06 | 36.01 | *** | ** | NS | 0.352 |
HSFA | 42.43 | 43.01 | NS | NS | NS | 0.376 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iommelli, P.; Zicarelli, F.; Amato, R.; Musco, N.; Sarubbi, F.; Bailoni, L.; Lombardi, P.; Di Bennardo, F.; Infascelli, F.; Tudisco, R. The Effects of Hemp Hay (Canapa sativa L.) in the Diets of Grazing Goats on Milk Production and Fatty Acid Profile. Animals 2024, 14, 2373. https://doi.org/10.3390/ani14162373
Iommelli P, Zicarelli F, Amato R, Musco N, Sarubbi F, Bailoni L, Lombardi P, Di Bennardo F, Infascelli F, Tudisco R. The Effects of Hemp Hay (Canapa sativa L.) in the Diets of Grazing Goats on Milk Production and Fatty Acid Profile. Animals. 2024; 14(16):2373. https://doi.org/10.3390/ani14162373
Chicago/Turabian StyleIommelli, Piera, Fabio Zicarelli, Ruggero Amato, Nadia Musco, Fiorella Sarubbi, Lucia Bailoni, Pietro Lombardi, Federica Di Bennardo, Federico Infascelli, and Raffaella Tudisco. 2024. "The Effects of Hemp Hay (Canapa sativa L.) in the Diets of Grazing Goats on Milk Production and Fatty Acid Profile" Animals 14, no. 16: 2373. https://doi.org/10.3390/ani14162373
APA StyleIommelli, P., Zicarelli, F., Amato, R., Musco, N., Sarubbi, F., Bailoni, L., Lombardi, P., Di Bennardo, F., Infascelli, F., & Tudisco, R. (2024). The Effects of Hemp Hay (Canapa sativa L.) in the Diets of Grazing Goats on Milk Production and Fatty Acid Profile. Animals, 14(16), 2373. https://doi.org/10.3390/ani14162373