Challenges in the Application of African Swine Fever Vaccines in Asia
Abstract
:Simple Summary
Abstract
1. Introduction to ASF and Current Disease Situation in Asia
2. Vaccine as a Tool to Control Disease and Limit Economic Losses—The Example of Vietnam
3. The Types of Vaccines Applied in Asia, Field Vaccine-Related Viruses, and Their Impact on Disease Surveillance and Control
4. The Importance of Development and Application of Safe, Effective Vaccines
5. Addressing Current Vaccine Challenges
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Berthe, F. Global Economic Impact of African Swine Fever. WOAH Bull. 2020, 24/07, 2 p. In Panorama 2020-1: African Swine Fever: Responding to the Global Threat; WOAH: Online, 2020; p. 2. Available online: https://oiebulletin.com/?panorama=02-2-2-2020-1-economic (accessed on 2 May 2024). [CrossRef]
- Fernandez-Colorado, C.P.; Kim, W.H.; Flores, R.A.; Min, W. African Swine Fever in the Philippines: A Review on Surveillance, Prevention, and Control Strategies. Animals 2024, 14, 1816. [Google Scholar] [CrossRef] [PubMed]
- Costard, S.; Mur, L.; Lubroth, J.; Sanchez-Vizcaino, J.M.; Pfeiffer, D.U. Epidemiology of African Swine Fever Virus. Virus Res. 2015, 173, 191–197. [Google Scholar] [CrossRef]
- Galindo, I.; Alonso, C. African Swine Fever Virus: A Review. Viruses 2017, 9, 103. [Google Scholar] [CrossRef] [PubMed]
- Ankhanbaatar, U.; Auer, A.; Ulziibat, G.; Settypalli, T.B.K.; Gombo-Ochir, D.; Basan, G.; Takemura, T.; Tseren-Ochir, E.-O.; Ouled Ahmed, H.; Meki, I.K.; et al. Comparison of the Whole-Genome Sequence of the African Swine Fever Virus from a Mongolian Wild Boar with Genotype II Viruses from Asia and Europe. Pathogens 2023, 12, 1143. [Google Scholar] [CrossRef]
- Boshoff, C.I.; Bastos, A.D.S.; Gerber, L.J.; Vosloo, W. Genetic Characterisation of African Swine Fever Viruses from Outbreaks in Southern Africa (1973–1999). Vet. Microbiol. 2007, 121, 45–55. [Google Scholar] [CrossRef]
- Qu, H.; Ge, S.; Zhang, Y.; Wu, X.; Wang, Z. A Systematic Review of Genotypes and Serogroups of African Swine Fever Virus. Virus Genes 2022, 58, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Pavone, S.; Iscaro, C.; Dettori, A.; Feliziani, F. African Swine Fever: The State of the Art in Italy. Animals 2023, 13, 2998. [Google Scholar] [CrossRef]
- Loi, P.; Casu, S.; Cappai, S.; Ladu, S.; Desini, P.; Mereu, M.; Coccollone, A.; Fiori, M.S.; Sanna, M.L.; Di Gennaro, A.; et al. Eradication of African Swine Fever in Sardinia: A Successful Result of Regional Programme Implementation. Vaccines 2022, 10, 799. [Google Scholar] [CrossRef]
- Franzoni, G.; Dei Giudici, S.; Loi, P.; Sanna, D.; Fiori, M.S.; Zinellu, S.; Sanna, M.L.; Coradduzza, E.; Amadori, M.; Falchi, G.; et al. Intracellular Cytokine Staining and Transcriptomic Analysis Provide Insights into the Swine Immune Response Following the Infection with Two Low and High Pathogenic Genotype I African Swine Fever Virus Isolates. Viruses 2021, 13, 1502. [Google Scholar] [CrossRef]
- Sánchez, E.G.; Pérez-Núñez, D.; Revilla, Y. Mechanisms of Entry and Endosomal Pathway of African Swine Fever Virus. Vaccines 2017, 5, 42. [Google Scholar] [CrossRef]
- Olesen, A.S.; Lohse, L.; Boklund, A.; Halasa, T.; Gallardo, C.; Pejsak, Z.; Belsham, G.J.; Rasmussen, T.B.; Bøtner, A. Transmission of African Swine Fever Virus from Infected Pigs by Direct Contact and Aerosol Routes. Vet. Microbiol. 2017, 211, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Beltrán-Alcrudo, D.; Arias, M.; Gallardo, C.; Kramer, S.; Penrith, M.L. African Swine Fever: Detection and Diagnosis—A Manual for Veterinarians; FAO Animal Production and Health Manual No. 19; FAO: Rome, Italy, 2017; 88p. [Google Scholar]
- Sánchez-Cordón, P.J.; Vidaña, B.; Neimanis, A.; Núñez, A.; Wikström, E.; Gavier-Widén, D. Understanding and Combatting African Swine Fever; Wageningen Academic Publishers: Wageningen, The Netherlands, 2021; pp. 87–139. [Google Scholar]
- Tran, X.H.; Le, T.T.P.; Nguyen, Q.H.; Do, T.T.; Nguyen, V.D.; Gay, C.G.; Borca, M.V.; Gladue, D.P. African Swine Fever Virus Vaccine Candidate ASFV-G-ΔI177L Efficiently Protects European and Native Pig Breeds against Circulating Vietnamese Field Strain. Transbound. Emerg. Dis. 2022, 69, e497–e504. [Google Scholar] [CrossRef] [PubMed]
- FAO Asia&Pacific Update 8 August 2024; ASF Situation in Asia & Pacific Update. Available online: https://www.fao.org/animal-health/situation-updates/asf-in-asia-pacific/en (accessed on 8 August 2024).
- World Organisation for Animal Health (WOAH). African Swine Fever: WOAH Warns Veterinary Authorities and Pig Industry of Risk from Use of Sub-Standard Vaccines. WOAH. 2023. Available online: https://www.woah.org/en/african-swine-fever-woah-warns-veterinary-authorities-and-pig-industry-of-risk-from-use-of-sub-standard-vaccines/ (accessed on 2 May 2024).
- Senate of the Philippines. (2023, October 25). Opening Remarks During the Public Hearing on the Proliferation of the Unauthorized Sale of African Swine Fever (ASF) in the Market While the Same is Still Undergoing Trial and the Role of the BAI and the FDA with Regards to Importation of Vaccine. Laurel Hall, 2nd Floor, Senate of the Philippines, at 10:00 AM October 25, 2023. Available online: https://legacy.senate.gov.ph/press_release/2023/1025_villar1.asp (accessed on 2 May 2024).
- Report of the Meeting of the Biological Standards Commission. September 2023. Available online: https://www.woah.org/app/uploads/2023/10/a-bsc-report-sept-2023-7.pdf (accessed on 19 June 2024).
- Department of Animal Health. Work on disease prevention, slaughter control and quarantine in pig farming. In Proceedings of the Conference on Sustainable Pig Farming Development, Ministry of Agriculture and Rural Development, Ha Noi, Vietnam, 14 August 2024.
- Sun, E.; Huang, L.; Zhang, X.; Zhang, J.; Shen, D.; Zhang, Z.; Bu, Z. Genotype I African Swine Fever Viruses Emerged in Domestic Pigs in China and Caused Chronic Infection. Emerg. Microbes Infect. 2021, 10, 2183–2193. [Google Scholar] [CrossRef]
- Vigario, J.D.; Terrinha, A.M.; Moura Nunes, J.F. Antigenic relationship among strains of African swine fever virus. Archiv für die Gesamte Virusforschung 1974, 45, 272–277. [Google Scholar] [CrossRef]
- Zhao, D.; Sun, E.; Huang, L.; Ding, L.; Zhu, Y.; Zhang, J.; Shen, D.; Zhang, X.; Zhang, Z.; Ren, T.; et al. Highly Lethal Genotype I and II Recombinant African Swine Fever Viruses Detected in Pigs. Nat. Commun. 2023, 14, 3096. [Google Scholar] [CrossRef]
- Le, V.P.; Jeong, D.G.; Yoon, S.W.; Kwon, H.M.; Trinh, T.B.N.; Nguyen, T.L.; Bui, N.N.; Oh, J.; Lyoo, Y.S.; Kim, J.B.; et al. Outbreak of African Swine Fever, Vietnam, 2019. Emerg. Infect. Dis. 2019, 25, 1433–1435. [Google Scholar] [CrossRef] [PubMed]
- Abrams, C.C.; Goatley, L.; Fishbourne, E.; Chapman, D.; Cooke, L.; Oura, C.A.; Netherton, C.L.; Takamatsu, H.H.; Dixon, L.K. Deletion of virulence associated genes from attenuated African swine fever virus isolate OUR T88/3 decreases its ability to protect against challenge with virulent virus. Virology 2013, 443, 99–105. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ambagala, A.; Goonewardene, K.; Kanoa, I.E.; Than, T.T.; Nguyen, V.T.; Lai, T.N.H.; Nguyen, T.L.; Erdelyan, C.N.G.; Robert, E.; Tailor, N.; et al. Characterization of an African Swine Fever Virus Field Isolate from Vietnam with Deletions in the Left Variable Multigene Family Region. Viruses 2024, 16, 571. [Google Scholar] [CrossRef]
- O’Donnell, V.; Holinka, L.G.; Gladue, D.P.; Sanford, B.; Krug, P.W.; Lu, X.; Arzt, J.; Reese, B.; Carrillo, C.; Risatti, G.R.; et al. African Swine Fever Virus Georgia Isolate Harboring Deletions of MGF360 and MGF505 Genes Is Attenuated in Swine and Confers Protection against Challenge with Virulent Parental Virus. J. Virol. 2015, 89, 6048–6056. [Google Scholar] [CrossRef]
- Nga, B.T.T.; Auer, A.; Padungtod, P.; Dietze, K.; Globig, A.; Rozstalnyy, A.; Hai, T.M.; Depner, K. Evaluation of Selective Culling as a Containment Strategy for African Swine Fever at a Vietnamese Sow Farm. Pathogens 2024, 13, 567. [Google Scholar] [CrossRef]
- Nga, B.T.T.; Padungtod, P.; Depner, K.; Chuong, V.D.; Duy, D.T.; Anh, N.D.; Dietze, K. Implications of partial culling on African swine fever control effectiveness in Vietnam. Front. Vet. Sci. 2022, 9, 957918. [Google Scholar] [CrossRef]
- Janse van Rensburg, L.; Van Heerden, J.; Penrith, M.L.; Heath, L.E.; Rametse, T.; Etter, E.M.C. Investigation of African swine fever outbreaks in pigs outside the controlled areas of South Africa, 2012–2017. J. S. Afr. Vet. Assoc. 2020, 91, 1–9. [Google Scholar] [CrossRef]
- Brake, D.A. African Swine Fever Modified Live Vaccine Candidates: Transitioning from Discovery to Product Development through Harmonized Standards and Guidelines. Viruses 2022, 14, 2619. [Google Scholar] [CrossRef] [PubMed]
- Gladue, D.P.; Ramirez-Medina, E.; Vuono, E.; Silva, E.; Rai, A.; Pruitt, S.; Espinoza, N.; Velazquez-Salinas, L.; Borca, M.V. Deletion of the A137R Gene from the Pandemic Strain of African Swine Fever Virus Attenuates the Strain and Offers Protection against the Virulent Pandemic Virus. J. Virol. 2021, 95, e0113921. [Google Scholar] [CrossRef] [PubMed]
- Vandenbussche, F.; Mathijs, E.; Philips, W.; Saduakassova, M.; De Leeuw, I.; Sultanov, A.; Haegeman, A.; De Clercq, K. Recombinant LSDV Strains in Asia: Vaccine Spillover or Natural Emergence? Viruses 2022, 14, 1429. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sprygin, A.; Pestova, Y.; Bjadovskaya, O.; Prutnikov, P.; Zinyakov, N.; Kononova, S.; Ruchnova, O.; Lozovoy, D.; Chvala, I.; Kononov, A. Evidence of recombination of vaccine strains of lumpy skin disease virus with field strains, causing disease. PLoS ONE 2020, 15, e0232584. [Google Scholar] [CrossRef]
- Sendow, I.; Meki, I.K.; Dharmayanti, N.L.P.I.; Hoerudin, H.; Ratnawati, A.; Settypalli, T.B.K.; Ahmed, H.O.; Nuradji, H.; Saepulloh, M.; Adji, R.S.; et al. Molecular characterization of recombinant LSDV isolates from 2022 outbreak in Indonesia through phylogenetic networks and whole-genome SNP-based analysis. BMC Genom. 2024, 25, 240. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Badhy, S.C.; Chowdhury, M.G.A.; Settypalli, T.B.K.; Cattoli, G.; Lamien, C.E.; Fakir, M.A.U.; Akter, S.; Osmani, M.G.; Talukdar, F.; Begum, N.; et al. Molecular characterization of lumpy skin disease virus (LSDV) emerged in Bangladesh reveals unique genetic features compared to contemporary field strains. BMC Vet. Res. 2021, 17, 61. [Google Scholar] [CrossRef]
- Dietze, K.; Hoffmann, B.; Tuppurainen, E.; Stoll, M.; Probst, C.; Sauter-Louis, C.; Conraths, F.J. Clinical Epidemiology, Pathology, and Molecular Investigation of Lumpy Skin Disease Outbreaks in Bangladesh during 2020-2021 Indicate the Re-Emergence of an Old African Strain. Viruses 2022, 14, 2529. [Google Scholar] [CrossRef]
- Vu, H.L.X.; McVey, D.S. Recent progress on gene-deleted live-attenuated African swine fever virus vaccines. npj Vaccines 2024, 9, 60. [Google Scholar] [CrossRef]
- Pikalo, J.; Zani, L.; Hühr, J.; Beer, M.; Blome, S. Pathogenesis of African Swine Fever Virus, ASFV-G-ΔMGF, following Intramuscular Inoculation in Domestic Pigs. Pathogens 2020, 9, 746. [Google Scholar]
- Cadenas-Fernández, E.; Sánchez-Vizcaíno, J.M.; Pintore, A.; Denyer, M.; Laddomada, A.; Martins, C.; Kosowska, A.; von Buttlar, H.; Dietze, K.; Ito, S.; et al. Progress in African swine fever vaccines. Vaccine 2021, 39, 7114–7121. [Google Scholar]
- Simbulan, V.; Gonzales, M.; Madlangbayan, J.; Guerrero, H. Multi-epitope subunit vaccine design for African swine fever virus. npj Vaccines 2024, 9, 42. [Google Scholar] [CrossRef]
- Meloni, D.; Franzoni, G.; Oggiano, A. Cell Lines for the Development of African Swine Fever Virus Vaccine Candidates: An Update. Vaccines 2022, 10, 707. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Quan, Y.; Wang, H.; Wu, Z.; Lu, X. Development of ASF LAV Candidates Using Gene Deletions. Vet. Microbiol. 2021, 252, 108934. [Google Scholar]
- Deutschmann, P.; Forth, J.H.; Sehl-Ewert, J.; Roszyk, H.; Probst, C.; Beer, M.; Blome, S. Assessment of African Swine Fever Vaccine Candidate ASFV-G-ΔMGF in a Reversion to Virulence Study. npj Vaccines 2023, 8, 78. [Google Scholar] [CrossRef]
NAVETCO | AVAC | |
---|---|---|
Vietnam | 660,000 | 3,296,710 |
Dominican Republic | 7000 | - |
Philippines | - | 300,000 |
Nigeria | - | 5000 |
Total | 667,000 | 3,601,710 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Auer, A.; Cattoli, G.; Padungtod, P.; Lamien, C.E.; Oh, Y.; Jayme, S.; Rozstalnyy, A. Challenges in the Application of African Swine Fever Vaccines in Asia. Animals 2024, 14, 2473. https://doi.org/10.3390/ani14172473
Auer A, Cattoli G, Padungtod P, Lamien CE, Oh Y, Jayme S, Rozstalnyy A. Challenges in the Application of African Swine Fever Vaccines in Asia. Animals. 2024; 14(17):2473. https://doi.org/10.3390/ani14172473
Chicago/Turabian StyleAuer, Agathe, Giovanni Cattoli, Pawin Padungtod, Charles E. Lamien, Yooni Oh, Sarah Jayme, and Andriy Rozstalnyy. 2024. "Challenges in the Application of African Swine Fever Vaccines in Asia" Animals 14, no. 17: 2473. https://doi.org/10.3390/ani14172473