The Influence of Alternative Diets and Whole Dry Black Soldier Fly Larvae (Hermetia illucens) on the Production Performance, Blood Status, and Egg Quality of Laying Hens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statements
2.2. Experimental Animals and Treatment Groups
2.3. Experimental Diets
2.4. Hen Performance
2.5. Egg Quality Analysis
2.6. Blood Status
2.7. Chemical Analysis
2.8. Statistical Analysis
3. Results
3.1. Hens’ Performance
3.2. Egg Quality
3.3. Biochemical Plasma Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andretta, I.; Hickmann, F.M.W.; Remus, A.; Franceschi, C.H.; Mariani, A.B.; Orso, C.; Kipper, M.; Létourneau-Montminy, M.-P.; Pomar, C. Environmental Impacts of Pig and Poultry Production: Insights from a Systematic Review. Front. Vet. Sci. 2021, 8, 750733. [Google Scholar] [CrossRef] [PubMed]
- Leinonen, I.; Williams, A.G.; Wiseman, J.; Guy, J.; Kyriazakis, I. Comparing the environmental impact of alternative protein crops in poultry diets: The consequences of uncertainty. Agric. Syst. 2013, 121, 33–42. [Google Scholar] [CrossRef]
- Jensen, H.G.; Elleby, C.; Domínguez, I.P. Reducing the European Union’s plant protein deficit: Options and impacts. Agric. Econ. 2021, 67, 391–398. [Google Scholar] [CrossRef]
- Fundación CESFAC. Mercados Estadística 2022; Fundación CESFAC: Madrid, Spain, 2023; Available online: https://cesfac.es/images/MercadosEstadistica/PDF/mercados_2022.pdf (accessed on 24 April 2024).
- Fiorilla, E.; Gariglio, M.; Martinez-Miro, S.; Rosique, C.; Madrid, J.; Montalban, A.; Biasato, I.; Bongiorno, V.; Cappone, E.E.; Soglia, D.; et al. Improving Sustainability in Autochthonous Slow-Growing Chicken Farming: Exploring New Frontiers through the Use of Alternative Dietary Proteins. J. Clean. Prod. 2023, 434, 140041. [Google Scholar] [CrossRef]
- Parisi, G.; Tulli, F.; Fortina, R.; Marino, R.; Bani, P.; Dalle Zotte, A.; De Angelis, A.; Piccolo, G.; Pinotti, L.; Schiavone, A.; et al. Protein hunger of the feed sector: The alternatives offered by the plant world. It. J. Anim. Sci. 2020, 19, 1204–1225. [Google Scholar] [CrossRef]
- Koivunen, E.; Tuunainen, P.; Valkonen, E.; Valaja, J. Use of semi-leafless peas (Pisum sativum L.) in laying hen diets. Agric. Food Sci. 2015, 24, 84–91. [Google Scholar] [CrossRef]
- Swiatkiewicz, S.; Swiatkiewicz, M.; Arczewska-Wlosek, A.; Jozefiak, D. Efficacy of feed enzymes in pig and poultry diets co ntaining distillers dried grains with solubles: A review. J. Anim. Physiol. Anim. Nutr. 2016, 100, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.A.; El-Awady, A.; Amber, K.; Eid, Y.Z.; Alzawqari, M.H.; Selim, S.; Soliman, M.M.; Shukry, M. Effects of Sunflower Meal Supplementation as a Complementary Protein Source in the Laying Hen’s Diet on Productive Performance, Egg Quality, and Nutrient Digestibility. Sustainability 2021, 13, 3557. [Google Scholar] [CrossRef]
- Rama Rao, S.V.; Prashanth, K.; Paul, S.S.; Raju, M.V.L.N.; Nagalakshmi, D.; Prakash, B. Evaluation of Feeding Value of Combination of Alternate Protein Sources in White Leghorn Layers. Br. Poult. Sci. 2020, 61, 710–718. [Google Scholar] [CrossRef]
- Gasco, L.; Biasato, I.; Dabbou, S.; Schiavone, A.; Gai, F. Animals Fed Insect-Based Diets: State-of-the-Art on Digestibility, Performance and Product Quality. Animals 2019, 9, 170. [Google Scholar] [CrossRef] [PubMed]
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; FAO Forestry Paper 171; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; pp. 1–187. ISBN 978-92-5-107595-1. [Google Scholar]
- Veldkamp, T.; Bosch, G. Insects: A protein-rich feed ingredient in pig and poultry diets. Anim. Front. 2015, 5, 45–50. [Google Scholar] [CrossRef]
- Commission Regulation. 2021/1372 of 17 August 2021 Amending Annex IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council as Regards the Prohibition to Feed Non-Ruminant Farmed Animals, Other than Fur Animals, with Protein Derived from Animals. 2021. Available online: https://eur-lex.europa.eu/legal-content/ES/TXT/PDF/?uri=CELEX:32021R1372 (accessed on 14 April 2023).
- Raksasat, R.; Lim, J.W.; Kiatkittipong, W.; Kiatkittipong, K.; Ho, Y.C.; Lam, M.K.; Font-Palma, C.; Mohd Zaid, H.F.; Cheng, C.K. A Review of Organic Waste Enrichment for Inducing Palatability of Black Soldier Fly Larvae: Wastes to Valuable Resources. Environ. Pollut. 2020, 267, 115488. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Taethaisong, N.; Meethip, W.; Surakhunthod, J.; Sinpru, B.; Sroichak, T.; Archa, P.; Thongpea, S.; Paengkoum, S.; Purba, R.A.P. Nutritional composition of black soldier fly larvae (Hermetia illucens L.) and its potential uses as alternative protein sources in animal diets: A review. Insects 2022, 13, 831. [Google Scholar] [CrossRef]
- Marono, S.; Loponte, R.; Lombardi, P.; Vassalotti, G.; Pero, M.; Russo, F.; Gasco, L.; Parisi, G.; Piccolo, G.; Nizza, S. Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age. Poult. Sci. 2017, 96, 1783–1790. [Google Scholar] [CrossRef] [PubMed]
- Heuel, M.; Sandrock, C.; Leiber, F.; Mathys, A.; Gold, M.; Zurbrügg, C.; Gangnat, I.D.M.; Kreuze, M.; Terranova, M. Black soldier fly larvae meal and fat can completely replace soybean cake and oil in diets for laying hens. Poult. Sci. 2021, 100, 1005–1018. [Google Scholar] [CrossRef]
- Zhao, J.; Kawasaki, K.; Miyawaki, H.; Hirayasu, H.; Izumo, A.; Iwase, S.-I.; Kasai, K. Egg Quality and Laying Performance of Julia Laying Hens Fed with Black Soldier Fly (Hermetia illucens) Larvae Meal as a Long-Term Substitute for Fish Meal. Poult. Sci. 2022, 101, 101986. [Google Scholar] [CrossRef]
- Star, L.; Arsiwalla, T.; Molist, F.; Leushuis, R.; Dalim, M.; Paul, A. Gradual Provision of Live Black Soldier Fly (Hermetia illucens) Larvae to Older Laying Hens: Effect on Production Performance, Egg Quality, Feather Condition and Behavior. Animals 2020, 10, 216. [Google Scholar] [CrossRef]
- Tahamtani, F.M.; Ivarsson, E.; Wiklicky, V.; Lalander, C.; Wall, H.; Rodenburg, T.B.; Tuyttens, F.A.M.; Hernandez, C.E. Feeding live Black Soldier Fly larvae (Hermetia illucens) to laying hens: Effects on feed consumption, hen health, hen behavior, and egg quality. Poult. Sci. 2021, 100, 101400. [Google Scholar] [CrossRef] [PubMed]
- Bongiorno, V.; Gariglio, M.; Zambotto, V.; Cappone, E.E.; Biasato, I.; Renna, M.; Gasco, L.; Bergagna, S.; Manenti, I.; Macchi, E.; et al. Organic medium-growing chickens fed live black soldier fly larvae: A welfare improvement study. J. Anim. Physiol. Anim. Nutr. 2024, 1–16. [Google Scholar] [CrossRef]
- Schiavone, A.; Castillo, A. Incorporating Whole Insect Larvae into Poultry Diets: State of the Art and Future Perspectives. Ital. J. Anim. Sci. 2023, 23, 1–14. [Google Scholar] [CrossRef]
- Fundación Española para el Desarrollo de la Nutrición Animal (FEDNA). Necesidades Nutricionales para Avicultura: Normas FEDNA; Fundación Española para el Desarrollo de la Nutrición Animal: Madrid, Spain, 2018; Available online: https://www.fundacionfedna.org/sites/default/files/NORMAS_FEDNA_AVES_2018v.pdf (accessed on 25 May 2024).
- Haugh, R.R. The Haugh unit for measuring egg quality. US Egg Poult. Mag. 1937, 43, 552–555. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Commission Regulation (EC) No 152/2009 of 27 January 2009 Laying Down the Methods of Sampling and Analysis for the Official Control of Feed (Text with EEA Relevance). 2009. Available online: https://eur-lex.europa.eu/eli/reg/2009/152/oj (accessed on 15 February 2024).
- Real Decreto 2257/1994, de 25 de Noviembre, Por El Que Se Aprueba Los Métodos Oficiales de Análisis de Piensos o Alimentos para Animales y Sus Primeras Materias. Available online: https://www.boe.es/eli/es/rd/1994/11/25/2257 (accessed on 12 January 2024).
- Madrid, J.; Martínez, S.; López, C.; Orengo, J.; López, M.J.; Hernández, F. Effects of Low Protein Diets on Growth Performance, Carcass Traits and Ammonia Emission of Barrows and Gilts. Anim. Prod. Sci. 2013, 53, 146–153. [Google Scholar] [CrossRef]
- Hanczakowska, E.; Świątkiewicz, M. Legume Seeds and Rapeseed Press Cake as Replacers of Soybean Meal in Feed for Fattening Pigs. Ann. Anim. Sci. 2014, 14, 921–934. [Google Scholar] [CrossRef]
- Nampijja, Z.; Kiggundu, M.; Kigozi, A.; Lugya, A.; Magala, H.; Ssepuuya, G.; Nakimbugwe, D.; Walusimbi, S.S.; Mugerwa, S. Optimal substitution of black soldier fly larvae for fish in broiler chicken diets. Sci. Afr. 2023, 20, 01636. [Google Scholar] [CrossRef]
- Acar, M.C.; Türkekul, B.; Karahan Uysal, Ö.; Özkan, S.; Yalcin, S. Effects of Partial Replacement of Soybean with Local Alternative Sources on Growth, Blood Parameters, Welfare, and Economic Indicators of Local and Commercial Broilers. Animals 2024, 14, 314. [Google Scholar] [CrossRef] [PubMed]
- Ciurescu, G.; Pana, C.O. Effect of dietary untreated field pea (Pisum sativum L.) as substitute for soybean meal and enzymes supplementation on egg production and quality of laying hens. Rom. Biotechnol. Lett. 2017, 22, 12204–12213. [Google Scholar]
- Shi, S.R.; Lu, J.; Tong, H.B.; Zou, J.M.; Wang, K.H. Effects of Graded Replacement of Soybean Meal by Sunflower Seed Meal in Laying Hen Diets on Hen Performance, Egg Quality, Egg Fatty Acid Composition, and Cholesterol Content. J. Appl. Poult. Res. 2012, 21, 367–374. [Google Scholar] [CrossRef]
- Pirgozliev, V.R.; Whiting, I.M.; Mansbridge, S.C.; Rose, S.P. Sunflower and Rapeseed Meal as Alternative Feed Materials to Soybean Meal for Sustainable Egg Production, Using Aged Laying Hens. Br. Poult. Sci. 2023, 64, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Ruhnke, I.; Normant, C.; Campbell, D.L.; Iqbal, Z.; Lee, C.; Hinch, G.N.; Roberts, J. Impact of on-range choice feeding with black soldier fly larvae (Hermetia illucens) on flock performance, egg quality, and range use of free-range laying hens. Anim. Nutr. 2018, 4, 452–460. [Google Scholar] [CrossRef]
- Kawasaki, K.; Hashimoto, Y.; Hori, A.; Kawasaki, T.; Hirayasu, H.; Iwase, S.-i.; Hashizume, A.; Ido, A.; Miura, C.; Miura, T.; et al. Evaluation of Black Soldier Fly (Hermetia illucens) Larvae and Pre-Pupae Raised on Household Organic Waste, as Potential Ingredients for Poultry Feed. Animals 2019, 9, 98. [Google Scholar] [CrossRef]
- Maurer, V.; Holinger, M.; Amsler, Z.; Früh, B.; Wohlfahrt, J.; Stamer, A.; Leiber, F. Replacement of soybean cake by Hermetia illucens meal in diets for layers. J. Insects Food Feed 2016, 2, 83–90. [Google Scholar] [CrossRef]
- Ghazalah, A.; Abd-Elsamee, M.; Moustafa, E.S. Use of distillers dried grains with solubles (DDGS) as replacement for soybean meal in laying hen diets. Int. J. Poult. Sci. 2011, 10, 505–513. [Google Scholar] [CrossRef]
- Fru-Nji, F.; Niess, E.; Pfeffer, E. Effect of Graded Replacement of Soybean Meal by Faba Beans (Vicia faba L.) or Field Peas (Pisum sativum L.) in Rations for Laying Hens on Egg Production and Quality. J. Poult. Sci. 2007, 44, 34–41. [Google Scholar] [CrossRef]
- Liu, X.; Liu, X.; Yao, Y.; Qu, X.; Chen, J.; Xie, K.; Wang, X.; Qi, Y.; Xiao, B.; He, C. Effects of different levels of Hermetia illucens larvae meal on performance, egg quality, yolk fatty acid composition and oxidative status of laying hens. Ital. J. Anim. Sci. 2021, 20, 256–266. [Google Scholar] [CrossRef]
- Bejaei, M.; Cheng, K.M. Inclusion of Dried Black Soldier Fly Larvae in Free-Range Laying Hen Diets: Effects on Production Efficiency, Feed Safety, Blood Metabolites, and Hen Health. Agriculture 2024, 14, 31. [Google Scholar] [CrossRef]
- Alagawany, M.; Farag, M.R.; Abd El-Hack, M.E.; Dhama, K. The practical application of sunflower meal in poultry nutrition. Adv. Anim. Vet. Sci. 2015, 3, 634–648. [Google Scholar] [CrossRef]
- De Morais Oliveira, V.R.; de Arruda, A.M.V.; da Souza Silva, L.N.; de Souza Jr, J.B.F.; Fernandes de Queiroz, J.P.A.; da Silva Melo, A.; Holanda, J.S. Sunflower meal as a nutritional and economically viable substitute for soybean meal in diets for free-range laying hens. Anim. Feed Sci. Technol. 2016, 220, 103–108. [Google Scholar] [CrossRef]
- Bejaei, M.; Cheng, K.M. The effect of including full-fat dried black soldier fly larvae in laying hen diet on egg quality and sensory characteristics. J. Insects Food Feed 2020, 6, 305–314. [Google Scholar] [CrossRef]
- Bovera, F.; Loponte, R.; Pero, M.E.; Cutrignelli, M.I.; Calabrò, S.; Musco, N.; Vassalotti, G.; Panettieri, V.; Lombardi, P.; Piccolo, G.; et al. Laying performance, blood profiles, nutrient digestibility and inner organs traits of hens fed an insect meal from Hermetia illucens larvae. Res. Vet. Sci. 2018, 120, 86–93. [Google Scholar] [CrossRef]
- Yildiz, T.; Ceylan, N.; Atik, Z.; Karademir, E.; Ertekin, B. Effect of corn distillers dried grains with soluble with or without xylanase supplementation in laying hen diets on performance, egg quality and intestinal viscosity. Kafkas Univ. Vet. Fak. Derg. 2018, 24, 273–280. [Google Scholar] [CrossRef]
- Kowalska, E.; Kucharska-Gaca, J.; Kuźniacka, J.; Lewko, L.; Gornowicz, E.; Biesek, J.; Adamski, M. Egg quality depending on the diet with different sources of protein and age of the hens. Sci. Rep. 2021, 11, 2638. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, H.; Wang, H.; Wang, J.; Wu, S.; Qi, G. Effect of dietary protein sources on production performance, egg quality, and plasma parameters of laying hens. Asian Australas. J. Anim. Sci. 2017, 30, 400–409. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, H.R.; Baek, Y.C.; Ryu, C.H.; Ji, S.Y.; Jeong, J.Y.; Kim, M.; Jung, H.; Kim, B. Effects of Dietary Inclusion Level of Microwave-Dried and Press-Defatted Black Soldier Fly (Hermetia illucens) Larvae Meal on Productive Performance, Cecal Volatile Fatty Acid Profile, and Egg Quality in Laying Hens. Animals 2021, 11, 1486. [Google Scholar] [CrossRef]
- Williams, K.C. Some factors affecting albumen quality with particular reference to Haugh unit score. World’s Poult. Sci. J. 1992, 48, 5–16. [Google Scholar] [CrossRef]
- Karunajeewa, H.; Hughes, R.J.; McDonald, M.W.; Shenstone, F.S. A review of factors influencing pigmentation of egg yolks. World´s Poult. Sci. J. 1984, 40, 52–65. [Google Scholar] [CrossRef]
- Gerber, N. Factors Affecting Egg Quality in the Commercial Laying Hen: A Review. Egg Producers Federation of New Zealand (Inc)/Poultry Industry Association of New Zealand. 2006. Available online: https://www.epfnz.org.nz/research (accessed on 18 April 2024).
- Zurak, D.; Slovenec, P.; Janječić, Z.; Bedeković, D.B.; Pintar, J.; Kljak, K. Overview on Recent Findings of Nutritional and Non-Nutritional Factors Affecting Egg Yolk Pigmentation. World’s Poult. Sci. J. 2022, 78, 531–560. [Google Scholar] [CrossRef]
- Secci, G.; Bovera, F.; Nizza, S.; Baronti, N.; Gasco, L.; Conte, G.; Serra, A.; Bonelli, A.; Parisi, G. Quality of eggs from Lohmann Brown Classic laying hens fed black soldier fly meal as substitute for soya bean. Animal 2018, 12, 2191–2197. [Google Scholar] [CrossRef] [PubMed]
- Straková, E.; Všetičková, L.; Kutlvašr, M.; Timová, I.; Suchý, P. Beneficial effects of substituting soybean meal for white lupin (Lupinus albus, cv. Zulika) meal on the biochemical blood parameters of laying hens. Ital. J. Anim. Sci. 2021, 20, 352–358. [Google Scholar] [CrossRef]
- Moschini, M.; Masoero, F.; Prandini, A.; Funoltesconi, G.; Morlacchini, M.; Piva, G. Raw Pea (Pisum sativum), Raw Faba Bean (Vicia faba var. minor) and Raw Lupin (Lupinus albus var. multitalia) as Alternative Protein Sources in Broiler Diets. Ital. J. Anim. Sci. 2005, 4, 59–69. [Google Scholar] [CrossRef]
- David, L.S.; Nalle, C.L.; Abdollahi, M.R.; Ravindran, V. Feeding Value of Lupins, Field Peas, Faba Beans and Chickpeas for Poultry: An Overview. Animals 2024, 14, 619. [Google Scholar] [CrossRef]
- Sherif, K.; Rabie, M.; Hussein, M.; Kassem, M.; Abbas, A. Performance of Laying Hens Fed Diets Containing Graded Levels of Sunflower Meal. J. Agric. Sci. Mansoura Univ. 2001, 26, 5293–5305. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Mahgoub, S.A.; Alagawany, M.; Ashour, E.A. Improving productive performance and mitigating harmful emissions from laying hen excreta via feeding on graded levels of corn DDGS with or without Bacillus subtilis probiotic. J. Anim. Physiol. Anim. Nutr. 2017, 101, 904–913. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, B.G.; Patel, R.P. Nutrition, dietary supplements and herbal medicines: A safest approach for obesity. Res. Int. J. Pharm. Biol. Chem. Sci. 2010, 1, 39–45. [Google Scholar]
- Gariglio, M.; Dabbou, S.; Crispo, M.; Biasato, I.; Gai, F.; Gasco, L.; Piacente, F.; Odetti, P.; Bergagna, S.; Plachà, I.; et al. Effects of the dietary inclusion of partially defatted black soldier fly (Hermetia illucens) meal on the blood chemistry and tissue (Spleen, Liver, Thymus, and Bursa of Fabricius) histology of muscovy ducks (Cairina moschata domestica). Animals 2019, 9, 307. [Google Scholar] [CrossRef]
- Bongiorno, V.; Gariglio, M.; Zambotto, V.; Cappone, E.E.; Biasato, I.; Renna, M.; Forte, C.; Coudron, C.; Bergagna, S.; Gai, F.; et al. Black soldier fly larvae used for environmental enrichment purposes: Can they affect the growth, slaughter performance, and blood chemistry of medium-growing chickens? Front. Vet. Sci. 2022, 9, 1064017. [Google Scholar] [CrossRef] [PubMed]
- Zawisza, P.; Szymczyk, B.; Arczewska-Włosek, A.; Szczepanik, K. Effects of Partial Replacement of Soybean Meal with Defatted Hermetia illucens Meal in the Diet of Laying Hens on Performance, Dietary Egg Quality, and Serum Biochemical and Redox Indices. Animals 2023, 13, 527. [Google Scholar] [CrossRef]
- Attivi, K.; Mlaga, K.G.; Agboka, K.; Tona, K.; Kouame, Y.A.E.; Lin, H.; Tona, K. Effect of Fish Meal Replacement by Black Soldier Fly (Hermetia illucens) Larvae Meal on Serum Biochemical Indices, Thyroid Hormone and Zootechnical Performance of Laying Chickens. J. Appl. Poult. Res. 2022, 31, 100275. [Google Scholar] [CrossRef]
- Fiorilla, E.; Gariglio, M.; Gai, F.; Zambotto, V.; Bongiorno, V.; Cappone, E.E.; Biasato, I.; Bergagna, S.; Madrid, J.; Martinez-Miró, S.; et al. Dehydrated and live black soldier fly larvae as environmental enrichment in indigenous slow-growing chickens: Performance, gut health, and chitinolytic enzymes activity. Animals 2024, 18, 101239. [Google Scholar] [CrossRef]
CON 1 | ALT 2 | |
---|---|---|
Ingredients | ||
Corn | 41.58 | 35.29 |
Soybean meal (46% crude protein) | 21.97 | 15.00 |
Wheat | 14.00 | 14.68 |
Calcium carbonate | 8.69 | 8.90 |
Corn DDGs 3 | - | 7.46 |
Soybean hulls | 3.05 | - |
Sunflower meal (28% crude protein) | 2.50 | 6.00 |
Peas | - | 5.56 |
Soybean oil | 2.50 | 2.50 |
Barley | 2.00 | 2.50 |
Wheat middling | 1.67 | 0.09 |
Monocalcium phosphate | 0.67 | 0.52 |
Diatomaceous earth | 0.50 | 0.50 |
Premix 4 | 0.33 | 0.33 |
Sodium chloride | 0.25 | 0.20 |
DL–methionine (99%) | 0.19 | 0.18 |
Sodium bicarbonate | 0.07 | 0.12 |
L–lysine 50 | 0.03 | 0.16 |
Calculated composition 5 | ||
AMEn (MJ/kg) 6 | 11.43 | 11.43 |
Crude protein (%) | 16.4 | 16.4 |
Lysine (%) | 0.83 | 0.83 |
Methionine (%) | 0.45 | 0.45 |
Methionine+cysteine (%) | 0.73 | 0.73 |
CON 1 | ALT 2 | DBSFL 3 | |
---|---|---|---|
Dry matter | 90.9 | 91.2 | 96.1 |
Crude protein | 16.1 | 16.2 | 34.9 |
Ether extract | 7.80 | 7.10 | 30.3 |
Crude fiber | 6.90 | 6.30 | 7.75 |
Ash | 12.0 | 11.7 | 11.8 |
Starch | 38.0 | 36.3 | - |
Calcium | 3.84 | 3.73 | 2.89 |
Total phosphorus | 0.595 | 0.570 | 0.695 |
Indispensable amino acid | |||
Arginine | 0.791 | 0.827 | 1.46 |
Histidine | 0.294 | 0.302 | 0.795 |
Isoleucine | 0.488 | 0.460 | 1.43 |
Leucine | 1.00 | 1.04 | 2.22 |
Lysine | 0.827 | 0.848 | 2.20 |
Methionine | 0.487 | 0.582 | 1.69 |
Methionine + cysteine 4 | 0.886 | 0.914 | 2.13 |
Phenylalanine | 0.564 | 0.569 | 1.29 |
Threonine | 0.478 | 0.496 | 1.28 |
Valine | 0.641 | 0.704 | 2.01 |
CON 1 | ALT 2 | ALT+DBSFL 3 | SEM 4 | p-Value | |
---|---|---|---|---|---|
Body weight (g) | |||||
23 weeks of age (initial) | 1873 | 1882 | 1886 | 25.4 | 0.979 |
27 weeks of age | 2018 | 2059 | 2040 | 30.7 | 0.860 |
32 weeks of age | 2144 | 2181 | 2116 | 31.4 | 0.707 |
38 weeks of age (final) | 2240 | 2296 | 2181 | 30.7 | 0.344 |
Feed intake (DM) (g/d) 5 | |||||
23–27 weeks of age | 107 | 112 | 113 | 2.04 | 0.525 |
27–32 weeks of age | 116 | 117 | 114 | 1.93 | 0.762 |
32–38 weeks of age | 121 | 122 | 119 | 2.12 | 0.830 |
Overall period | 116 | 118 | 115 | 1.81 | 0.867 |
Egg production (%) | |||||
23–27 weeks of age | 66.7 | 64.5 | 71.3 | 1.63 | 0.263 |
27–32 weeks of age | 76.2 | 76.1 | 79.7 | 1.72 | 0.644 |
32–38 weeks of age | 75.3 | 74.9 | 76.7 | 1.71 | 0.907 |
Overall period | 73.3 | 72.5 | 76.2 | 1.22 | 0.452 |
Egg weight (g) | |||||
23–27 weeks of age | 60.8 | 60.9 | 62.2 | 0.65 | 0.634 |
27–32 weeks of age | 62.9 | 63.5 | 63.3 | 0.45 | 0.875 |
32–38 weeks of age | 65.9 | 65.7 | 66.9 | 0.59 | 0.666 |
Overall period | 63.5 | 63.7 | 64.4 | 0.50 | 0.734 |
Egg mass (g egg/hen/day) | |||||
23–27 weeks of age | 40.2 | 40.1 | 43.7 | 1.13 | 0.361 |
27–32 weeks of age | 48.0 | 48.4 | 50.4 | 1.26 | 0.708 |
32–38 weeks of age | 49.6 | 49.2 | 51.3 | 1.24 | 0.779 |
Overall period | 46.6 | 46.5 | 49.0 | 1.00 | 0.537 |
Feed-to-egg-mass ratio (FCR) (kg/kg) | |||||
23–27 weeks of age | 2.69 | 2.82 | 2.59 | 0.062 | 0.343 |
27–32 weeks of age | 2.43 | 2.44 | 2.26 | 0.035 | 0.101 |
32–38 weeks of age | 2.46 | 2.48 | 2.32 | 0.060 | 0.515 |
Overall period | 2.49 | 2.53 | 2.36 | 0.032 | 0.113 |
CON 1 | ALT 2 | ALT+DBSFL 3 | SEM 4 | p-Value | |
---|---|---|---|---|---|
Egg shape index (%) | |||||
23–27 weeks of age | 77.2 | 76.6 | 77.2 | 0.383 | 0.774 |
27–32 weeks of age | 78.4 | 76.2 | 76.6 | 1.111 | 0.698 |
32–38 weeks of age | 76.3 | 75.9 | 76.7 | 0.488 | 0.830 |
Overall period | 77.3 | 76.2 | 76.8 | 0.481 | 0.688 |
Haugh unit | |||||
23–27 weeks of age | 86.3 a,b | 84.1 b | 91.7 a | 0.933 | 0.017 |
27–32 weeks of age | 84.5 | 82.1 | 86.8 | 1.150 | 0.494 |
32–38 weeks of age | 84.6 | 84.7 | 87.2 | 1.206 | 0.615 |
Overall period | 85.0 | 83.7 | 88.3 | 1.020 | 0.210 |
Albumen percentage (%) | |||||
23–27 weeks of age | 63.7 | 64.2 | 63.4 | 0.175 | 0.184 |
27–32 weeks of age | 63.2 | 63.4 | 62.9 | 0.210 | 0.624 |
32–38 weeks of age | 60.9 | 61.5 | 61.3 | 0.293 | 0.649 |
Overall period | 62.4 | 62.9 | 62.4 | 0.140 | 0.286 |
Yolk percentage (%) | |||||
23–27 weeks of age | 26.5 | 26.4 | 26.9 | 0.142 | 0.343 |
27–32 weeks of age | 27.5 | 27.4 | 27.8 | 0.210 | 0.780 |
32–38 weeks of age | 28.8 | 28.5 | 28.7 | 0.210 | 0.883 |
Overall period | 27.7 | 27.6 | 27.9 | 0.110 | 0.498 |
Dry shell weight (g) | |||||
23–27 weeks of age | 5.80 | 5.74 | 5.76 | 0.076 | 0.955 |
27–32 weeks of age | 6.01 | 5.97 | 5.93 | 0.118 | 0.963 |
32–38 weeks of age | 6.09 | 6.11 | 6.37 | 0.079 | 0.286 |
Overall period | 5.98 | 5.96 | 6.06 | 0.062 | 0.794 |
Shell thickness (mm) | |||||
23–27 weeks of age | 0.430 | 0.440 | 0.460 | 0.007 | 0.489 |
27–32 weeks of age | 0.440 | 0.440 | 0.440 | 0.005 | 0.861 |
32–38 weeks of age | 0.480 | 0.470 | 0.450 | 0.005 | 0.084 |
Overall period | 0.460 | 0.450 | 0.450 | 0.003 | 0.555 |
Shell breaking strength (g) | |||||
23–27 weeks of age | 4159 | 4393 | 4692 | 207.8 | 0.590 |
27–32 weeks of age | 4191 | 4624 | 4268 | 144.3 | 0.451 |
32–38 weeks of age | 4208 | 4169 | 4810 | 197.0 | 0.362 |
Overall period | 4189 | 4380 | 4598 | 135.7 | 0.491 |
Yolk color (DSM scale) | |||||
23–27 weeks of age | 5.77 | 6.60 | 6.67 | 0.281 | 0.377 |
27–32 weeks of age | 8.05 | 8.50 | 8.40 | 0.147 | 0.446 |
32–38 weeks of age | 8.40 | 8.85 | 9.00 | 0.099 | 0.072 |
Overall period | 7.58 | 8.13 | 8.18 | 0.124 | 0.134 |
CON 1 | ALT 2 | ALT+DBSFL 3 | p-Value | |
---|---|---|---|---|
Glucose (mg/dL) | ||||
27 weeks | 160.20 (89.05–169.50) 4 | 147.65 (120.68–162.90) | 170.70 (133.70–180.85) | 0.198 |
32 weeks | 160.75 (132.33–171.60) | 164.30 (147.10–183.10) | 164.20 (137.28–193.63) | 0.756 |
38 weeks | 170.65 (147.25–190.83) | 172.00 (143.95–183.85) | 170.65 (167.50–197.73) | 0.642 |
Albumin (g/dL) | ||||
27 weeks | 1.64 (1.52–1.75) | 1.56 (151–1.605) | 1.60 (1.47–1.70) | 0.546 |
32 weeks | 1.68 (1.64–1.72) | 1.67 (1.65–1.76) | 1.63 (1.58–1.71) | 0.439 |
38 weeks | 1.85 (1.81–1.92) | 1.82 (1.74–1.85) | 1.84 (1.79–1.90) | 0.490 |
Total protein (g/dL) | ||||
23–27 weeks | 4.75 (4.46–5.28) | 4.17 (3.96–4.49) | 4.66 (4.19–4.97) | 0.178 |
27–32 weeks | 4.81 (4.70–4.95) | 4.89 (4.70–5.12) | 4.70 (4.56–4.78) | 0.339 |
32–38 weeks | 5.56 (5.38–5.73) | 5.32 (5.12–5.53) | 5.48 (5.26–5.58) | 0.363 |
Cholesterol (mg/dL) | ||||
27 weeks | 102.1 (85.92–188.4) | 110.7 (81.5–124.9) | 97.66 (74.44–113.1) | 0.568 |
32 weeks | 143.1(113.2–160.1) a | 145.6 (121.1–193.9) a | 112.6 (88.0–120.9) b | 0.028 |
38 weeks | 159.1 (133.8–177.1) | 165.6 (146.7–202.4) | 128.2 (110.3–154.2) | 0.112 |
Triglycerides (mg/dL) | ||||
27 weeks | 1289 (847.9–1920) | 1337 (954.6–1650) | 1134 (789.6–1356) | 0.278 |
32 weeks | 1829 (1714–2076) a | 1935 (1564–2173) a | 1235 (967.1–1649) b | 0.027 |
38 weeks | 1786 (1676–1972) | 1876 (1660–2048) | 1692 (1253–1845) | 0.412 |
Uric acid (mg/dL) | ||||
27 weeks | 5.12 (4.79–6.20) | 4.00 (2.94–5.84) | 5.47 (4.15–6.03) | 0.587 |
32 weeks | 3.94 (1.99–4.62) | 3.78 (2.14–5.74) | 4.77 (3.61–6.13) | 0.516 |
38 weeks | 3.58 (1.08–6.81) | 3.57 (1.60–5.32) | 3.27 (2.18–5.67) | 0.939 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montalbán, A.; Madrid, J.; Hernández, F.; Schiavone, A.; Ruiz, E.; Sánchez, C.J.; Ayala, L.; Fiorilla, E.; Martínez-Miró, S. The Influence of Alternative Diets and Whole Dry Black Soldier Fly Larvae (Hermetia illucens) on the Production Performance, Blood Status, and Egg Quality of Laying Hens. Animals 2024, 14, 2550. https://doi.org/10.3390/ani14172550
Montalbán A, Madrid J, Hernández F, Schiavone A, Ruiz E, Sánchez CJ, Ayala L, Fiorilla E, Martínez-Miró S. The Influence of Alternative Diets and Whole Dry Black Soldier Fly Larvae (Hermetia illucens) on the Production Performance, Blood Status, and Egg Quality of Laying Hens. Animals. 2024; 14(17):2550. https://doi.org/10.3390/ani14172550
Chicago/Turabian StyleMontalbán, Ana, Josefa Madrid, Fuensanta Hernández, Achille Schiavone, Eduardo Ruiz, Cristian J. Sánchez, Lucía Ayala, Edoardo Fiorilla, and Silvia Martínez-Miró. 2024. "The Influence of Alternative Diets and Whole Dry Black Soldier Fly Larvae (Hermetia illucens) on the Production Performance, Blood Status, and Egg Quality of Laying Hens" Animals 14, no. 17: 2550. https://doi.org/10.3390/ani14172550
APA StyleMontalbán, A., Madrid, J., Hernández, F., Schiavone, A., Ruiz, E., Sánchez, C. J., Ayala, L., Fiorilla, E., & Martínez-Miró, S. (2024). The Influence of Alternative Diets and Whole Dry Black Soldier Fly Larvae (Hermetia illucens) on the Production Performance, Blood Status, and Egg Quality of Laying Hens. Animals, 14(17), 2550. https://doi.org/10.3390/ani14172550