The Anatomy, Histology, and Function of the Major Pelvic Ganglion
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. General Overview and Anatomical Organization
1.2. Preganglionic and Postganglionic Connections
1.3. Neurotransmitters and Receptors in the Pelvic Plexus
1.4. Hormonal Regulation in the Pelvic Ganglia
2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bradley, W.E.; Teague, C.T. The Pelvic Ganglia. J. Urol. 1968, 100, 649–652. [Google Scholar] [CrossRef] [PubMed]
- Keast, J.R. Plasticity of Pelvic Autonomic Ganglia and Urogenital Innervation. Int. Rev. Cytol. 2006, 248, 141–208. [Google Scholar] [CrossRef]
- Keast, J.R. Visualization and immunohistochemical characterization of sympathetic and parasympathetic neurons in the male rat major pelvic ganglion. Neuroscience 1995, 66, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Crowcroft, P.J.; Szurszewski, J.H. A study of the inferior mesenteric and pelvic ganglia of guinea-pigs with intracellular electrodes. J. Physiol. 1971, 219, 421–441. [Google Scholar] [CrossRef]
- Gianduzzo, T.R.J.; Colombo, J.R.; El-Gabry, E.; Haber, G.P.; Gill, I.S. Anatomical and Electrophysiological Assessment of the Canine Periprostatic Neurovascular Anatomy: Perspectives as a Nerve Sparing Radical Prostatectomy Model. J. Urol. 2008, 179, 2025–2029. [Google Scholar] [CrossRef]
- Paxinos, G. The Rat Nervous System; Academic Press: Cambridge, MA, USA, 2004; 1309p. [Google Scholar] [CrossRef]
- Dowling, P.; Ranson, R.N.; Santer, R.M. Age-associated changes in distribution of the P2X2 receptor in the major pelvic ganglion of the male rat. Neurosci. Lett. 2006, 404, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Keast, J.R.; de Groat, W.C. Immunohistochemical characterization of pelvic neurons which project to the bladder, colon, or penis in rats. J. Comp. Neurol. 1989, 288, 387–400. [Google Scholar] [CrossRef]
- Keast, J.R.; Booth, A.M.; de Groat, W.C. Distribution of neurons in the major pelvic ganglion of the rat which supply the bladder, colon or penis. Cell Tissue Res. 1989, 256, 105–112. [Google Scholar] [CrossRef]
- Wanigasekara, Y.; Kepper, M.E.; Keast, J.R. Immunohistochemical characterisation of pelvic autonomic ganglia in male mice. Cell Tissue Res. 2003, 311, 175–185. [Google Scholar] [CrossRef]
- Purinton, P.T.; Oliver, J.E. Spinal cord origin of innervation to the bladder and urethra of the dog. Exp. Neurol. 1979, 65, 422–434. [Google Scholar] [CrossRef]
- Langworthy, O.R. Commissures of autonomic fibers in the pelvic organs of rats. Anat. Rec. 1965, 151, 583–587. [Google Scholar] [CrossRef]
- Arellano, J.; Xelhuantzi, N.; Mirto, N.; Hernández, M.E.; Cruz, Y. Neural interrelationships of autonomic ganglia from the pelvic region of male rats. Auton. Neurosci. 2019, 217, 26–34. [Google Scholar] [CrossRef]
- Dail, W.G.; Harji, F.; Gonzales, J.; Galindo, R. Multiple vasodilator pathways from the pelvic plexus to the penis of the rat. Int. J. Impot. Res. 1999, 11, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Furness, J.B. The origins of the adrenergic fibres which innervate the internal anal sphincter, the rectum, and other tissues of the pelvic region in the guinea-pig. Z. Anat. Entwicklungsgesch 1973, 140, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Pidsudko, Z. Immunohistochemical characteristics and distribution of neurons in the paravertebral, prevertebral and pelvic ganglia supplying the urinary bladder in the male pig. J. Mol. Neurosci. 2014, 52, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Kaleczyc, J.; Kasica-Jarosz, N.; Pidsudko, Z.; Dudek, A.; Klimczuk, M.; Sienkiewicz, W. Effect of castration on pelvic neurons in the male pig. Histochem. Cell Biol. 2020, 153, 135–151. [Google Scholar] [CrossRef]
- Elfvin, L.G.; Holmberg, K.; Emson, P.; Schemann, M.; Hökfelt, T. Nitric oxide synthase, choline acetyltransferase, catecholamine enzymes and neuropeptides and their colocalization in the anterior pelvic ganglion, the inferior mesenteric ganglion and the hypogastric nerve of the male guinea pig. J. Chem. Neuroanat. 1997, 14, 33–49. [Google Scholar] [CrossRef]
- Luckensmeyer, G.B.; Keast, J.R. Projections from the prevertebral and major pelvic ganglia to the ileum and large intestine of the male rat. J. Auton. Nerv. Syst. 1994, 49, 247–259. [Google Scholar] [CrossRef]
- Dail, W.G. The Pelvic Plexus: Innervation of Pelvic and Extrapelvic Visceral Tissues. Microsc. Res. Tech. 1996, 35, 95–106. Available online: https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902195749010476 (accessed on 29 June 2024). [CrossRef]
- Janig, W.; McLachlan, E.M. Organization of lumbar spinal outflow to distal colon and pelvic organs. Physiol. Rev. 1987, 67, 1332–1404. [Google Scholar] [CrossRef]
- Tsaknakis, A. Morphological Studies of the Pelvic Plexus of the Pig. Zentralbl Vet. A 1971, 18, 310–324. [Google Scholar] [CrossRef] [PubMed]
- Carlstedt, A.; Nordgren, S.; Fasth, S.; Hulten, L. The influence of the pelvic nerves on. anorectal motility in the cat. Acta Physiol. Scand. 1989, 135, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Dail, W.G.; Evan, A.P.; Eason, H.R. The major ganglion in the pelvic plexus of the male rat—A histochemical and ultrastructural study. Cell Tissue Res. 1975, 159, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Evan, A.P.; Dail, W.G.; Dammrose, D.; Palmer, C. Scanning electron microscopy of cell surfaces following removal of extracellular material. Anat. Rec. 1976, 185, 433–445. [Google Scholar] [CrossRef]
- Pannese, E. Cuantitativo, cambios estructurales y moleculares en la neuroglia de mamíferos en envejecimiento: Una revisión. Rev. Eur. Histoquímica 2021, 65, 3249–3250. [Google Scholar] [CrossRef]
- Pannese, E.; Ledda, M.; Arcidiacono, G.; Rigamonti, L. Clusters of nerve cell bodies enclosed within a common connective tissue envelope in the spinal ganglia of the lizard and rat. Cell Tissue Res. 1991, 264, 209–214. [Google Scholar] [CrossRef]
- Ledda, M.; De Palo, S.; Pannese, E. Ratios between number of neuroglial cells and number and volume of nerve cells in the spinal ganglia of two species of reptiles and three species of mammals. Tissue Cell 2004, 36, 55–62. [Google Scholar] [CrossRef] [PubMed]
- van Velzen, M.; Laman, J.D.; KleinJan, A.; Poot, A.; Osterhaus, A.D.M.E.; Verjans, G.M.G.M. Neuron-Interacting Satellite Glial Cells in Human Trigeminal Ganglia Have an APC Phenotype. J. Immunol. 2009, 183, 2456–2461. [Google Scholar] [CrossRef]
- Hanani, M.; Verkhratsky, A. Satellite Glial Cells and Astrocytes, a Comparative Review. Neurochem. Res. 2021, 46, 2525–2537. [Google Scholar] [CrossRef]
- Andreeva, D.; Murashova, L.; Burzak, N.; Dyachuk, V. Satellite Glial Cells: Morphology, functional heterogeneity, and role in pain. Front. Cell Neurosci. 2022, 16, 1019449. [Google Scholar] [CrossRef]
- Auld, D.S.; Robitaille, R. Glial cells and neurotransmission: An inclusive view of synaptic function. Neuron 2003, 40, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Darabid, H.; Arbour, D.; Robitaille, R. Glial Cells Decipher Synaptic Competition at the Mammalian Neuromuscular Junction. J. Neurosci. 2013, 33, 1297–1313. [Google Scholar] [CrossRef]
- Negro, S.; Pirazzini, M.; Rigoni, M. Models and methods to study Schwann cells. J. Anat. 2022, 241, 1235. [Google Scholar] [CrossRef] [PubMed]
- Salzer, J.; Feltri, M.L.; Jacob, C. Schwann Cell Development and Myelination. Cold Spring Harb. Perspect Biol. 2024, 16, a041360. [Google Scholar] [CrossRef]
- Espinosa-Medina, I.; Saha, O.; Boismoreau, F.; Brunet, J.F. The “sacral parasympathetic”: Ontogeny and anatomy of a myth. Clin. Auton. Res. 2018, 28, 13–21. [Google Scholar] [CrossRef]
- Sánchez Zavaleta, V. Efecto de la Conducta Sexual y la Denervación Preganglionar Sobre las Características Histológicas de la Próstata y del Ganglio Pélvico Mayor en la Rata. 2021. Available online: https://repositorioslatinoamericanos.uchile.cl/handle/2250/4146189 (accessed on 29 June 2024).
- Kepper, M.; Keast, J. Immunohistochemical properties and spinal connections of pelvic autonomic neurons that innervate the rat prostate gland. Cell Tissue Res. 1995, 281, 533–542. [Google Scholar] [CrossRef]
- Bertrand, M.M.; Keast, J.R. Dissection of pelvic autonomic ganglia and associated nerves in male and female rats. J. Vis. Exp. 2020, 2020, e60904. [Google Scholar] [CrossRef]
- McVary, K.T.; Razzaq, A.; Lee, C.; Venegas, M.F.; Rademaker, A.; McKenna, K.E. Growth of the Rat Prostate Gland is Facilitated by the Autonomic Nervous System. Biol. Reprod. 1994, 51, 99–107. [Google Scholar] [CrossRef]
- Manzo, J.; Garcia, L.I.; Hernandez, M.E.; Carrillo, P.; Pacheco, P. Neuroendocrine control of urine-marking behavior in male rats. Physiol. Behav. 2002, 75, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Forrest, S.L.; Payne, S.C.; Keast, J.R.; Osborne, P.B. Peripheral injury of pelvic visceral sensory nerves alters GFRα (GDNF family receptor alpha) localization in sensory and autonomic pathways of the sacral spinal cord. Front. Neuroanat. 2015, 9, 43. [Google Scholar] [CrossRef]
- Hancock, M.B.; Peveto, C.A. A preganglionic autonomic nucleus in the dorsal gray commissure of the lumbar spinal cord of the rat. J. Comp. Neurol. 1979, 183, 65–72. [Google Scholar] [CrossRef]
- Baron, R.; Jänig, W.; McLachlan, E.M. The afferent and sympathetic components of the lumbar spinal outflow to the colon and pelvic organs in the cat. I. The hypogastric nerve. J. Comp. Neurol. 1985, 238, 135–146. [Google Scholar] [CrossRef]
- Hulsebosch, C.E.; Coggeshall, R.E. An analysis of the axon populations in the nerves to the pelvic viscera in the rat. J. Comp. Neurol. 1982, 211, 1–10. [Google Scholar] [CrossRef]
- García, J.N.L. Caracterización Anatómica y Molecular de Las Neuronas Del Ganglio Pélvico Mayor Que Inervan a La Próstata Ventral y Dorsolateral de La Rata Macho Adulta de La Cepa Wistar. Ph.D. Thesis, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Mexico, 2024. [Google Scholar]
- Pacheco, P.; Martinez-Gomez, M.; Whipple, B.; Beyer, C.; Komisaruk, B.R. Somato-motor components of the pelvic and pudendal nerves of the female rat. Brain Res. 1989, 490, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Nadelhaft, I.; Roppolo, J.; Morgan, C.; de Groat, W.C. Parasympathetic preganglionic neurons and visceral primary afferents in monkey sacral spinal cord revealed following application of horseradish peroxidase to pelvic nerve. J. Comp. Neurol. 1983, 216, 36–52. [Google Scholar] [CrossRef] [PubMed]
- Nadelhaft, I.; Booth, A.M. The location and morphology of preganglionic neurons and the distribution of visceral afferents from the rat pelvic nerve: A horseradish peroxidase study. J. Comp. Neurol. 1984, 226, 238–245. [Google Scholar] [CrossRef]
- Morgan, C.W.; De Groat, W.C.; Felkins, L.A.; Zhang, S.-J. Intracellular injection of neurobiotin or horseradish peroxidase reveals separate types of preganglionic neurons in the sacral parasympathetic nucleus of the cat. J. Comp. Neurol. 1993, 331, 161–182. [Google Scholar] [CrossRef]
- Mawe, G.M.; Bresnahan, J.C.; Beattie, M.S. A light and electron microscopic analysis of the sacral parasympathetic nucleus after labelling primary afferent and efferent elements with HRP. J. Comp. Neurol. 1986, 250, 33–57. [Google Scholar] [CrossRef] [PubMed]
- Araki, I.; De Groat, W.C. Unitary excitatory synaptic currents in preganglionic neurons mediated by two distinct groups of interneurons in neonatal rat sacral parasympathetic nucleus. J. Neurophysiol. 1996, 76, 215–226. [Google Scholar] [CrossRef]
- Banrezes, B.; Andrey, P.; Maschino, E.; Schirar, A.; Peytevin, J.; Rampin, O.; Maurin, Y. Spatial segregation within the sacral parasympathetic nucleus of neurons innervating the bladder or the penis of the rat as revealed by three-dimensional reconstruction. Neuroscience 2002, 115, 97–109. [Google Scholar] [CrossRef]
- Torbey, K.; Leadbetter, W.F. Innervation of the Bladder and Lower Ureter: Studies on Pelvic Nerve Section and Stimulation in the Dog. J. Urol. 1963, 90, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Creed, K.E.; Tulloch, A.G.S. The Effect of Pelvic Nerve Stimulation and Some Drugs on the Urethra and Bladder of the Dog. Br. J. Urol. 1978, 50, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Creed, K.E. THE ROLE OF THE HYPOGASTRIC NERVE IN BLADDER AND URETHRAL ACTIVITY OF THE DOG. Br. J. Pharmacol. 1979, 65, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Kaleczyc, J.; Kasica-Jarosz, N.; Pidsudko, Z.; Przyborowska, A.; Sienkiewicz, W. The expression of androgen receptor in neurons of the anterior pelvic ganglion and celiac-superior mesenteric ganglion in the male pig. Pol. J. Vet. Sci. 2019, 22, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Pidsudko, Z. Immunohistochemical characteristics and distribution of sensory dorsal root ganglia neurons supplying the urinary bladder in the male pig. J. Mol. Neurosci. 2014, 52, 71–81. [Google Scholar] [CrossRef]
- Janikiewicz, P.; Wasilewska, B.; Mazur, U.; Franke-Radowiecka, A.; Majewski, M.; Bossowska, A. The Influence of an Adrenergic Antagonist Guanethidine (GUA) on the Distribution Pattern and Chemical Coding of Dorsal Root Ganglia (DRG) Neurons Supplying the Porcine Urinary Bladder. Int. J. Mol. Sci. 2021, 22, 13399. [Google Scholar] [CrossRef]
- Kaleczyc, J.; Scheuermann, D.W.; Pidsudko, Z.; Majewski, M.; Lakomy, M.; Timmermans, J.P. Distribution, immunohistochemical characteristics and nerve pathways of primary sensory neurons supplying the porcine vas deferens. Cell Tissue Res. 2002, 310, 9–17. [Google Scholar] [CrossRef]
- Andersson, P.O.; Sjogren, C.; Uvnas, B.; Uvnas-Moberg, K. Urinary bladder and urethral responses to pelvic and hypogastric nerve stimulation and their relation to vasoactive intestinal polypeptide in the anaesthetized dog. Acta Physiol. Scand. 1990, 138, 409–416. [Google Scholar] [CrossRef]
- Kihara, K.; Sato, K.; Ando, M.; Sato, T.; Oshima, H. Lumbosacral Sympathetic Trunk as a Compensatory Pathway for Seminal Emission After Bilateral Hypogastric Nerve Transections in the Dog. J. Urol. 1991, 145, 640–643. [Google Scholar] [CrossRef]
- Kihara, K.; Sato, K.; Oshima, H. Sympathetic Efferent Pathways Projecting to the Vas Deferens. Microsc. Res. Tech. 1998, 42, 398–408. [Google Scholar] [CrossRef]
- Aoki, H.; Matsuzaka, J.; Banya, Y.; Fujioka, T.; Nakaya, S.; Kubo, T.; Ohhori, T.; Yasuda, N. Effects of Hypogastric Nerve and Sympathetic Chain Stimulation on the Pelvic Nerve Induced Penile Erection in the Dog. Urol. Int. 1991, 47, 25–34. [Google Scholar] [CrossRef]
- Dail, W.G.; Moll, M.A.; Weber, K. Localization of vasoactive intestinal polypeptide in penile erectile tissue and in the major pelvic ganglion of the rat. Neuroscience 1983, 10, 1379–1386. [Google Scholar] [CrossRef] [PubMed]
- Black, I.B.; Geen, S.C. Trans-synaptic regulation of adrenergic neuron development: Inhibition by ganglionic blockade. Brain Res. 1973, 63, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Zukowska, Z.; Pons, J.; Lee, E.W.; Li, L. Neuropeptide Y: A new mediator linking sympathetic nerves, blood vessels and immune system? Can. J. Physiol. Pharmacol. 2011, 81, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Gebhart, G.F. Effects of tricyclic antidepressants on mechanosensitive pelvic nerve afferent fibers innervating the rat colon. Pain 1998, 76, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Sienkiewicz, W. Sources of the porcine testis innervation. Andrologia 2010, 42, 395–403. [Google Scholar] [CrossRef]
- Klimczuk, M.; Kaleczyc, J.; Franke-Radowiecka, A.; Czaja, K.; Podlasz, P.; Lakomy, M. Immunohistochemical characterisation of cholinergic nerve fibres supplying accessory genital glands in the pig. Vet. Med-Czech 2005, 50, 119–130. [Google Scholar] [CrossRef]
- Carati, C.J.; Creed, K.E.; Keogh, E.J. Autonomic control of penile erection in the dog. J. Physiol. 1987, 384, 525–538. [Google Scholar] [CrossRef]
- Andersson, P.O.; Bloom, S.R.; Mellander, S. Haemodynamics of pelvic nerve induced penile erection in the dog: Possible mediation by vasoactive intestinal polypeptide. J. Physiol. 1984, 350, 209–224. [Google Scholar] [CrossRef]
- Partanen, M.; Hervonen, A. The effect of long-term castration on the histochemically demonstrable catecholamines in the hypogastric ganglion of the rat. J. Auton. Nerv. Syst. 1979, 1, 139–147. [Google Scholar] [CrossRef]
- Partanen, M.; Hervonen, A. The formaldehyde-induced fluorescence of the developing hypogastric (main belvic) ganglion of the rat—Short adrenergic neurons and the effect of testosterone. Histochemistry 1979, 62, 249–258. [Google Scholar] [CrossRef]
- Melvin, J.E.; Hamill, R.W. Androgen-specific critical periods for the organization of the major pelvic ganglion. J. Neurosci. 1989, 9, 736–742. [Google Scholar] [CrossRef]
- Melvin, J.E.; Hamill, R.W. The major pelvic ganglion: Androgen control of postnatal development. J. Neurosci. 1987, 7, 1607–1612. [Google Scholar] [CrossRef] [PubMed]
- Keast, J.R.; Saunders, R.J. Testosterone has potent, selective effects on the morphology of pelvic autonomic neurons which control the bladder, lower bowel and internal reproductive organs of the male rat. Neuroscience 1998, 85, 543–556. [Google Scholar] [CrossRef] [PubMed]
- Schirar, A.; Chang, C.; Rousseau, J.P. Localization of Androgen Receptor in Nitric Oxide Synthase- and Vasoactive Intestinal Peptide-Containing Neurons of the Major Pelvic Ganglion Innervating the Rat Penis. J. Neuroendocrinol. 1997, 9, 141–150. [Google Scholar] [CrossRef]
- Purves-Tyson, T.D.; Arshi, M.S.; Handelsman, D.J.; Cheng, Y.; Keast, J.R. Androgen and estrogen receptor-mediated mechanisms of testosterone action in male rat pelvic autonomic ganglia. Neuroscience 2007, 148, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Félix, B.; Catalin, D.; Miolan, J.P.; Niel, J.P. Effects of Testosterone on the Electrical Properties and Nicotinic Transmission of the Major Pelvic and Coeliac Ganglion Neurones. J. Neuroendocrinol. 2001, 13, 193–198. [Google Scholar] [CrossRef]
- Kanjhan, R.; Osborne, P.B.; Ouyang, M.; Keast, J.R. Postnatal maturational changes in rat pelvic autonomic ganglion cells: A mixture of steroid-dependent and -independent effects. J. Neurophysiol. 2003, 89, 315–323. [Google Scholar] [CrossRef]
- Hervonen, A.; Kanerva, L. Adrenergic and Nonadrenergic Axons of the Rabbit Uterus and Oviduct. Acta Physiol. Scand. 1972, 85, 139–141. [Google Scholar] [CrossRef]
- Rivas, V.H.C. Repercusión de La Denervación Prostática y La Conducta Sexual Sobre Los Niveles Séricos de Prolactina y Testosterona y La Expresión de Sus Receptores En Ratas Sexualmente Expertas. Ph.D. Thesis, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Mexico, 2024. [Google Scholar]
- Moreno, M. Efecto de la Conducta Sexual y la Denervación Pélvica y/o Hipogástrica Sobre la Expresión de Receptores Adrenérgicos, Colinérgicos, Andrógenos y Prolactina en el Ganglio Pélvico Mayor de la Rata Macho. Ph.D. Thesis, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Mexico, 2021. Available online: https://cdigital.uv.mx/ (accessed on 29 June 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landa-García, J.N.; Palacios-Arellano, M.d.l.P.; Morales, M.A.; Aranda-Abreu, G.E.; Rojas-Durán, F.; Herrera-Covarrubias, D.; Toledo-Cárdenas, M.R.; Suárez-Medellín, J.M.; Coria-Avila, G.A.; Manzo, J.; et al. The Anatomy, Histology, and Function of the Major Pelvic Ganglion. Animals 2024, 14, 2570. https://doi.org/10.3390/ani14172570
Landa-García JN, Palacios-Arellano MdlP, Morales MA, Aranda-Abreu GE, Rojas-Durán F, Herrera-Covarrubias D, Toledo-Cárdenas MR, Suárez-Medellín JM, Coria-Avila GA, Manzo J, et al. The Anatomy, Histology, and Function of the Major Pelvic Ganglion. Animals. 2024; 14(17):2570. https://doi.org/10.3390/ani14172570
Chicago/Turabian StyleLanda-García, Jessica Natalia, María de la Paz Palacios-Arellano, Miguel Angel Morales, Gonzalo Emiliano Aranda-Abreu, Fausto Rojas-Durán, Deissy Herrera-Covarrubias, María Rebeca Toledo-Cárdenas, Jorge Manuel Suárez-Medellín, Genaro Alfonso Coria-Avila, Jorge Manzo, and et al. 2024. "The Anatomy, Histology, and Function of the Major Pelvic Ganglion" Animals 14, no. 17: 2570. https://doi.org/10.3390/ani14172570
APA StyleLanda-García, J. N., Palacios-Arellano, M. d. l. P., Morales, M. A., Aranda-Abreu, G. E., Rojas-Durán, F., Herrera-Covarrubias, D., Toledo-Cárdenas, M. R., Suárez-Medellín, J. M., Coria-Avila, G. A., Manzo, J., & Hernández-Aguilar, M. E. (2024). The Anatomy, Histology, and Function of the Major Pelvic Ganglion. Animals, 14(17), 2570. https://doi.org/10.3390/ani14172570