Information of Growth Traits Is Helpful for Genetic Evaluation of Litter Size in Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Statistical Models
- (1)
- Single-trait model
- (2)
- Two-trait model
- (3)
- Three-trait model
2.3. Validation of Genetic Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arango, J.; Misztal, I.; Tsuruta, S.; Culbertson, M.; Herring, W. Threshold-linear estimation of genetic parameters for farrowing mortality, litter size, and test performance of Large White sows. J. Anim. Sci. 2005, 83, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Holm, B.; Bakken, M.; Klemetsdal, G.; Vangen, O. Genetic correlations between reproduction and production traits in swine. J. Anim. Sci. 2004, 82, 3458–3464. [Google Scholar] [CrossRef] [PubMed]
- Krupa, E.; Wolf, J. Simultaneous estimation of genetic parameters for production and litter size traits in Czech Large White and Czech Landrace pigs. Czech J. Anim. Sci. 2013, 58, 429–436. [Google Scholar] [CrossRef]
- Haley, C.S.; Avalos, E.; Smith, C. Selection for litter size in the pig. Anim. Breed. Abstr. 1988, 56, 317–332. [Google Scholar]
- Ogawa, S.; Ohnishi, C.; Ishii, K.; Uemoto, Y.; Satoh, M. Genetic relationship between litter size traits at birth and body measurement and production traits in purebred Duroc pigs. Anim. Sci. J. 2020, 91, e13497. [Google Scholar] [CrossRef] [PubMed]
- Banville, M.; Riquet, J.; Bahon, D.; Sourdioux, M.; Canario, L. Genetic parameters for litter size, piglet growth and sow’s early growth and body composition in the Chinese-European line Tai Zumu. J. Anim. Breed. Genet. 2015, 132, 328–337. [Google Scholar] [CrossRef]
- Ostersen, T.; Henryon, M.; Guo, X.; Christensen, O.F.; Su, G.; Sørensen, A.C. Non-genetic correlations between production traits and litter traits in pigs are important to account for. In Proceedings of the 12th World Congress on Genetics Applied to Livestock Production (WCGALP), Rotterdam, The Netherlands, 3–8 July 2022; pp. 3229–3232. [Google Scholar] [CrossRef]
- Miar, Y.; Plastow, G.; Bruce, H.; Moore, S.; Manafiazar, G.; Kemp, R.; Charagu, P.; Huisman, A.; van Haandel, B.; Zhang, C.; et al. Genetic and phenotypic correlations between performance traits with meat quality and carcass characteristics in commercial crossbred pigs. PLoS ONE 2014, 9, e110105. [Google Scholar] [CrossRef]
- Strathe, A.B.; Velander, I.H.; Mark, T.; Ostersen, T.; Hansen, C.; Kadarmideen, H.N. Genetic parameters for male fertility and its relationship to skatole and androstenone in Danish Landrace boars. J. Anim. Sci. 2013, 91, 4659–4668. [Google Scholar] [CrossRef]
- Yang, H.; Su, G.S. Impact of phenotypic information of previous generations and depth of pedigree on estimates of genetic parameters and breeding values. Livest. Sci. 2016, 187, 61–67. [Google Scholar] [CrossRef]
- Jensen, J.; Mantysaari, E.A.; Madsen, P.; Thompson, R. Residual Maximum Likelihood Estimation of (Co) Variance Components in Multivariate Mixed Linear Models using Average Information. J. Indian Soc. Agric. Stat. 1997, 49, 215–236. [Google Scholar]
- Henderson, C.R. Best linear unbiased prediction of nonadditive genetic merits in noninbred populations. J. Anim. Sci. 1985, 60, 7. [Google Scholar] [CrossRef]
- Madsen, P.; Jensen, J. A User’s Guide to DMU-A Package for Analysing Multivariate Mixed Models. ver. 6, rel. 5.6. 2024. Available online: https://dmu.ghpc.au.dk/dmu/DMU/Doc/Current/dmuv6_guide.5.6.pdf (accessed on 1 June 2024).
- Henderson, C.R. Best linear unbiased estimation and prediction under a selection model. Biometrics 1975, 31, 423–447. [Google Scholar] [CrossRef]
- Meyer, K. Approximate accuracy of genetic evaluation under an animal-model. Livest. Prod. Sci. 1989, 21, 87–100. [Google Scholar] [CrossRef]
- Legarra, A.; Reverter, A. Semi-parametric estimates of population accuracy and bias of predictions of breeding values and future phenotypes using the LR method. Genet. Sel. Evol. 2018, 50, 53. [Google Scholar] [CrossRef]
- Macedo, F.L.; Reverter, A.; Legarra, A. Behavior of the Linear Regression method to estimate bias and accuracies with correct and incorrect genetic evaluation models. J. Dairy Sci. 2020, 103, 529–544. [Google Scholar] [CrossRef]
- Schaeffer, L.R. Sire and Cow Evaluation Under Multiple Trait Models. J. Dairy Sci. 1984, 67, 1567–1580. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.S. Introduction to Quantitative Genetics, 4th ed.; Pearson Education Limited: Harlow, UK, 1996. [Google Scholar]
- Skovsted, K.; Henryon, M.; Rydhmer, L.; Jensen, J.; Solanes, F.X. Growth rate of growing pigs is weakly correlated genetically with litter size, while the amount of genetic variation for growth rate changes with litter size. Acta Agric. Scand. Sect. A-Anim. Sci. 2005, 55, 66–73. [Google Scholar] [CrossRef]
- Su, G.; Lund, M.S.; Sorensen, D. Selection for litter size at day five to improve litter size at weaning and piglet survival rate. J. Anim. Sci. 2007, 85, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Zaalberg, R.M.; Chu, T.T.; Bovbjerg, H.; Jensen, J.; Villumsen, T.M. Genetic parameters for early piglet weight, litter traits and number of functional teats in organic pigs. Animal 2023, 17, 100717. [Google Scholar] [CrossRef]
- Esfandyari, H.; Thekkoot, D.; Kemp, R.; Plastow, G.; Dekkers, J. Genetic parameters and purebred-crossbred genetic correlations for growth, meat quality, and carcass traits in pigs. J. Anim. Sci. 2020, 98, skaa379. [Google Scholar] [CrossRef]
- Noguera, J.L.; Varona, L.; Babot, D.; Estany, J. Multivariate analysis of litter size for multiple parities with production traits in pigs: I. Bayesian variance component estimation. J. Anim. Sci. 2002, 80, 2540–2547. [Google Scholar] [CrossRef] [PubMed]
- Lopez, B.I.M.; Song, C.; Seo, K. Genetic parameters and trends for production traits and their relationship with litter traits in Landrace and Yorkshire pigs. Anim. Sci. J. 2018, 89, 1381–1388. [Google Scholar] [CrossRef]
- Chomchuen, K.; Tuntiyasawasdikul, V.; Chankitisakul, V.; Boonkum, W. Genetic Evaluation of Body Weights and Egg Production Traits Using a Multi-Trait Animal Model and Selection Index in Thai Native Synthetic Chickens (Kaimook e-san2). Animals 2022, 12, 335. [Google Scholar] [CrossRef] [PubMed]
- Enns, R.M.; Nicoll, G.B. Genetic change results from selection on an economic breeding objective in beef cattle. J. Anim. Sci. 2008, 86, 3348–3357. [Google Scholar] [CrossRef]
- Lidauer, M.H.; Pösö, J.; Pedersen, J.; Lassen, J.; Madsen, P.; Mäntysaari, E.A.; Nielsen, U.S.; Eriksson, J.; Johansson, K.; Pitkänen, T.; et al. Across-country test-day model evaluations for Holstein, Nordic Red Cattle, and Jersey. J. Dairy Sci. 2015, 98, 1296–1309. [Google Scholar] [CrossRef]
- Luan, T.; Nordbø, Ø.; Andersen-Ranberg, I.; Meuwissen, T.H.E. Multi-trait genomic prediction in pigs using single and multistep methods based on the absorption of ungenotyped animals. J. Anim. Breed. Genet. 2023, 140, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Madsen, P.; Lund, M.S.; Zhang, Y.; Nielsen, U.S.; Su, G. Improvement in genetic evaluation of female fertility in dairy cattle using multiple-trait models including milk production traits. J. Anim. Sci. 2010, 88, 871–878. [Google Scholar] [CrossRef]
- Nilforooshan, M.A.; Jakobsen, J.H.; Fikse, W.F.; Berglund, B.; Jorjani, H. Multiple-trait multiple-country genetic evaluation of Holstein bulls for female fertility and milk production traits. Animal 2014, 8, 887–894. [Google Scholar] [CrossRef]
- Kadarmideen, H.N.; Thompson, R.; Coffey, M.P.; Kossaibati, M.A. Genetic parameters and evaluations from single- and multiple-trait analysis of dairy cow fertility and milk production. Livest. Prod. Sci. 2003, 81, 183–195. [Google Scholar] [CrossRef]
- Biffani, S.; Marusi, M.; Biscarini, F.; Canavesi, F. Developing a genetic evaluation for fertility using angularity and milk yield as correlated traits. Interbull Bull. 2005, 33, 63–66. [Google Scholar]
- Mínguez, C.; Sanchez, J.P.; El Nagar, A.G.; Ragab, M.; Baselga, M. Growth traits of four maternal lines of rabbits founded on different criteria: Comparisons at foundation and at last periods after selection. J. Anim. Breed. Genet. 2016, 133, 303–315. [Google Scholar] [CrossRef] [PubMed]
Trait | No. | Mean | SD | Min | Max |
---|---|---|---|---|---|
Age100 | 35,875 | 161.90 | 15.28 | 115.00 | 238.00 |
LMP (%) | 35,875 | 58.71 | 1.03 | 53.24 | 62.36 |
NBA | 15,636 | 13.87 | 3.89 | 4.00 | 26.00 |
Trait | σp2 | Lit2 | PE2 | h2 |
---|---|---|---|---|
Age100 | 196.5 | 0.106 (0.006) | 0.279 (0.018) | |
LMP | 0.925 | 0.042 (0.005) | 0.371 (0.018) | |
NBA | 12.76 | 0.072 (0.012) | 0.076 (0.013) |
Age100 | LMP | NBA | |
---|---|---|---|
Age100 | 0.308 (0.042) | 0.369 (0.081) | |
LMP | 0.132 (0.008) | 0.022 (0.077) | |
NBA | −0.023 (0.011) | 0.013 (0.011) |
Parameter 1 | Single-Trait Model | Two-Trait Model: NBA, Age100 | Two-Trait Model: NBA, LMP | Three-Trait Model |
---|---|---|---|---|
Rm | 0.426 | 0.462 | 0.427 | 0.463 |
Rv | 0.395 | 0.454 | 0.397 | 0.451 |
Level bias | 0.085 | 0.072 | 0.085 | 0.075 |
Disperse bias | 0.986 | 0.983 | 0.989 | 0.987 |
Parameter 1 | Trait | Single-Trait Model | Two-Trait Model: NBA, Age100 | Two-Trait Model: NBA, LMP | Two-Trait Model: Age100, LMP | Three-Trait Model |
---|---|---|---|---|---|---|
Rm | NBA | 0.426 | 0.444 | 0.425 | 0.443 | |
Age100 | 0.509 | 0.515 | 0.512 | 0.518 | ||
LMP | 0.536 | 0.536 | 0.537 | 0.537 | ||
Rv | NBA | 0.395 | 0.433 | 0.393 | 0.429 | |
Age100 | 0.507 | 0.522 | 0.509 | 0.525 | ||
LMP | 0.471 | 0.470 | 0.468 | 0.467 | ||
Level bias | NBA | 0.085 | 0.037 | 0.099 | 0.044 | |
Age100 | −0.659 | −0.630 | −0.632 | −0.609 | ||
LMP | 0.049 | 0.050 | 0.037 | 0.037 | ||
Disperse bias | NBA | 0.986 | 0.976 | 0.990 | 0.966 | |
Age100 | 0.851 | 0.867 | 0.867 | 0.886 | ||
LMP | 0.828 | 0.826 | 0.837 | 0.836 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Yang, L.; Qian, J.; Xu, L.; Lin, L.; Su, G. Information of Growth Traits Is Helpful for Genetic Evaluation of Litter Size in Pigs. Animals 2024, 14, 2669. https://doi.org/10.3390/ani14182669
Yang H, Yang L, Qian J, Xu L, Lin L, Su G. Information of Growth Traits Is Helpful for Genetic Evaluation of Litter Size in Pigs. Animals. 2024; 14(18):2669. https://doi.org/10.3390/ani14182669
Chicago/Turabian StyleYang, Hui, Lei Yang, Jinhua Qian, Lei Xu, Li Lin, and Guosheng Su. 2024. "Information of Growth Traits Is Helpful for Genetic Evaluation of Litter Size in Pigs" Animals 14, no. 18: 2669. https://doi.org/10.3390/ani14182669
APA StyleYang, H., Yang, L., Qian, J., Xu, L., Lin, L., & Su, G. (2024). Information of Growth Traits Is Helpful for Genetic Evaluation of Litter Size in Pigs. Animals, 14(18), 2669. https://doi.org/10.3390/ani14182669