Genome-Wide Association Study (GWAS) for Left Displaced Abomasum in Highly Productive Russian Holstein Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and DNA Extraction
2.2. Genotyping and Quality Control
2.3. ROH Calling and Inbreeding Coefficient
- i represents the ith animal
- n stands for total number of ROH found in animali,
- LROHi represents total ROH length for animali,
- Lg identifies genome length of the individual.
2.4. Genome-Wide Association Analysis and Visualization
2.5. Candidate Genes Identification
3. Results
3.1. Genotype Filtering and Quality Control
3.2. Inbreeding Coefficient and Selection Signatures
3.3. Genome-Wide Association Study for Left Displaced Abomasum
3.4. Structural and Functional Annotation of Putative Genes for Left Displaced Abomasum
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plemyashov, K.V.; Semenov, B.S.; Kuznetsova, T.S.; Korochkina, E.A.; Nikitin, V.V.; Khusainova, G.S.; Krutikova, A.A. Displacement of Abomasum in Highly Productive Dairy Cows. Veterinaria 2022, 25, 48–54. [Google Scholar]
- Huang, H.; Cao, J.; Guo, G.; Li, X.; Wang, Y.; Yu, Y.; Zhang, S.; Zhang, Q.; Zhang, Y. Genome-Wide Association Study Identifies QTLs for Displacement of Abomasum in Chinese Holstein Cattle. J. Anim. Sci. 2019, 97, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Pryce, J.; Gaddis, K.L.P.; Koeck, A.; Bastin, C.; Abdelsayed, M.; Gengler, N.; Miglior, F.; Heringstad, B.; Egger-Danner, C.; Stock, K.; et al. Invited Review: Opportunities for Genetic Improvement of Metabolic Diseases. J. Dairy Sci. 2016, 99, 6855–6873. [Google Scholar] [CrossRef] [PubMed]
- Braun, U.; Nuss, K.; Reif, S.; Hilbe, M.; Gerspach, C. Left and Right Displaced Abomasum and Abomasal Volvulus: Comparison of Clinical, Laboratory and Ultrasonographic Findings in 1982 Dairy Cows. Acta. Vet. Scand. 2022, 64, 40. [Google Scholar] [CrossRef] [PubMed]
- Wolf, V.; Hamann, H.; Scholz, H.; Distl, O. Einflüsse auf das auftreten von labmagenverlagerungen bei deutschen Holstein kühen. Dtsch. Tierarztl. Wochenschr. 2001, 108, 403–408. [Google Scholar]
- Doll, K.; Sickinger, M.; Seeger, T. New Aspects in the Pathogenesis of Abomasal Displacement. Vet. J. 2009, 181, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Wittek, T.; Tischer, K.; Gieseler, T.; Fürll, M.; Constable, P.D. Effect of Preoperative Administration of Erythromycin or FLunixin Meglumine on Postoperative Abomasal Emptying Rate in Dairy Cows Undergoing Surgical Correction of Left Displacement of the Abomasum. J. Am. Vet. Med. Assoc. 2008, 232, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Itoh, M.; Aoki, T.; Sakurai, Y.; Sasaki, N.; Inokuma, H.; Kawamoto, S.; Yamada, K. Fluoroscopic Observation of the Development of Displaced Abomasum in Dairy Cows. J. Vet. Med. Sci. 2017, 79, 1952–1956. [Google Scholar] [CrossRef]
- Stöber, M.; Saratsis, P. Vergleichende messungen am rumpf von schwarzbunten kühen mit und ohne linksseitiger labmagenverlagerung comparative measurements on the trunk in of black and white cows with and without leftside abomasal displacement. Dtsch. Tierarztl. Wschr. 1974, 81, 564–565. [Google Scholar]
- Constable, P.D.; Hinchcliff, K.W.; Done, S.H.; Gruenberg, W.; Radostits, O.M. Veterinary Medicine: A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs and Goats, 11th ed.; Elsevier: St. Louis, MO, USA, 2017; pp. 436–621. [Google Scholar]
- Ospina, P.A.; Nydam, D.V.; Stokol, T.; Overton, T.R. Association between the Proportion of Sampled Transition Cows with Increased Nonesterified Fatty Acids and β-Hydroxybutyrate and Disease Incidence, Pregnancy Rate, and Milk Production at the Herd Level. J. Dairy Sci. 2010, 93, 3595–3601. [Google Scholar] [CrossRef]
- Sen, I.; Ok, M.; Coskun, A. The Level of Serum Ionised Calcium, Aspartate Aminotransferase, Insulin, Glucose, Betahydroxybutyrate Concentrations and Blood Gas Parameters in Cows with Left Displacement of Abomasum. Pol. J. Vet. Sci. 2006, 9, 227–232. [Google Scholar] [PubMed]
- Lyons, N.A.; Cooke, J.S.; Wilson, S.; van Winden, S.C.; Gordon, P.J.; Wathes, D.C. Relationships between Metabolite and IGF1 Concentrations with Fertility and Production Outcomes Following Left Abomasal Displacement. Vet. Rec. 2014, 174, 657. [Google Scholar] [CrossRef] [PubMed]
- Tschoner, T.; Zablotski, Y.; Feist, M. Retrospective Evaluation of Method of Treatment, Laboratory Findings, and Concurrent Diseases in Dairy Cattle Diagnosed with Left Displacement of the Abomasum during Time of Hospitalization. Animals 2022, 12, 1649. [Google Scholar] [CrossRef] [PubMed]
- Zwald, N.R.; Weigel, K.A.; Chang, Y.M.; Welper, R.D.; Clay, J.S. Genetic Selection for Health Traits Using Producer-Recorded Data. I. Incidence Rates, Heritability Estimates, and Sire Breeding Values. J. Dairy Sci. 2004, 87, 4287–4294. [Google Scholar] [CrossRef] [PubMed]
- Tsiamadis, V.; Banos, G.; Panousis, N.; Kritsepi-Konstantinou, M.; Arsenos, G.; Valergakis, G.E. Genetic Parameters of Sub-clinical Macromineral Disorders and Major Clinical Diseases in Postparturient Holstein Cows. J. Dairy Sci. 2016, 99, 8901–8914. [Google Scholar] [CrossRef]
- Lehner, S.; Zerbin, I.; Doll, K.; Rehage, J.; Distl, O. A Genome-Wide Association Study for Left-Sided Displacement of the Abomasum Using a High-Density Single Nucleotide Polymorphism Array. J. Dairy Sci. 2018, 101, 1258–1266. [Google Scholar] [CrossRef] [PubMed]
- Mömke, S.; Sickinger, M.; Lichtner, P.; Doll, K.; Rehage, J.; Distl, O. Genome-Wide Association Analysis Identifies Loci for Left-Sided Displacement of the Abomasum in German Holstein Cattle. J. Dairy Sci. 2013, 96, 3959–3964. [Google Scholar] [CrossRef]
- Slifer, S.H. PLINK: Key Functions for Data Analysis. Curr. Protoc. Hum. Genet. 2018, 97, e59. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhao, G.; Yang, L.; Zhu, B.; Chen, Y.; Zhang, L.; Gao, X.; Gao, H.; Liu, G.E.; Li, J. Genomic Patterns of Homozygosity in Chinese Local Cattle. Sci. Rep. 2019, 9, 16977. [Google Scholar] [CrossRef]
- McQuillan, R.; Leutenegger, A.-L.; Abdel-Rahman, R.; Franklin, C.S.; Pericic, M.; Barac-Lauc, L.; Smolej-Narancic, N.; Janicijevic, B.; Polasek, O.; Tenesa, A.; et al. Runs of Homozygosity in European Populations. Am. J. Hum. Genet. 2008, 83, 359–372. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z. GAPIT Version 3: Boosting Power and Accuracy for Genomic Association and Prediction. Genom. Proteom. Bioinform. 2021, 19, 629–640. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, H.; Tang, Z.; Xu, J.; Yin, D.; Zhang, Z.; Yuan, X.; Zhu, M.; Zhao, S.; Li, X.; et al. RMVP: A Memory-Efficient, Visualization-Enhanced, and Parallel-Accelerated Tool for Genome-Wide Association Study. Genom. Proteom. Bioinform. 2021, 19, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Dunn, O.J. Multiple Comparisons among Means. J. Am. Stat. Assoc. 1961, 56, 52–64. [Google Scholar] [CrossRef]
- Turner, S.D. Qqman: An R Package for Visualizing GWAS Results Using Q-Q and Manhattan Plots. J. Open Source Softw. 2018, 3, 731. [Google Scholar] [CrossRef]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef]
- Kang, H.M.; Zaitlen, N.A.; Wade, C.M.; Kirby, A.; Heckerman, D.; Daly, M.J.; Eskin, E. Efficient Control of Population Structure in Model Organism Association Mapping. Genetics 2008, 178, 1709–1723. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huang, M.; Fan, B.; Buckler, E.S.; Zhang, Z. Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLoS Genet. 2016, 12, e1005767. [Google Scholar] [CrossRef]
- Mömke, S.; Scholz, H.; Doll, K.; Rehage, J.; Distl, O. Mapping Quantitative Trait Loci for Left-Sided Displacement of the Abomasum in German Holstein Dairy Cows. J. Dairy Sci. 2008, 91, 4383–4392. [Google Scholar] [CrossRef]
- Ricken, M.; Hamann, H.; Scholz, H.; Distl, O. Genetic Analysis of the Prevalence of Abomasal Displacement and Its Relationship to Milk Output Characteristics in German Holstein Cows. Dtsch. Tierarztl. Wochenschr. 2004, 111, 366–370. [Google Scholar]
- Meredith, B.K.; Kearney, F.J.; Finlay, E.K.; Bradley, D.G.; Fahey, A.G.; Berry, D.P.; Lynn, D.J. Genome-Wide Associations for Milk Production and Somatic Cell Score in Holstein-Friesian Cattle in Ireland. BMC Genet. 2012, 13, 13–21. [Google Scholar] [CrossRef]
- Tetens, J.; Heuer, C.; Heyer, I.; Klein, M.S.; Gronwald, W.; Junge, W.; Oefner, P.J.; Thaller, G.; Krattenmacher, N. Polymorphisms within the APOBR Gene Are Highly Associated with Milk Levels of Prognostic Ketosis Biomarkers in Dairy Cows. Physiol. Genomics. 2015, 47, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Bastin, B.C.; Houser, A.; Bagley, C.P.; Ely, K.; Payton, R.R.; Saxton, A.M.; Schrick, F.N.; Waller, J.C.; Kojima, C.J. A Polymorphism InXKR4is Significantly Associated with Serum Prolactin Concentrations in Beef Cows Grazing Tall Fescue. Anim. Genet. 2014, 45, 439–441. [Google Scholar] [CrossRef]
- Ghoreishifar, S.M.; Eriksson, S.; Johansson, A.M.; Khansefid, M.; Moghaddaszadeh-Ahrabi, S.; Parna, N.; Davoudi, P.; Javanmard, A. Signatures of Selection Reveal Candidate Genes Involved in Economic Traits and Cold Acclimation in Five Swedish Cattle Breeds. Genet. Sel. 2020, 52, 52. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, M.S.A.; Lim, D.; Park, M.; Lee, S.; Kim, Y.; Gondro, C.; Park, B.; Lee, S. Functional Partitioning of Genomic Variance and Genome-Wide Association Study for Carcass Traits in Korean Hanwoo Cattle Using Imputed Sequence Level SNP Data. Front. Genet. 2018, 9, 217. [Google Scholar] [CrossRef]
- Srivastava, S.; Srikanth, K.; Won, S.; Son, J.-H.; Park, J.-E.; Park, W.; Chai, H.-H.; Lim, D. Haplotype-Based Genome-Wide Association Study and Identification of Candidate Genes Associated with Carcass Traits in Hanwoo Cattle. Genes 2020, 11, 551. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Shu, X.; Mao, S.; Wang, Y.; Du, X.; Zou, C. Genotype–Phenotype Correlations in Angelman Syndrome. Genes 2021, 12, 987. [Google Scholar] [CrossRef]
- Butler, M.G.; Miller, J.L.; Forster, J.L. Prader-Willi Syndrome—Clinical Genetics, Diagnosis and Treatment Approaches: An Update. Curr. Pediatr. Rev. 2019, 15, 207–244. [Google Scholar] [CrossRef] [PubMed]
- Nayagam, J.S.; Williamson, C.; Joshi, D.; Thompson, R.J. Review Article: Liver Disease in Adults with Variants in the Cholestasis-Related Genes ABCB11, ABCB4 and ATP8B1. Aliment. Pharmacol. Ther. 2020, 52, 1628–1639. [Google Scholar] [CrossRef] [PubMed]
- Bezborodov, P.N. Study Of The Rumen Motor Function In High-Productive Cows With Abomasum Displacements. Izv. Timiryazev Agric. Acad. 2019, 5, 90–105. [Google Scholar]
- Kalyuzhny, I.I.; Barinov, N.D. Liver Disorders in Cows of Holstein-Friesian Breed. Vet. Vrach 2015, 2, 47–55. [Google Scholar]
- Guo, Y.S.; Tao, J.Z.; Xu, L.H.; Wei, F.H.; He, S.H. Identification of Disordered Metabolic Networks in Postpartum Dairy Cows with Left Displacement of the Abomasum through Integrated Metabolomics and Pathway Analyses. J. Vet. Med. Sci. 2020, 82, 115–124. [Google Scholar] [CrossRef]
- Wild, K.; Juaire, K.D.; Soni, K.; Shanmuganathan, V.; Hendricks, A.; Segnitz, B.; Beckmann, R.; Sinning, I. Reconstitution of the Human SRP System and Quantitative and Systematic Analysis of Its Ribosome Interactions. Nucleic Acids Res. 2019, 47, 3184–3196. [Google Scholar] [CrossRef] [PubMed]
- D’Altri, T.; Schuster, M.B.; Wenzel, A.; Porse, B.T. Heterozygous Loss of Srp72 in Mice Is Not Associated with Major Hematological Phenotypes. Eur. J. Haematol. 2019, 103, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Vatakuti, S.; Pennings, J.L.A.; Gore, E.; Olinga, P.; Groothuis, G.M.M. Classification of Cholestatic and Necrotic Hepatotoxicants Using Transcriptomics on Human Precision-Cut Liver Slices. Chem. Res. Toxicol. 2016, 29, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.H.; Harvey, R.P.; Wegner, M.; Sock, E. Cardiac Outflow Tract Development Relies on the Complex Function of Sox4 and Sox11 in Multiple Cell Types. Cell Mol. Life Sci. 2013, 71, 2931–2945. [Google Scholar] [CrossRef] [PubMed]
- Poncy, A.; Antoniou, A.; Cordi, S.; Pierreux, C.E.; Jacquemin, P.; Lemaigre, F.P. Transcription Factors SOX4 and SOX9 Cooperatively Control Development of Bile Ducts. Dev. Biol. 2015, 404, 136–148. [Google Scholar] [CrossRef]
- Perozzo, A.M.; Schwenk, J.; Kamalova, A.; Nakagawa, T.; Fakler, B.; Bowie, D. GSG1L-Containing AMPA Receptor Complexes Are Defined by Their Spatiotemporal Expression, Native Interactome and Allosteric Sites. Nat. Commun. 2023, 14, 6799. [Google Scholar] [CrossRef]
- Dimitrova, E.; Kondo, T.; Feldmann, A.; Nakayama, M.; Koseki, Y.; Konietzny, R.; Kessler, B.M.; Koseki, H.; Klose, R.J. FBXL19 Recruits CDK-Mediator to CpG Islands of Developmental Genes Priming Them for Activation during Lineage Commitment. eLife 2018, 7, e37084. [Google Scholar] [CrossRef] [PubMed]
- Pinto, S.M.; Subbannayya, Y.; Rex, D.A.B.; Raju, R.; Chatterjee, O.; Advani, J.; Radhakrishnan, A.; Keshava Prasad, T.S.; Wani, M.R.; Pandey, A. A Network Map of IL-33 Signaling Pathway. J. Cell Commun. Signal. 2018, 12, 615–624. [Google Scholar] [CrossRef] [PubMed]
Chromosome | Position, bp | Proportion of Animals with ROH in the Loci, % | Number of Genes | Candidate Genes |
---|---|---|---|---|
BTA14 | 22,750,647–23,430,999 | 89.92 | 9 | XKR4, TGS1, CHCHD7, PLAG1 |
BTA14 | 23,542,871–23,630,896 | 53.22 | 1 | PENK |
BTX | 65,046,412–69,995,413 | 70.86 | 25 | CYLC1, SATL1, POU3F4, POF1B, DACH2 |
BTX | 81,694,070–85,309,793 | 54.90 | 15 | AR, OPHN1, EDA2R |
Chromosome | Position, bp | Frequency in Case Group Animals, % | Frequency in Control Group Animals, % | p-Value | Number of Genes | Candidate Genes |
---|---|---|---|---|---|---|
BTA13 | 5,228,105–5,988,846 | 40.11 | 30 | 0.11 | 5 | BTBD3, SNORA70, NOS2 |
BTA13 | 6,289,502–6,580,508 | 41.75 | 26.47 | 0.03 * | 1 | SPTLC3 |
BTA21 | 1,988,047–2,044,107 | 50.54 | 42.94 | 0.35 | 6 | SNORD116, SNORD109A |
BTX | 40,129,544–42,860,345 | 43.95 | 37.64 | 0.44 | 6 | PCDH11X, NAP1L3, FAM133A |
SNP | MAF | BTA | Position | p-Value | Nearest Gene | Distance to Gene |
---|---|---|---|---|---|---|
BovineHD0200007887 | 0.47 | 2 | 27,152,746 | 2.6 × 10−5 | ABCB11 | Intron |
BovineHD0300019207 | 0.46 | 3 | 64,155,288 | 8.5 × 10−5 | TRNAC-ACA | +695,407 |
BovineHD4100004175 | 0.13 | 5 | 117,286,776 | 3.5 × 10−5 | MIR22850-5 | +52,582 |
BovineHD0600020458 | 0.07 | 6 | 71,848,355 | 1.8 × 10−5 | SRP72 | Intron |
BovineHD1600003714 | 0.19 | 16 | 13,142,992 | 8.3 × 10−5 | RGS18 | Intron |
ARS-BFGL-NGS-39696 | 0.37 | 16 | 26,927,766 | 1.4 × 10−5 | LOC132342448 | −2356 |
BovineHD2300010533 | 0.37 | 23 | 36,524,269 | 5.6 × 10−5 | SOX4 | +1731 |
BovineHD2400014124 | 0.38 | 24 | 50,082,597 | 3.9 × 10−5 | MAPK4 | −25,125 |
Hapmap40645-BTA-110440 | 0.42 | 25 | 25,480,228 | 2 × 10−5 | GSG1L | Intron |
ARS-BFGL-NGS-112441 | 0.37 | 25 | 27,035,533 | 4.3 × 10−5 | FBXL19 | Intron |
BovineHD2500005062 | 0.34 | 25 | 17,812,656 | 8.2 × 10−5 | GP2 | −175,676 |
BovineHD2500006087 | 0.43 | 25 | 21,692,576 | 6.9 × 10−5 | PRKCB | Intron |
BTB-00965197 | 0.23 | 27 | 27,608,470 | 5.1 × 10−5 | PRRC2A-like | +95,309 |
BovineHD3000042660 | 0.25 | X | 135,055,447 | 4.9 × 10−5 | PNPLA4 | +41,280 |
Gene | GO ID | Term |
---|---|---|
ABCB11 | GO:0015721 | bile acid and bile salt transport |
GO:0015126 | canalicular bile acid transmembrane transporter activity | |
GO:0006631 | fatty acid metabolic process | |
GO:0120189 | positive regulation of bile acid secretion | |
GO:0016567 | protein ubiquitination | |
SRP72 | GO:0006614 | SRP-dependent cotranslational protein targeting the membrane |
RGS18 | GO:0007186 | G protein-coupled receptor signaling pathway |
GO:0009968 | negative regulation of signal transduction | |
GO:0008277 | regulation of G protein-coupled receptor signaling pathway | |
SOX4 | GO:0021782 | glial cell development |
GO:0031018 | endocrine pancreas development | |
GO:0060485 | mesenchyme development | |
GO:0060563 | neuroepithelial cell differentiation | |
GO:0030182 | neuron differentiation | |
GSG1L | GO:0099149 | regulation of postsynaptic neurotransmitter receptor internalization |
FBXL19 | GO:0043161 | proteasome-mediated ubiquitin-dependent protein catabolic process |
PNPLA4 | GO:0006357 | regulation of transcription by RNA polymerase II |
GO:0055088 | lipid homeostasis | |
GO:0019433 | triglyceride catabolic process |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plemyashov, K.; Krutikova, A.; Belikova, A.; Kuznetsova, T.; Semenov, B. Genome-Wide Association Study (GWAS) for Left Displaced Abomasum in Highly Productive Russian Holstein Cattle. Animals 2024, 14, 2795. https://doi.org/10.3390/ani14192795
Plemyashov K, Krutikova A, Belikova A, Kuznetsova T, Semenov B. Genome-Wide Association Study (GWAS) for Left Displaced Abomasum in Highly Productive Russian Holstein Cattle. Animals. 2024; 14(19):2795. https://doi.org/10.3390/ani14192795
Chicago/Turabian StylePlemyashov, Kirill, Anna Krutikova, Angelina Belikova, Tatiana Kuznetsova, and Boris Semenov. 2024. "Genome-Wide Association Study (GWAS) for Left Displaced Abomasum in Highly Productive Russian Holstein Cattle" Animals 14, no. 19: 2795. https://doi.org/10.3390/ani14192795
APA StylePlemyashov, K., Krutikova, A., Belikova, A., Kuznetsova, T., & Semenov, B. (2024). Genome-Wide Association Study (GWAS) for Left Displaced Abomasum in Highly Productive Russian Holstein Cattle. Animals, 14(19), 2795. https://doi.org/10.3390/ani14192795