Effects of Active Dry Yeast Supplementation in In Vitro and In Vivo Nutrient Digestibility, Rumen Fermentation, and Bacterial Community
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. In Vitro Experiment
2.2. Animal Trial
2.3. Analytical
2.4. Statistical Analyses
3. Results
3.1. In Vitro Experiment
3.2. In Vivo Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Enemark, J.M.D. The monitoring, prevention and treatment of sub-acute ruminal acidosis (SARA): A review. Vet. J. 2008, 176, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Wang, Z.L.; Guo, L.; Li, F.; Li, F. Effects of supplementation of nonforage fiber source in diets with different starch levels on growth performance, rumen fermentation, nutrient digestion, and microbial flora of Hu lambs. Transl. Anim. Sci. 2021, 5, txab65. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Cao, Y.; Liu, N.; Yang, X.; Yao, J.; Yan, D. Subacute ruminal acidosis challenge changed in situ degradability of feedstuffs in dairy goats. J. Dairy Sci. 2014, 97, 5101–5109. [Google Scholar] [CrossRef]
- Baker, L.M.; Kraft, J.; Karnezos, T.P.; Greenwood, S.L. The effects of dietary yeast and yeast-derived extracts on rumen microbiota and their function. Anim. Feed Sci. Tech. 2022, 294, 115476. [Google Scholar] [CrossRef]
- Wang, R.; Wang, M.; Lin, B.; Ungerfeld, E.M.; Ma, Z.Y.; Wu, T.T.; Wen, J.N.; Zhang, X.M.; Deng, J.P.; Tan, Z.L. Associations of ruminal hydrogen and pH with fiber digestibility and microbiota composition induced by increasing starch intake in beef cattle. Anim. Feed Sci. Tech. 2021, 278, 114980. [Google Scholar] [CrossRef]
- Amin, A.B.; Mao, S. Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants: A review. Anim. Nutr. 2021, 7, 31–41. [Google Scholar] [CrossRef]
- Ingledew, W.M.; Jones, G.A. The fate of live brevers’ yeast slurry in bovine rumen fluid. J. Inst. Brew. 1982, 88, 18–20. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Zhou, J.W.; Yi, S.Y.; Wang, M.; Tan, Z.L. In vitro inoculation of fresh or frozen rumen fluid distinguishes contrasting microbial communities and fermentation induced by increasing forage to concentrate ratio. Front. Nutr. 2022, 8, 772645. [Google Scholar] [CrossRef]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef]
- Cruyt, F.; Sousa, C.A.; Machado, M.D.; Soares, E.V. Improvement of the slide culture technique for the assessment of yeast viability. J. Inst. Brew. 2017, 123, 39–44. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International; AOAC International: Washington, DC, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, H.; Wang, F.; Wei, D.; Wang, X. An improved 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction assay for evaluating the viability of Escherichia coli cells. J. Microbiol. Meth. 2010, 82, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.Y.; Zhang, X.M.; Wang, R.; Wang, M.; Liu, T.; Tan, Z.L. Effects of chemical and mechanical lysis on microbial DNA yield, integrity, and downstream amplicon sequencing of rumen bacteria and protozoa. Front. Microbiol. 2020, 11, 581227. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Tomita, J.; Nishioka, K.; Hisada, T.; Nishijima, M. Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS ONE 2014, 9, e105592. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microb. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 3 September 2020).
- van Houtert, M.F.J. The production and metabolism of volatile fatty acids by ruminants fed roughages: A review. Anim. Feed Sci. Tech. 1993, 43, 189–225. [Google Scholar] [CrossRef]
- Gallo, A.; Giuberti, G.; Atzori, A.S.; Masoero, F.; Gallo, A.; Giuberti, G.; Atzori, A.; Masoero, F. Short communication: In vitro rumen gas production and starch degradation of starch-based feeds depend on mean particle size. J. Dairy Sci. 2018, 101, 6142–6149. [Google Scholar] [CrossRef] [PubMed]
- Lila, Z.A.; Mohammed, N.; Yasui, T.; Kurokawa, Y.; Kanda, S.; Itabashi, H. Effects of a twin strain of Saccharomyces cerevisiae live cells on mixed ruminal microorganism fermentation in vitro. J. Anim. Sci. 2004, 82, 1847–1854. [Google Scholar] [CrossRef] [PubMed]
- Rossouw, D.; Olivares-Hernandes, R.; Nielsen, J.; Bauer, F.F. Comparative transcriptomic approach to investigate differences in wine yeast physiology and metabolism during fermentation. Appl. Environ. Microb. 2009, 75, 6600–6612. [Google Scholar] [CrossRef]
- Sales, J. Effects of Saccharomyces cerevisiae supplementation on ruminal parameters, nutrient digestibility and growth in sheep: A meta-analysis. Small Rumin. Res. 2011, 100, 19–29. [Google Scholar] [CrossRef]
- McGinn, S.M.; Beauchemin, K.A.; Coates, T.; Colombatto, D. Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. J. Anim. Sci. 2004, 82, 3346–3356. [Google Scholar] [CrossRef]
- Ambriz-Vilchis, V.; Jessop, N.S.; Fawcett, R.H.; Webster, M.; Shaw, D.; Walker, N.; Macrae, A. Effect of yeast supplementation on performance, rumination time, and rumen pH of dairy cows in commercial farm environments. J. Dairy Sci. 2017, 100, 5449–5461. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Karim, S.A.; Chaturvedi, O.H.; Verma, D.L. Effect of different liquid cultures of live yeast strains on performance, ruminal fermentation and microbial protein synthesis in lambs. J. Anim. Physiol. Nutr. 2008, 92, 631–639. [Google Scholar] [CrossRef]
- Kawas, J.R.; García-Castillo, R.; Fimbres-Durazo, H.; Kawas, J.; García-Castillo, R.; Fimbres-Durazo, H.; Garza-Cazares, F.; Hernández-Vidal, J.; Olivares-Sáenz, E.; Lu, C. Effects of sodium bicarbonate and yeast on nutrient intake, digestibility, and ruminal fermentation of light-weight lambs fed finishing diets. Small Rumin. Res. 2007, 67, 149–156. [Google Scholar] [CrossRef]
- Soren, N.M.; Tripathi, M.K.; Bhatt, R.S.; Karim, S.A. Effect of yeast supplementation on the growth performance of Malpura lambs. Trop. Anim. Health Pro. 2013, 45, 547–554. [Google Scholar] [CrossRef]
- Weinert-Nelson, J.R.; Ely, D.G.; Flythe, M.D.; Hamilton, T.A.; Ferrell, J.L.; Davis, B.E. Ex vivo fermentation of hay and corn by rumen bacteria from cattle and sheep. Fermentation 2023, 9, 929. [Google Scholar] [CrossRef]
- Garcia Diaz, T.; Ferriani Branco, A.; Jacovaci, F.A.; Jobim, C.C.; Bolson, D.C.; Daniel, J.L.P. Inclusion of live yeast and mannan-oligosaccharides in high grain-based diets for sheep: Ruminal parameters, inflammatory response and rumen morphology. PLoS ONE 2018, 13, e193313. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.S.; AlZahal, O.; Mandell, I.B.; McBride, B.W.; Wood, K.M. The impacts of a fibrolytic enzyme additive on digestibility and performance in the grower and early finisher period, and supplemental Saccharomyces cerevisiae on performance and rumen health in the late finisher period for feedlot cattle. Can. J. Anim. Sci. 2021, 101, 527–547. [Google Scholar] [CrossRef]
- Chen, L.; Shen, Y.; Wang, C.; Ding, L.; Zhao, F.; Wang, M.; Fu, J.; Wang, H. Megasphaera elsdenii lactate degradation pattern shifts in rumen acidosis models. Front. Microbiol. 2019, 10, 162. [Google Scholar] [CrossRef] [PubMed]
- Lynch, H.A.; Martin, S.A. Effects of Saccharomyces cerevisiae culture and Saccharomyces cerevisiae live cells on in vitro mixed ruminal microorganism fermentation. J. Dairy Sci. 2002, 85, 2603–2608. [Google Scholar] [CrossRef]
- Malekkhahi, M.; Tahmasbi, A.M.; Naserian, A.A.; Danesh-Mesgaran, M.; Kleen, J.L.; AlZahal, O.; Ghaffari, M.H. Effects of supplementation of active dried yeast and malate during sub-acute ruminal acidosis on rumen fermentation, microbial population, selected blood metabolites, and milk production in dairy cows. Anim. Feed Sci. Tech. 2016, 213, 29–43. [Google Scholar] [CrossRef]
- Kim, H.; Park, T.; Kwon, I.; Seo, J. Specific inhibition of Streptococcus bovis by endolysin LyJH307 supplementation shifts the rumen microbiota and metabolic pathways related to carbohydrate metabolism. J. Anim. Sci. Biotechno. 2021, 12, 93. [Google Scholar] [CrossRef]
- Jize, Z.; Zhuoga, D.; Xiaoqing, Z.; Na, T.; Jiacuo, G.; Cuicheng, L.; Bandan, P. Different feeding strategies can affect growth performance and rumen functions in Gangba sheep as revealed by integrated transcriptome and microbiome analyses. Front. Microbiol. 2022, 13, 908326. [Google Scholar] [CrossRef]
- Wang, H.; He, Y.; Li, H.; Wu, F.; Qiu, Q.; Niu, W.; Gao, Z.; Su, H.; Cao, B. Rumen fermentation, intramuscular fat fatty acid profiles and related rumen bacterial populations of Holstein bulls fed diets with different energy levels. Appl. Microbiol. Biotechnol. 2019, 103, 4931–4942. [Google Scholar] [CrossRef]
- Meehan, C.J.; Beiko, R.G. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol. Evol. 2014, 6, 703–713. [Google Scholar] [CrossRef]
Item | Total Gas, mL | pH | TVFA, mM | Molar Percentage of Individual VFA, % | Ace/Pro | Lactate, μM | |||
---|---|---|---|---|---|---|---|---|---|
Acetate | Propionate | n-Butyrate | Others 2 | ||||||
Treatment, 105 CFU ADY 1/mL fermentation broth | |||||||||
Control, 0 | 308 | 5.87 | 113 | 58.1 | 18.3 | 18.2 | 5.29 | 3.16 | 98.1 |
FB, 6 | 306 | 6.02 | 108 | 58.4 | 17.8 | 17.8 | 5.79 | 3.27 | 112 |
FB, 12 | 329 | 6.08 | 111 | 58.6 | 20.8 | 15.3 | 5.12 | 2.81 | 82.5 |
Pro,6 | 307 | 5.96 | 106 | 57.7 | 21.1 | 15.7 | 5.37 | 2.74 | 113 |
Pro, 12 | 338 | 6.11 | 126 | 57.7 | 21.8 | 15.1 | 5.12 | 2.64 | 91.8 |
Vis, 6 | 294 | 5.90 | 111 | 58.1 | 17.8 | 18.2 | 5.82 | 3.26 | 96.0 |
Vis, 12 | 335 | 6.08 | 135 | 58.7 | 20.0 | 15.9 | 5.27 | 2.93 | 73.8 |
YSF, 6 | 297 | 5.90 | 108 | 58.6 | 20.3 | 15.5 | 5.27 | 2.89 | 98.2 |
YSF, 12 | 290 | 5.98 | 112 | 58.3 | 19.1 | 16.6 | 5.77 | 3.04 | 117 |
SEM | 10.1 | 0.07 | 6.5 | 0.54 | 0.67 | 0.73 | 0.176 | 0.097 | 9.10 |
p-value | |||||||||
FB vs. Con | 0.29 | 0.04 Q | 0.65 | 0.52 | 0.20 | 0.10 | 0.44 | 0.24 | 0.95 |
Pro vs. Con | 0.04 Q | 0.08 | 0.74 | 0.58 | <0.001 Q | 0.009 L | 0.85 | 0.002 L | 0.73 |
Vis vs. Con | 0.03 Q | 0.09 | 0.01 Q | 0.58 | 0.19 | 0.23 | 0.25 | 0.55 | 0.04 Q |
YSF vs. Con | 0.87 | 0.14 | 0.69 | 0.51 | 0.07 | 0.06 | 0.29 | 0.08 | 0.75 |
FB vs. Pro | 0.71 | 0.35 | 0.65 | 0.15 | 0.001 | 0.13 | 0.24 | <0.001 | 0.41 |
FB vs. Vis | 0.82 | 0.26 | 0.05 | 0.89 | 0.47 | 0.58 | 0.64 | 0.47 | 0.05 |
FB vs. YSF | 0.11 | 0.12 | 0.94 | 0.99 | 0.45 | 0.50 | 0.72 | 0.37 | 0.20 |
Pro vs. Vis | 0.57 | 0.90 | 0.29 | 0.19 | <0.001 | 0.04 | 0.11 | <0.001 | 0.04 |
Pro vs. YSF | 0.05 | 0.52 | 0.38 | 0.15 | 0.009 | 0.39 | 0.14 | 0.003 | 0.59 |
Vis vs. YSF | 0.10 | 0.60 | 0.06 | 0.88 | 0.15 | 0.22 | 0.90 | 0.11 | 0.03 |
Item | BM, kg | DMI, kg | Digestibility 2, g/kg | ||||
---|---|---|---|---|---|---|---|
DM | OM | NDF | ADF | CP | |||
Treatment, g ADY 1/d | |||||||
Control, 0 | 38.9 | 1.91 | 652 | 701 | 369 | 326 | 782 |
Pro, 0.6 | 39.9 | 1.91 | 648 | 706 | 386 | 307 | 778 |
Pro, 1.2 | 40.0 | 1.77 | 667 | 703 | 399 | 375 | 793 |
Vis, 0.6 | 39.6 | 2.07 | 674 | 716 | 443 | 417 | 767 |
Vis, 1.2 | 40.1 | 1.85 | 662 | 713 | 417 | 360 | 795 |
SEM | 1.76 | 0.074 | 11.4 | 8.9 | 20.8 | 21.1 | 18.4 |
p-value | |||||||
Pro vs. Con | 0.62 | 0.46 | 0.67 | 0.54 | 0.4 | 0.54 | 0.93 |
Vis vs. Con | 0.66 | 0.57 | 0.23 | 0.21 | 0.02 Q | 0.02 Q | 0.83 |
Pro vs. Vis | 0.93 | 0.12 | 0.31 | 0.42 | 0.07 | 0.03 | 0.71 |
Item | N Intake, g/d | Fecal N, g/d | Fecal N to N Intake Ratio, mg/g | Urinary N, g/d | Urinary N to N Intake Ratio, mg/g | N Excretion, g/d | N Excretion to N Intake Ratio, mg/g | N Retention, g/d | N Retention to N Intake Ratio, mg/g |
---|---|---|---|---|---|---|---|---|---|
Treatment, g ADY 1/d | |||||||||
Control, 0 | 42 | 10.1 | 241 | 8.09 | 192 | 18.2 | 434 | 23.7 | 565 |
Pro, 0.6 | 42 | 10.6 | 250 | 7.66 | 179 | 18.3 | 429 | 23.7 | 570 |
Pro, 1.2 | 38.7 | 9.24 | 232 | 8.34 | 218 | 17.6 | 453 | 21.2 | 548 |
Vis, 0.6 | 45.5 | 11.9 | 263 | 8.38 | 184 | 20.3 | 447 | 25.1 | 552 |
Vis, 1.2 | 40.8 | 9.62 | 231 | 7.58 | 186 | 17.2 | 417 | 23.6 | 582 |
SEM | 1.64 | 1.15 | 20.7 | 0.874 | 19.8 | 1.63 | 29.5 | 1.22 | 29.4 |
p-value | |||||||||
Pro vs. Con | 0.46 | 0.84 | 0.92 | 0.39 | 0.33 | 0.69 | 0.82 | 0.56 | 0.82 |
Vis vs. Con | 0.57 | 0.67 | 0.83 | 0.99 | 0.93 | 0.77 | 0.98 | 0.69 | 0.98 |
Pro vs. Vis | 0.12 | 0.45 | 0.71 | 0.29 | 0.2 | 0.41 | 0.77 | 0.23 | 0.77 |
Item | TVFA, mM | pH | Molar Percentage of Individual VFA, % | Ac/Pr 3 | |||
---|---|---|---|---|---|---|---|
Acetate | Propionate | n-Butyrate | Others 2 | ||||
Treatment, g ADY 1/d | |||||||
Control, 0 | 82.9 | 7.13 | 63.2 | 19.4 | 12 | 5.27 | 3.43 |
Pro, 0.6 | 91.0 | 7.07 | 63.8 | 22 | 9.01 | 5.03 | 3.06 |
Pro, 1.2 | 89.3 | 7.22 | 63.9 | 21.8 | 10.4 | 3.75 | 2.98 |
Vis, 0.6 | 93.4 | 7.07 | 61.7 | 23.8 | 9.62 | 5.05 | 2.67 |
Vis, 1.2 | 109.4 | 6.96 | 62.5 | 24.8 | 8.29 | 4.26 | 2.66 |
SEM | 8.43 | 0.090 | 1.45 | 2.23 | 1.686 | 0.402 | 0.248 |
p-value | |||||||
T | 0.27 | 0.38 | 0.11 | 0.04 | 0.16 | 0.07 | 0.15 |
Sampling time | <0.001 | <0.001 | <0.001 | <0.001 | 0.008 | <0.001 | <0.001 |
T × Sampling time | 0.28 | 0.18 | 0.57 | 0.23 | 0.24 | 0.39 | 0.78 |
Pro vs. Con | 0.49 | 0.87 | 0.87 | 0.09 | 0.06 | 0.007 L | 0.20 |
Vis vs. Con | 0.08 | 0.32 | 0.08 | 0.006 L | 0.02 L | 0.04 L | 0.01 Q |
Pro vs. Vis | 0.19 | 0.16 | 0.02 | 0.12 | 0.48 | 0.50 | 0.13 |
Item | Observed ZOUT | PD_Whole_Tree | Pielou |
---|---|---|---|
Treatment, g ADY 1/d | |||
Control, 0 | 1194 | 24.6 | 0.702 |
Pro, 0.6 | 1109 | 23.2 | 0.653 |
Pro, 1.2 | 1263 | 25.4 | 0.666 |
Vis, 0.6 | 1142 | 24.6 | 0.661 |
Vis, 1.2 | 1111 | 22.5 | 0.643 |
SEM | 82.3 | 1.31 | 0.0168 |
p-value | |||
Pro vs. Con | 0.93 | 0.83 | 0.04 Q |
Vis vs. Con | 0.50 | 0.50 | 0.02 L |
Pro vs. Vis | 0.47 | 0.57 | 0.67 |
Genus | Treatment, g ADY 1/d | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Control, 0 | Pro, 0.6 | Pro, 1.2 | Vis, 0.6 | Vis, 1.2 | Pro vs. Con | Vis vs. Con | Pro vs. Vis | ||
Prevotella | 49.3 | 52.8 | 45.8 | 48.6 | 39.7 | 4.34 | 0.99 | 0.34 | 0.24 |
Succinivibrionaceae_UCG-001 | 4.19 | 10.8 | 9.62 | 4.56 | 28.6 | 4.75 | 0.30 | 0.04 L,Q | 0.19 |
Succinivibrio | 5.74 | 6.51 | 11.4 | 3.49 | 5.95 | 3.236 | 0.42 | 0.79 | 0.20 |
Prevotellaceae_UCG-001 | 5.68 | 4.53 | 4.17 | 4.93 | 0.95 | 1.707 | 0.53 | 0.19 | 0.40 |
Selenomonas | 4.22 | 3.83 | 1.78 | 7.37 | 1.27 | 1.958 | 0.56 | 0.96 | 0.44 |
Prevotellaceae_unclassified | 2.58 | 1.97 | 1.82 | 2.53 | 2.64 | 0.395 | 0.16 | 0.99 | 0.18 |
Rikenellaceae_RC9 | 2.12 | 1.55 | 1.87 | 1.48 | 1.02 | 0.572 | 0.56 | 0.22 | 0.43 |
Selenomonadaceae_unclassified | 1.40 | 0.22 | 0.55 | 5.17 | 0.28 | 0.952 | 0.39 | 0.05 Q | 0.01 |
Succiniclasticum | 2.10 | 0.63 | 1.62 | 2.06 | 0.69 | 0.494 | 0.12 | 0.24 | 0.62 |
Fibrobacter | 1.48 | 1.04 | 1.56 | 1.00 | 0.76 | 0.335 | 0.20 | 0.26 | 0.37 |
Muribaculaceae_ge | 1.29 | 0.80 | 2.01 | 1.04 | 0.56 | 0.519 | 0.86 | 0.44 | 0.25 |
Prevotellaceae_YAB2003 | 1.01 | 0.83 | 0.99 | 1.76 | 0.64 | 0.527 | 0.88 | 0.77 | 0.59 |
Clostridia_UCG-014 | 0.73 | 1.05 | 0.83 | 1.09 | 1.34 | 0.235 | 0.46 | 0.10 | 0.26 |
Ruminococcus | 1.02 | 0.82 | 1.08 | 1.09 | 0.61 | 0.332 | 0.85 | 0.67 | 0.77 |
F082_ge | 1.50 | 0.74 | 1.20 | 0.83 | 0.15 | 0.308 | 0.17 | 0.01 L | 0.10 |
Lachnospiraceae_unclassified | 0.44 | 0.47 | 0.45 | 1.55 | 0.75 | 0.363 | 0.95 | 0.11 | 0.07 |
Prevotellaceae_UCG-003 | 1.20 | 0.72 | 0.63 | 0.45 | 0.14 | 0.302 | 0.17 | 0.02 L | 0.21 |
Oribacterium | 0.48 | 0.48 | 0.47 | 0.63 | 1.05 | 0.184 | 0.93 | 0.16 | 0.13 |
Treponema | 1.04 | 0.65 | 0.42 | 0.41 | 0.25 | 0.275 | 0.14 | 0.04 L | 0.39 |
Lachnospiraceae_ND3007 | 1.30 | 0.22 | 0.51 | 0.33 | 0.04 | 0.329 | 0.02 Q | 0.01 L | 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Li, F.; Ma, Z.; Ma, M.; Ungerfeld, E.; Zhang, Z.; Weng, X.; Liu, B.; Deng, X.; Guo, L. Effects of Active Dry Yeast Supplementation in In Vitro and In Vivo Nutrient Digestibility, Rumen Fermentation, and Bacterial Community. Animals 2024, 14, 2916. https://doi.org/10.3390/ani14192916
Liu H, Li F, Ma Z, Ma M, Ungerfeld E, Zhang Z, Weng X, Liu B, Deng X, Guo L. Effects of Active Dry Yeast Supplementation in In Vitro and In Vivo Nutrient Digestibility, Rumen Fermentation, and Bacterial Community. Animals. 2024; 14(19):2916. https://doi.org/10.3390/ani14192916
Chicago/Turabian StyleLiu, Haitao, Fei Li, Zhiyuan Ma, Miaomiao Ma, Emilio Ungerfeld, Zhian Zhang, Xiuxiu Weng, Baocang Liu, Xiaoyu Deng, and Liqing Guo. 2024. "Effects of Active Dry Yeast Supplementation in In Vitro and In Vivo Nutrient Digestibility, Rumen Fermentation, and Bacterial Community" Animals 14, no. 19: 2916. https://doi.org/10.3390/ani14192916
APA StyleLiu, H., Li, F., Ma, Z., Ma, M., Ungerfeld, E., Zhang, Z., Weng, X., Liu, B., Deng, X., & Guo, L. (2024). Effects of Active Dry Yeast Supplementation in In Vitro and In Vivo Nutrient Digestibility, Rumen Fermentation, and Bacterial Community. Animals, 14(19), 2916. https://doi.org/10.3390/ani14192916