Assessing Decision Support Tools for Mitigating Tail Biting in Pork Production: Current Progress and Future Directions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Database Keywords and Search Terms
2.2. Inclusion and Exclusion Criteria
3. Results
3.1. Current TB Decision Support Systems
3.2. Tool Validation Review
3.3. Monitoring Technologies to Assist DSTs
4. Discussion
4.1. DST Information Sources
4.2. DST Validation
4.3. Current Attitudes and Issues Regarding the Use of DSTs
4.4. Tracking Technologies to Aid DST Use
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Valros, A.; Heinonen, M. Save the pig tail. Porc. Health Manag. 2015, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Sonoda, L.T.; Fels, M.; Oczak, M.; Vranken, E.; Ismayilova, G.; Guarino, M.; Viazzi, S.; Bahr, C.; Berckmans, D.; Hartung, J. Tail Biting in pigs—Causes and management intervention strategies to reduce the behavioural disorder. A review. Berl. Munch. Tierarztl. Wochenschr. 2013, 126, 104–112. [Google Scholar] [PubMed]
- Wedin, M.; Baxter, E.M.; Jack, M.; Futro, A.; D’Eath, R.B. Early indicators of tail biting outbreaks in pigs. Appl. Anim. Behav. Sci. 2018, 208, 7–13. [Google Scholar] [CrossRef]
- Taylor, N.R.; Parker, R.M.; Mendl, M.; Edwards, S.A.; Main, D.C. Prevalence of risk factors for tail biting on commercial farms and intervention strategies. Vet. J. 2012, 194, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Scollo, A.; Gottardo, F.; Contiero, B.; Edwards, S.A. A cross-sectional study for predicting tail biting risk in pig farms using classification and regression tree analysis. Prev. Vet. Med. 2017, 146, 114–120. [Google Scholar] [CrossRef]
- Niemi, J.K.; Edwards, S.A.; Papanastasiou, D.K.; Piette, D.; Stygar, A.H.; Wallenbeck, A.; Valros, A. Cost-effectiveness analysis of seven measures to reduce tail biting lesions in fattening pigs. Front. Vet. Sci. 2021, 8, 682330. [Google Scholar] [CrossRef] [PubMed]
- Prunier, A.; Averos, X.; Dimitrov, I.; Edwards, S.; Hillmann, E.; Holinger, M.; Ilieski, V.; Leming, R.; Tallet, C.; Turner, S.P. Early life predisposing factors for biting in pigs. Animal 2020, 14, 570–587. [Google Scholar] [CrossRef]
- Bracke, M. RICHPIG: A semantic model to assess enrichment materials for pigs. Anim. Welf. 2008, 17, 289–304. [Google Scholar] [CrossRef]
- Lahrmann, H.P.; Hansen, C.F.; D’Eath, R.; Busch, M.E.; Forkman, B. Tail posture predicts tail biting outbreaks at pen level in weaner pigs. Appl. Anim. Behav. Sci. 2018, 200, 29–35. [Google Scholar] [CrossRef]
- Godyń, D.; Nowicki, J.; Herbut, P. Effects of environmental enrichment on pig welfare—A review. Animals 2019, 9, 383. [Google Scholar] [CrossRef]
- De Briyne, N.; Berg, C.; Blaha, T.; Palzer, A.; Temple, D. Phasing out pig tail docking in the EU-present state, challenges and possibilities. Porc. Health Manag. 2018, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Brunberg, E.I.; Rodenburg, T.B.; Rydhmer, L.; Kjaer, J.B.; Jensen, P.; Keeling, L.J.J.F.i.v.s. Omnivores going astray: A review and new synthesis of abnormal behavior in pigs and laying hens. Front. Vet. Sci. 2016, 3, 57. [Google Scholar] [CrossRef] [PubMed]
- Bracke, M.B. Chains as proper enrichment for intensively-farmed pigs? In Advances in Pig Welfare; Woodhead Publishing: Cambridge, UK, 2018; pp. 167–197. [Google Scholar]
- Kukar, M.; Vračar, P.; Košir, D.; Pevec, D.; Bosnić, Z.J.C.; Agriculture, E.I. AgroDSS: A decision support system for agriculture and farming. Comput. Electron. Agric. 2019, 161, 260–271. [Google Scholar]
- Estes, L.; Bradley, B.; Beukes, H.; Hole, D.; Lau, M.; Oppenheimer, M.; Schulze, R.; Tadross, M.; Turner, W.J.G.E. Biogeography. Comparing mechanistic and empirical model projections of crop suitability and productivity: Implications for ecological forecasting. Glob. Ecol. Biogeogr. 2013, 22, 1007–1018. [Google Scholar] [CrossRef]
- Bailleul, P.D.; Bernier, J.; Milgen, J.V.; Sauvant, D.; Pomar, C. The utilization of prediction models to optimize farm animal production systems: The case of a growing pig model. In Modelling Nutrient Utilization in Farm Animals; CABI: Wallingford, UK, 2000; pp. 379–392. [Google Scholar]
- van Milgen, J.; Valancogne, A.; Dubois, S.; Dourmad, J.-Y.; Sève, B.; Noblet, J. InraPorc: A model and decision support tool for the nutrition of growing pigs. Anim. Feed Sci. Technol. 2008, 143, 387–405. [Google Scholar] [CrossRef]
- Perondi, D.; Kipper, M.; Andretta, I.; Hauschild, L.; Lunedo, R.; Franceschina, C.S.; Remus, A. Empirical models to predict feed intake of growing-finishing pigs reared under high environmental temperatures. Sci. Agric. 2018, 75, 296–303. [Google Scholar] [CrossRef]
- Bracke, M.B.; Hulsegge, B.; Keeling, L.; Blokhuis, H.J. Decision support system with semantic model to assess the risk of tail biting in pigs: 2.‘Validation’. Appl. Anim. Behav. Sci. 2004, 87, 45–54. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- University of Wageningen. Welzijncheck-Varkens. 2019. Available online: https://www.vitalevarkenshouderij.nl (accessed on 12 September 2023).
- Grümpel, A.; Krieter, J.; Dippel, S. Reducing estimated tail biting risk in German weaner pigs using a management tool. Vet. J. 2019, 254, 105406. [Google Scholar] [CrossRef]
- Boumans, I.J.; Hofstede, G.J.; Bolhuis, J.E.; de Boer, I.J.; Bokkers, E.A. Agent-based modelling in applied ethology: An exploratory case study of behavioural dynamics in tail biting in pigs. Appl. Anim. Behav. Sci. 2016, 183, 10–18. [Google Scholar] [CrossRef]
- University of Helskinki. SAPARO. Available online: https://admin.saparo-sovellus.fi/ (accessed on 14 September 2023).
- Courboulay, V.; Meunier-Salaün, M.-C.; Stankowiak, M.; Pol, F. BEEP: An advisory pig welfare assessment tool developed by farmers for farmers. Livest. Sci. 2020, 240, 104107. [Google Scholar] [CrossRef]
- Stolk, K. Long Tails in Pigs: An on Farm Risk-Assessment-Tool. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2019. [Google Scholar]
- Madey, D.P. Evaluation of a Software-Based Intervention Tool for the Reduction of Tail Biting in German Fattening Pigs. Ph.D. Thesis, Bibliothek der Tierärztlichen Hochschule Hannover, Hannover, Germany, 2014. [Google Scholar]
- Vom Brocke, A.; Karnholz, C.; Madey-Rindermann, D.; Gauly, M.; Leeb, C.; Winckler, C.; Schrader, L.; Dippel, S. Tail lesions in fattening pigs: Relationships with postmortem meat inspection and influence of a tail biting management tool. Animal 2019, 13, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Hannover, S.T.H. Abschlussbericht Projekt “Haltung von nicht kupierten Schweinen in einer über die Vorgaben des Tierschutzlabels hinausgehenden, maximal angereicherten und kontinuierlich verbesserten Umgebung”. Ph.D. Thesis, Tierärztliche Hochschule, Hannover, Germany, 2018. [Google Scholar]
- D’Eath, R.B.; Jack, M.; Futro, A.; Talbot, D.; Zhu, Q.; Barclay, D.; Baxter, E.M. Automatic early warning of tail biting in pigs: 3D cameras can detect lowered tail posture before an outbreak. PLoS ONE 2018, 13, e0194524. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhu, W.; Norton, T. Behaviour recognition of pigs and cattle: Journey from computer vision to deep learning. Comput. Electron. Agric. 2021, 187, 106255. [Google Scholar] [CrossRef]
- Wurtz, K.; Camerlink, I.; D’Eath, R.B.; Fernández, A.P.; Norton, T.; Steibel, J.; Siegford, J. Recording behaviour of indoor-housed farm animals automatically using machine vision technology: A systematic review. PLoS ONE 2019, 14, e0226669. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, H.; Johnston, L.J.; Martin, W. Understanding tail-biting in pigs through social network analysis. Animals 2018, 8, 13. [Google Scholar] [CrossRef]
- Liu, D.; Oczak, M.; Maschat, K.; Baumgartner, J.; Pletzer, B.; He, D.; Norton, T. A computer vision-based method for spatial-temporal action recognition of tail-biting behaviour in group-housed pigs. Biosyst. Eng. 2020, 195, 27–41. [Google Scholar] [CrossRef]
- Ocepek, M.; Žnidar, A.; Lavrič, M.; Škorjanc, D.; Andersen, I.L. DigiPig: First developments of an automated monitoring system for body, head and tail detection in intensive pig farming. Agriculture 2022, 12, 2. [Google Scholar] [CrossRef]
- Gan, H.; Xu, C.; Hou, W.; Guo, J.; Liu, K.; Xue, Y. Spatiotemporal graph convolutional network for automated detection and analysis of social behaviours among pre-weaning piglets. Biosyst. Eng. 2022, 217, 102–114. [Google Scholar] [CrossRef]
- Hakansson, F.; Jensen, D.B. Automatic monitoring and detection of tail-biting behavior in groups of pigs using video-based deep learning methods. Front. Vet. Sci. 2023, 9, 1099347. [Google Scholar] [CrossRef]
- Kapun, A.; Adrion, F.; Gallmann, E. Case study on recording pigs’ daily activity patterns with a uhf-rfid system. Agriculture 2020, 10, 542. [Google Scholar] [CrossRef]
- Adrion, F.; Kapun, A.; Eckert, F.; Holland, E.-M.; Staiger, M.; Götz, S.; Gallmann, E. Monitoring trough visits of growing-finishing pigs with UHF-RFID. Comput. Electron. Agric. 2018, 144, 144–153. [Google Scholar] [CrossRef]
- Barnes, B. Deployment and Evaluation of an Active RFID Tracking System for Precision Animal Management. Master’s Thesis, Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA, 2016. [Google Scholar]
- Pandey, S.; Kalwa, U.; Kong, T.; Guo, B.; Gauger, P.C.; Peters, D.J.; Yoon, K.-J. Behavioral monitoring tool for pig farmers: Ear tag sensors, machine intelligence, and technology adoption roadmap. Animals 2021, 11, 2665. [Google Scholar] [CrossRef] [PubMed]
- Eisermann, J.; Schomburg, H.; Knöll, J.; Schrader, L.; Patt, A. Bite-o-Mat: A device to assess the individual manipulative behaviour of group housed pigs. Comput. Electron. Agric. 2022, 193, 106708. [Google Scholar] [CrossRef]
- Brown-Brandl, T.M.; Eigenberg, R.A.; Purswell, J.L. Using thermal imaging as a method of investigating thermal thresholds in finishing pigs. Biosyst. Eng. 2013, 114, 327–333. [Google Scholar] [CrossRef]
- Feng, K.; Wang, Y.; Hu, R.; Xiang, R. Continuous Measurement of Ammonia at an Intensive Pig Farm in Wuhan, China. Atmosphere 2022, 13, 442. [Google Scholar] [CrossRef]
- Xie, Q.; Ni, J.-Q.; Bao, J.; Su, Z. Correlations, variations, and modelling of indoor environment in a mechanically-ventilated pig building. J. Clean. Prod. 2021, 282, 124441. [Google Scholar] [CrossRef]
- Kamp, J.N.; Sørensen, L.L.; Hansen, M.J.; Nyord, T.; Feilberg, A. Low-cost fluorescence sensor for ammonia measurement in livestock houses. Sensors 2021, 21, 1701. [Google Scholar] [CrossRef]
- Czycholl, I.; Büttner, K.; Grosse Beilage, E.; Krieter, J. Review of the assessment of animal welfare with special emphasis on the “Welfare Quality® animal welfare assessment protocol for growing pigs”. Arch. Anim. Breed. 2015, 58, 237–249. [Google Scholar] [CrossRef]
- Schodl, K.; Leeb, C.; Winckler, C. Benefits and challenges of the on-farm implementation of measures aimed at integrating aspects of sustainability into pig fattening. In Proceedings of the 11th European IFSA Symposium, Farming Systems Facing Global Challenges: Capacities and Strategies, Proceedings, Berlin, Germany, 1–4 April 2014; pp. 566–572. [Google Scholar]
- Wallgren, T.; Westin, R.; Gunnarsson, S. A survey of straw use and tail biting in Swedish pig farms rearing undocked pigs. Acta Vet. Scand. 2016, 58, 84. [Google Scholar] [CrossRef]
- Buijs, S.; Muns, R. A Review of New Knowledge on Tail Biting and Tail Docking. Update on the 2015 report ‘Practical Solutions to Reduce Tail Bitin in NI Pig Herds’; Agri-Food & Biosciences Institute: Belfast, UK, 2019.
Primary Developer | DSTs | Model | Information Source for DST Model Predictions |
---|---|---|---|
Wageningen University and Research Centre, The Netherlands | PIGTAIL | Regression predictive (W1) | Literature |
Welzijncheck-Varkens | Risk factors identified (W1) | Expert Opinion | |
Tail biting simulator | Simulation (W1) | Expert Opinion | |
Agricultural and Horticultural Development Board, UK | Husbandry Advisory Tool (HAT) | Classification predictive (W1) | Literature; Expert Opinion |
Friedrich Loeffler Institute, Germany | SchwIP | Regression predictive (W1) | Expert Opinion; Based on HAT |
IFIP Institute Du Porc, France | BEEP | Regression predictive (W1) | Expert Opinion; Based on SchwIP |
University of Helsinki, Finland | SAPARO | Risk factors identified (WØ) | Expert Opinion |
Facility of Veterinary Medicine, Utrecht University | Tail biting risk assessment tool | Risk factors identified (WØ) | Literature |
Natural Resources Institute, Finland | Tail biting outbreak cost simulator | Simulation (WØ) | Expert Opinion |
DST | Validation Source | Study Conclusions |
---|---|---|
PIGTAIL | Literature | PIGTAIL model predictions corresponded to 67 out 72 study outcomes [26] |
SchwIP | Primary observational data | There was a correlation between higher SchwIP risk scores and increased prevalence of TB on German farms [27] |
SchwIP | Primary observational data | The application of SchwIP strategies on farm reduced TB lesions, but only after three months into the validation study [28] |
SchwIP | Primary observational data | Implementing suggestions made by SchwIP to reduce TB risk did not significantly prevent TB in conventionally managed, undocked herds [29] |
Welzijncheck-Varkens | Primary observational data | DST needs to clarify what an acceptable level is for each risk factor in the report so the right changes can be made to mitigate TB behaviors [29] |
Husbandry advisory tool | Primary observational data | Farms were given suggestions for reducing TB risks, but only farms that were also given a financial incentive to implement the said changes observed a reduction in the TB risk over time [4] |
Tail biting risk assessment tool | Primary observational data | Validation determined the tool to not be suitable yet for use by livestock farmers/veterinarians [26] |
Technology Description | Overview | Measurements |
---|---|---|
Application compatible with iOS and Android devices | Able to manually record signs of tail lesions and tail posture in pig pens. Reports graphically presented to show TB prevalence over time | Tail posture; TB lesions [24] |
Radio-Frequency Identification (RFID) ear tags | Monitors individual pigs (feeding, movement, activity); time dependent; requires linking to appropriate software | Feeding [38,39]; Activity [40]; Enrichment interaction [42] |
Camera technology | Application of algorithms to detect behaviors relating to a TB outbreak using video monitors | Tail posture [30] TB events [37] Feeding behavior [33] Enrichment interaction [33,34] Environmental risks [43] |
Environmental sensors | Monitoring adverse environmental conditions that can increase the risk of TB behaviors | Air quality [44,45,46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ward, S.A.; Pluske, J.R.; Plush, K.J.; Pluske, J.M.; Rikard-Bell, C.V. Assessing Decision Support Tools for Mitigating Tail Biting in Pork Production: Current Progress and Future Directions. Animals 2024, 14, 224. https://doi.org/10.3390/ani14020224
Ward SA, Pluske JR, Plush KJ, Pluske JM, Rikard-Bell CV. Assessing Decision Support Tools for Mitigating Tail Biting in Pork Production: Current Progress and Future Directions. Animals. 2024; 14(2):224. https://doi.org/10.3390/ani14020224
Chicago/Turabian StyleWard, Sophia A., John R. Pluske, Kate J. Plush, Jo M. Pluske, and Charles V. Rikard-Bell. 2024. "Assessing Decision Support Tools for Mitigating Tail Biting in Pork Production: Current Progress and Future Directions" Animals 14, no. 2: 224. https://doi.org/10.3390/ani14020224
APA StyleWard, S. A., Pluske, J. R., Plush, K. J., Pluske, J. M., & Rikard-Bell, C. V. (2024). Assessing Decision Support Tools for Mitigating Tail Biting in Pork Production: Current Progress and Future Directions. Animals, 14(2), 224. https://doi.org/10.3390/ani14020224