Effects of Season, Habitat, and Host Characteristics on Ectoparasites of Wild Rodents in a Mosaic Rural Landscape
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Rodent Trapping
2.3. Parasite Sampling
2.4. Environment, Host, and Parasite Variables
2.5. Data Analysis
3. Results
3.1. Distribution of Host Species across the Land Use Intensity Gradient
3.2. Variation in Ectoparasite Prevalence
3.3. Predictors of Arthropod Parasite Prevalence on Rodent Hosts
3.4. Predictors of Tick and Flea Mean Abundance
3.5. Differential Responses of Parasites to Extrinsic Factors in Main and Minor Host Species
4. Discussion
4.1. Effect of Host Characteristics
4.1.1. Sex
4.1.2. Age and Body Weight
4.1.3. Host Species
4.1.4. Abundance of Host Population and Community
4.2. Effect of Environment
4.2.1. Land Use Intensity
4.2.2. Seasonality
4.3. Disentangling the Spatial, Temporal, and Host Effects
4.4. Limitations, Practical Implications, and Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
All Captures | Included in the Analyses | |||||
---|---|---|---|---|---|---|
Land Use Intensity | Land Use Intensity | |||||
Species | Low | Medium | High | Low | Medium | High |
Microtus arvalis | 75 | 473 | 70 | 67 | 207 | 46 |
Apodemus agrarius | 137 | 161 | 41 | 117 | 68 | 25 |
Apodemus flavicollis | 45 | 28 | 8 | 24 | 12 | 4 |
Apodemus sylvaticus | 22 | 22 | 19 | 18 | 12 | 7 |
Mus musculus | 2 | 1 | 30 | 2 | 1 | 17 |
Apodemus uralensis | 17 | 8 | 7 | 7 | 8 | 5 |
Microtus subterraneus | 20 | 11 | 0 | 18 | 8 | 0 |
Arvicola terrestris | 2 | 4 | 0 | 0 | 0 | 0 |
Myodes glareolus | 4 | 0 | 0 | 0 | 0 | 0 |
Micromys minutus | 3 | 1 | 0 | 0 | 0 | 0 |
Rattus norvegicus | 0 | 1 | 0 | 0 | 0 | 0 |
Sorex araneus | 4 | 12 | 0 | 0 | 0 | 0 |
Sorex minutus | 0 | 2 | 0 | 0 | 0 | 0 |
Crocidura leucodon | 0 | 1 | 0 | 0 | 0 | 0 |
Crocidura suaveolens | 0 | 2 | 0 | 0 | 0 | 0 |
Number of individuals | 332 | 728 | 175 | 253 | 316 | 104 |
Species richness | 11 | 14 | 6 | 7 | 7 | 6 |
Trapping effort (effective trap-nights) | 789 | 3954 | 828 |
Ticks | Mites | Fleas | Lice | |
---|---|---|---|---|
Dominant species | ||||
Apodemus agrarius | 0.319 | 0.561 | 0.352 | 0.095 |
Microtus arvalis | 0.143 | 0.596 | 0.315 | 0.106 |
Sex | ||||
Male | 0.286 | 0.517 | 0.334 | 0.08 |
Female | 0.184 | 0.606 | 0.29 | 0.09 |
Age | ||||
Adult | 0.26 | 0.54 | 0.35 | 0.098 |
Subadult | 0.202 | 0.591 | 0.268 | 0.072 |
Land use intensity | ||||
low | 0.328 | 0.609 | 0.328 | 0.186 |
medium | 0.19 | 0.608 | 0.329 | 0.171 |
high | 0.135 | 0.327 | 0.221 | 0.125 |
Woody vegetation | ||||
no | 0.201 | 0.546 | 0.314 | 0.179 |
yes | 0.44 | 0.681 | 0.297 | 0.11 |
Month | ||||
June | 0.593 | 0.278 | 0.148 | 0.093 |
July | 0.402 | 0.5 | 0.183 | 0.244 |
August | 0.222 | 0.498 | 0.29 | 0.131 |
September | 0.136 | 0.677 | 0.389 | 0.19 |
Year | ||||
2010 | 0.206 | 0.639 | 0.313 | 0.183 |
2011 | 0.249 | 0.52 | 0.311 | 0.162 |
Overall | 0.233 | 0.564 | 0.312 | 0.086 |
Χ2 | d.f. | p | Cramer’s V | |
---|---|---|---|---|
All parasite taxa | ||||
Dominant rodent species | 17.6 | 3 | <0.001 | 0.159 |
Ticks | ||||
Apodemus agrarius | 22.19 | 1 | <0.001 | 0.205 |
Sex | 9.1 | 1 | 0.002 | 0.12 |
Land use intensity | 21.7 | 2 | <0.001 | 0.179 |
Woody vegetation | 23.7 | 1 | <0.001 | 0.192 |
Month of survey | 68.9 | 3 | <0.001 | 0.32 |
Mites | ||||
Sex | 4.9 | 1 | 0.026 | 0.088 |
Land use intensity | 28.3 | 2 | <0.001 | 0.205 |
Woody vegetation | 5.3 | 1 | 0.021 | 0.093 |
Year of survey | 8.5 | 1 | 0.003 | 0.115 |
Month of survey | 39.8 | 3 | <0.001 | 0.243 |
Fleas | ||||
Age | 4.8 | 1 | 0.028 | 0.086 |
Month of survey | 22.4 | 3 | <0.001 | 0.182 |
Lice | ||||
Month of survey | 8.7 | 3 | 0.033 | 0.113 |
References
- Mills, J.N.; Childs, J.E. Ecologic studies of rodent reservoirs: Their relevance for human health. Emerg. Infect. Dis. 1998, 4, 529. [Google Scholar] [CrossRef] [PubMed]
- Meerburg, B.G.; Singleton, G.R.; Kijlstra, A. Rodent-borne diseases and their risks for public health. Crit. Rev. Microbiol. 2009, 35, 221–270. [Google Scholar] [CrossRef] [PubMed]
- Poulin, R. Evolutionary Ecology of Parasites: From Individuals to Communities, 3rd ed.; Chapman & Hall: London, UK, 1998. [Google Scholar]
- Pollock, N.B.; Vredevoe, L.K.; Taylor, E.N. How do host sex and reproductive state affect host preference and feeding duration of ticks? Parasitol. Res. 2012, 111, 897–907. [Google Scholar] [CrossRef]
- López-Pérez, A.M.; Pesapane, R.; Clifford, D.L.; Backus, L.; Foley, P.; Voll, A.; Silva, R.B.; Foley, J. Host species and environment drivers of ectoparasite community of rodents in a Mojave Desert wetlands. PLoS ONE 2022, 17, e0269160. [Google Scholar] [CrossRef]
- Babyesiza, W.S.; Mpagi, J.; Ssuuna, J.; Akoth, S.; Katakweba, A. Ectoparasite fauna of rodents and shrews with their spatial, temporal, and dispersal along a degradation gradient in Mabira Central Forest Reserve. J. Parasitol. Res. 2023, 2023, 7074041. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.L.; Wilson, K. Parasites as a viability cost of sexual selection in natural populations of mammals. Science 2002, 297, 2015–2018. [Google Scholar] [CrossRef] [PubMed]
- Morand, S.; De Bellocq, J.G.; Stanko, M.; Miklisova, D. Is sex-biased ectoparasitism related to sexual size dimorphism in small mammals of Central Europe? Parasitology 2004, 129, 505–510. [Google Scholar] [CrossRef]
- Hughes, V.L.; Randolph, S.E. Testosterone increases the transmission potential of tick-borne parasites. Parasitology 2001, 123, 365–371. [Google Scholar] [CrossRef]
- Folstad, I.; Karter, A.J. Parasites, bright males, and the immunocompetence handicap. Am. Nat. 1992, 139, 603–622. [Google Scholar] [CrossRef]
- Butler, R.A.; Fryxell, R.T.; Houston, A.E.; Bowers, E.K.; Paulsen, D.; Coons, L.B.; Kennedy, M.L. Small-mammal characteristics affect tick communities in southwestern Tennessee (USA). Int. J. Parasitol. Parasites Wildl. 2020, 12, 150–154. [Google Scholar] [CrossRef]
- Harrison, A.; Scantlebury, M.; Montgomery, W.I. Body mass and sex-biased parasitism in wood mice Apodemus sylvaticus. Oikos 2010, 119, 1099–1104. [Google Scholar] [CrossRef]
- Shilereyo, M.; Magige, F.; Ranke, P.S.; Ogutu, J.O. Røskaft. Ectoparasite load of small mammals in the Serengeti Ecosystem: Effects of land use, season, host species, age, sex and breeding status. Parasitol. Res. 2022, 121, 823–838. [Google Scholar] [CrossRef] [PubMed]
- Barriga-Carbajal, M.L.; Vargas-Sandoval, M.; Mendoza, E. Deforestation increases the abundance of rodents and their ectoparasites in the Lacandon forest, Southern Mexico. Rev. Biol. Trop. 2023, 71, e31785. [Google Scholar] [CrossRef]
- Civitello, D.J.; Cohen, J.; Fatima, H.; Halstead, N.T.; Liriano, J.; McMahon, T.A.; Ortega, C.N.; Sauer, E.S.; Sehgal, T.; Young, S.; et al. Biodiversity inhibits parasites: Broad evidence for the dilution effect. Proc. Natl. Acad. Sci. USA 2015, 112, 8667–8671. [Google Scholar] [CrossRef] [PubMed]
- Krasnov, B.R. Functional and Evolutionary Ecology of Fleas: A Model for Ecological Parasitology; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Herrero-Cófreces, S.; Flechoso, M.F.; Rodríguez-Pastor, R.; Luque-Larena, J.J.; Mougeot, F. Patterns of flea infestation in rodents and insectivores from intensified agro-ecosystems, Northwest Spain. Parasit. Vectors 2021, 14, 16. [Google Scholar] [CrossRef]
- Benedek, A.M.; Sîrbu, I. Responses of small mammal communities to environment and agriculture in a rural mosaic landscape. Mamm. Biol. 2018, 90, 55–65. [Google Scholar] [CrossRef]
- Young, H.S.; Dirzo, R.; McCauley, D.J.; Agwanda, B.; Cattaneo, L.; Dittmar, K.; Eckerlin, R.P.; Fleischer, R.C.; Helgen, L.E.; Hintz, A.; et al. Drivers of intensity and prevalence of flea parasitism on small mammals in East African savanna ecosystems. J. Parasitol. 2015, 101, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Kelt, D.A.; Heske, E.J.; Lambin, X.; Oli, M.K.; Orrock, J.L.; Ozgul, A.; Pauli, J.N.; Prugh, L.R.; Sollmann, R.; Sommer, S. Advances in population ecology and species interactions in mammals. J. Mammal. 2019, 100, 965–1007. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2020. Available online: https://qgis.org/en/site/forusers/index.html#download (accessed on 15 September 2023).
- Nita, A.; Hartel, T.; Manolache, S.; Ciocanea, C.M.; Miu, I.V.; Rozylowicz, L. Who is researching biodiversity hotspots in Eastern Europe? A case study on the grasslands in Romania. PLoS ONE 2019, 14, e0217638. [Google Scholar] [CrossRef]
- Loos, J.; Dorresteijn, I.; Hanspach, J.; Fust, P.; Rakosy, L.; Fischer, J. Low-Intensity Agricultural Landscapes in Transylvania Support High Butterfly Diversity: Implications for Conservation. PLoS ONE 2014, 9, e103256. [Google Scholar] [CrossRef]
- Aulagnier, S.; Haffner, P.; Mitchell-Jones, A.J.; Moutou, F.; Zima, J. Mammals of Europe, North Africa and the Middle East; A&C Black Publishers: London, UK, 2009. [Google Scholar]
- McCleery, R.; Monadjem, A.; Conner, L.M.; Austin, J.D.; Taylor, P.J. Methods for Ecological Research on Terrestrial Small Mammals; Johns Hopkins University Press: Baltimore, MD, USA, 2021. [Google Scholar]
- Nosek, J.; Sixl, W.; Kvíčala, P.; Waltinger, H. Central European ticks (Ixodoidea)—Key for determination. Mitt. Abt. Zool. 1972, 1, 61–92. [Google Scholar]
- Brinck-Lindroth, G.; Smit, F.G.A.M. The Fleas (Siphonaptera) of Fennoscandia and Denmark; Brill: Leiden, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Bush, A.O.; Lafferty, K.D.; Lotz, J.M.; Shostak, A.W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 1997, 83, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Krasnov, B.R.; Stanko, M.; Morand, S. Host community structure and infestation by ixodid ticks: Repeatability, dilution effect and ecological specialization. Oecologia 2007, 154, 185–194. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- R Core Development Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: http://www.r-project.org (accessed on 7 August 2021).
- Lüdecke, D.; Makowski, D.; Waggoner, P.; Patil, I. Assessment of Regression Models Performance; CRAN, R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://easystats.github.io/performance (accessed on 21 February 2022).
- Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models, R package version 0.4.5; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://CRAN.R-project.org/package=DHARMa (accessed on 13 November 2022).
- Mangiafico, S. Rcompanion: Functions to Support Extension Education Program Evaluation, R package version 2.3.7; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://CRAN.R-project.org/package=rcompanion (accessed on 21 February 2022).
- Stoffel, M.A.; Nakagawa, S.; Schielzeth, H. partR2: Partitioning R2 in generalized linear mixed models. PeerJ 2021, 9, e11414. [Google Scholar] [CrossRef]
- Larsson, J.; Gustafsson, P. A case study in fitting area-proportional Euler diagrams with ellipses using eulerr. Proc. Int. Workshop Set Vis. Reason. 2018, 2116, 84–91. [Google Scholar]
- Krasnov, B.R.; Bordes, F.; Khokhlova, I.S.; Morand, S. Gender-biased parasitism in small mammals: Patterns, mechanisms, consequences. Mammalia 2012, 76, 1–13. [Google Scholar] [CrossRef]
- Jones, C.R.; Brunner, J.L.; Scoles, G.A.; Owen, J.P. Factors affecting larval tick feeding success: Host, density and time. Parasit. Vectors 2015, 8, 340. [Google Scholar] [CrossRef]
- Zduniak, M.; Serafini, S.; Wróbel, A.; Zwolak, R. Host’s body mass, not sex, affects ectoparasite loads in yellow-necked mouse Apodemus flavicollis. Parasitol. Res. 2023, 122, 2599–2607. [Google Scholar] [CrossRef]
- Krasnov, B.R.; Morand, S.; Hawlena, H.; Khokhlova, I.S.; Shenbrot, G.I. Sex-biased parasitism, seasonality and sexual size dimorphism in desert rodents. Oecologia 2005, 146, 209–217. [Google Scholar] [CrossRef]
- Godsall, B.; Coulson, T.; Malo, A.F. From physiology to space use: Energy reserves and androgenization explain home-range size variation in a woodland rodent. J. Anim. Ecol. 2014, 83, 126–135. [Google Scholar] [CrossRef]
- Cox, R.M.; Skelly, S.L.; John-Alder, H.B. Testosterone inhibits growth in juvenile male eastern fence lizards (Sceloporus undulatus): Implications for energy allocation and sexual size dimorphism. Physiol. Biochem. Zool. 2005, 78, 531–545. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.X.; Cheng, X.O.; Luo, Y.Y.; Zhao, Q.F.; Wei, Z.F.; Xu, D.D.; Wang, M.D.; Zhou, Y.; Wang, X.F.; Liu, Z.X. The relationship between fleas and small mammals in households of the Western Yunnan Province, China. Sci. Rep. 2020, 10, e16705. [Google Scholar] [CrossRef] [PubMed]
- Starikov, V.P.; Vershinin, E.A.; Kravchenko, V.N.; Borodin, A.V.; Petukhov, V.A.; Bernikov, K.A. Lice (Anoplura) of Small Mammals in the Middle Ob Region. Entmol. Rev. 2021, 101, 191–198. [Google Scholar] [CrossRef]
- Kowalski, K.; Bogdziewicz, M.; Eichert, U.; Rychlik, L. Sex differences in flea infections among rodent hosts: Is there a male bias? Parasitol. Res. 2015, 114, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Kiffner, C.; Stanko, M.; Morand, S.; Khokhlova, I.S.; Shenbrot, G.I.; Laudisoit, A.; Leirs, H.; Hawlena, H.; Krasnov, B.R. Variable effects of host characteristics on species richness of flea infracommunities in rodents from three continents. Parasitol. Res. 2014, 113, 2777–2788. [Google Scholar] [CrossRef] [PubMed]
- Krasnov, B.R.; Shenbrot, G.I.; Khokhlova, I.S.; Degen, A.A. Flea species richness and parameters of host body, host geography, and host ‘milieu’. J. Anim. Ecol. 2004, 73, 1121–1128. [Google Scholar] [CrossRef]
- Lin, J.W.; Lo, H.Y.; Wang, H.; Shaner, P.L. The effects of mite parasitism on the reproduction and survival of the Taiwan field mice (Apodemus semotus). Zool. Stud. 2014, 53, 79. [Google Scholar] [CrossRef]
- Durden, L.A.; Ellis, B.A.; Banks, C.W.; Crowe, J.D.; Oliver, J.H., Jr. Ectoparasites of gray squirrels in two different habitats and screening of selected ectoparasites for bartonellae. J. Parasitol. 2004, 90, 485–489. [Google Scholar] [CrossRef]
- Carmichael, J.A.; Strauss, R.E.; McIntyre, N.E. Seasonal variation of North American form of Gigantolaelaps mattogrossensis (Acari: Laelapidae) on marsh rice rat in southern coastal Texas. J. Med. Entomol. 2007, 44, 80–84. [Google Scholar] [CrossRef]
- Escutenaire, S.; Chalon, P.; De Jaegere, F.; Karelle-Bui, L.; Mees, G.; Brochier, B.; Rozenfeld, F.; Pastoret, P.P. Behavioral, physiologic, and habitat influences on the dynamics of Puumala virus infection in bank voles (Clethrionomys glareolus). Emerg. Infect. Dis. 2002, 8, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Krasnov, B.R.; Stanko, M.; Morand, S. Age-dependent flea (Siphonaptera) parasitism in rodents: A host’s life history matters. J. Parasitol. 2006, 92, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Myllymaki, A. Intraspecific competition and home range dynamics in the field vole Microtus agrestis. Oikos 1977, 29, 553–563. [Google Scholar] [CrossRef]
- Stanko, M.; Miklisová, D.; Goüy de Bellocq, J.; Morand, S. Mammal density and patterns of ectoparasite species richness and abundance. Oecologia 2002, 131, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Hsu, M.H.; Hsu, T.C.; Wu, W.J. Distribution of cat fleas (Siphonaptera: Pulicidae) on the cat. J. Med. Entomol. 2002, 39, 685–688. [Google Scholar] [CrossRef] [PubMed]
- Stanko, M.; Krasnov, B.R.; Morand, S. Relationship between host density and parasite distribution: Inferring regulating mechanisms from census data. J. Anim. Ecol. 2006, 75, 575–583. [Google Scholar] [CrossRef]
- Wood, C.L.; Summerside, M.; Johnson, P.T.J. How host diversity and abundance affect parasite infections: Results from a whole-ecosystem manipulation of bird activity. Biol. Conserv. 2020, 248, 108683. [Google Scholar] [CrossRef]
- Young, H.S.; McCauley, D.; Dirzo, R.; Nunn, C.L.; Campana, M.G.; Agwanda, B.; Otarola-Castillo, E.R.; Castillo, E.R.; Pringle, R.M.; Veblen, K.R.; et al. Interacting effects of land use and climate on rodent-borne pathogens in central Kenya. Phil. Trans. R. Soc. B 2017, 372, 20160116. [Google Scholar] [CrossRef]
- Mize, E.L.; Tsao, J.I.; Maurer, B.A. Habitat correlates with the spatial distribution of ectoparasites on Peromyscus leucopus in southern Michigan. J. Vector Ecol. 2011, 36, 308–320. [Google Scholar] [CrossRef]
- Guerra, M.; Walker, E.; Jones, C.; Paskewitz, S.; Cortinas, M.R.; Stancil, A.; Beck, L.; Bobo, M.; Kitron, U. Predicting the risk of Lyme disease: Habitat suitability for Ixodes scapularis in the north central United States. Emerg. Infect. Dis. 2002, 8, 289–297. [Google Scholar] [CrossRef]
- de Jesus Santos, N.D.; Delabie, J.H.C.; Saraiva, D.G.; Nieri-Bastos, F.A.; Martins, T.F.; Labruna, M.B.; de Oliveira Carneiro, I.; Franke, C.R. Effect of forest cover on ectoparasites of small mammals in the Brazilian Atlantic Forest. Oecologia Aust. 2018, 22, 279–290. [Google Scholar] [CrossRef]
- Smith, A.T.; Krasnov, B.R.; Horak, I.G.; Ueckermann, E.A.; Matthee, S. Ectoparasites associated with the Bushveld gerbil (Gerbilliscus leucogaster) and the role of the host and habitat in shaping ectoparasite diversity and infestations. Parasitology 2023, 150, 792–804. [Google Scholar] [CrossRef]
- Ledger, K.J.; Keenan, R.M.; Sayler, K.A.; Wisely, S.M. Multi-scale patterns of tick occupancy and abundance across an agricultural landscape in southern Africa. PLoS ONE 2019, 14, e0222879. [Google Scholar] [CrossRef]
- Hieronimo, P.; Kihupi, N.I.; Kimaro, D.N.; Gulinck, H.; Msanya, B.M.; Leirs, H.; Deckers, J.A. Contribution of land use to rodent flea load distribution in the plague endemic area of Lushoto District, Tanzania. Tanzan. J. Health Res. 2014, 16, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Khalil, H.; Ecke, F.; Evander, M.; Magnusson, M.; Hörnfeldt, B. Declining ecosystem health and the dilution effect. Sci. Rep. 2016, 6, e31314. [Google Scholar] [CrossRef]
- Young, H.S.; Dirzo, R.; Helgen, K.M.; McCauley, D.J.; Billeter, S.A.; Kosoy, M.Y.; Osikowicz, L.M.; Salkeld, D.J.; Young, T.P.; Dittmar, K. Declines in large wildlife increase landscape-level prevalence of rodent-borne disease in Africa. Proc. Natl. Acad. Sci. USA 2014, 111, 7036–7041. [Google Scholar] [CrossRef]
- Martin, L.B.; Hopkins, W.A.; Mydlarz, L.D.; Rohr, J.R. The effects of anthropogenic global changes on immune functions and disease resistance. Ann. N. Y. Acad. Sci. 2010, 1195, 129–148. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.D.; Paziewska, A.; Zwolińska, L.; Siński, E. Seasonality of the ectoparasite community of woodland rodents in a Mazurian forest, Poland. Wiad. Parazytol. 2009, 55, 377–388. [Google Scholar] [PubMed]
- Vinarski, M.V.; Korallo, N.P.; Krasnov, B.R.; Shenbrot, G.I.; Poulin, R. Decay of similarity of gamasid mite assemblages parasitic on Palaearctic small mammals: Geographic distance, host-species composition or environment. J. Biogeogr. 2007, 34, 1691–1700. [Google Scholar] [CrossRef]
- Dumitrache, M.O.; Gherman, C.M.; Cozma, V.; Mircean, V.; Györke, A.; Sandor, A.D.; Mihalca, A.D. Hard ticks (Ixodidae) in Romania: Surveillance, host associations, and possible risks for tick-borne diseases. Parasitol. Res. 2012, 110, 2067–2070. [Google Scholar] [CrossRef] [PubMed]
- Iosif, I.; Janță, D.; Pistol, A.; Popescu, R.; Popovici, O.; Rusu, L.; Sîrbu, A.; Solomon, T.; Stănescu, A.; Șerban, R. Analysis of Evolution of Surveilled Transmisible Diseases; Report for 2020 and 2021; National Institute of Public Health: Bucharest, Romania, 2022; Available online: https://www.cnscbt.ro/index.php/rapoarte-anuale/3386-analiza-bolilor-transmisibile-aflate-in-supraveghere-raport-pentru-anul-2020-2021/file (accessed on 15 January 2024). (In Romanian)
- Heyman, P.; Vandenvelde, C.; Zizi, M. The assessment of human health risks from rodent-borne diseases by means of ecological studies of rodent reservoirs. Mil. Med. 2002, 167, 70–73. [Google Scholar] [CrossRef]
Ticks | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Host | Microtus arvalis | Apodemus agrarius | All rodent host species | |||||||||
Explained variation | 0.267 | 0.141 | 0.337 | |||||||||
Coef. | χ2 | d.f. | p | Coef. | χ2 | d.f. | p | Coef. | χ2 | d.f. | p | |
Intercept | 1.59 | 9.35 | 43.9 | |||||||||
Land use intensity | 0.6 | 3.93 | 1 | 0.047 | ||||||||
Woody vegetation | 3.61 | 4.37 | 1 | 0.036 | 3.52 | 10.62 | 1 | 0.001 | ||||
Month of survey | 0.3 | 20.43 | 1 | <0.001 | 0.54 | 4.42 | 1 | 0.035 | 0.39 | 23.51 | 1 | <0.001 |
Total abundance | 0.38 | 7.05 | 1 | 0.007 | 0.98 | 4.82 | 1 | 0.028 | 0.97 | 12.42 | 1 | <0.001 |
Host species | - | - | 37.82 | 6 | <0.001 | |||||||
Sex (coef. for males) | 3.24 | 8.18 | 1 | 0.004 | ||||||||
Mites | ||||||||||||
Host | Microtus arvalis | Apodemus agrarius | All rodent host species | |||||||||
Explained variation | 0.083 | 0.1 | 0.158 | |||||||||
Coef. | χ2 | d.f. | p | Coef. | χ2 | d.f. | p | Coef. | χ2 | d.f. | p | |
Intercept | 0.6 | 0.21 | 0.34 | |||||||||
Land use intensity | 0.61 | 4.6 | 2 | 0.031 | ||||||||
Woody vegetation | 3.88 | 6.5 | 1 | 0.013 | 2.81 | 7.29 | 1 | 0.006 | ||||
Month of survey | 1.98 | 5.25 | 1 | 0.021 | 1.68 | 9.7 | 1 | 0.001 | ||||
Total abundance | 1.02 | 5.76 | 1 | 0.016 | ||||||||
Host species | - | - | 24.86 | 6 | <0.001 | |||||||
Sex (coef. for males) | 0.38 | 9.4 | 1 | 0.002 | 0.63 | 6.43 | 1 | 0.011 | ||||
Fleas | ||||||||||||
Host | Microtus arvalis | Apodemus agrarius | All rodent host species | |||||||||
Explained variation | 0.066 | 0.142 | 0.064 | |||||||||
Coef. | χ2 | d.f. | p | Coef. | χ2 | d.f. | p | Coef. | χ2 | d.f. | p | |
Intercept | 0.14 | 0.03 | 0.13 | |||||||||
Land use intensity | 0.54 | 3.99 | 2 | 0.046 | 0.75 | 4.9 | 2 | 0.027 | ||||
Month of survey | 1.53 | 5.91 | 1 | 0.015 | 2.54 | 10.94 | 1 | 0.001 | 1.71 | 28.86 | 1 | <0.001 |
Age (coef. for subadults) | 0.44 | 9.36 | 1 | 0.002 | 0.51 | 13.89 | 1 | <0.001 | ||||
Lice | ||||||||||||
Host | Microtus arvalis | Apodemus agrarius | All rodent host species | |||||||||
Explained variance | 0 | 0.023 | 0.669 | |||||||||
Coef. | χ2 | d.f. | p | Coef. | χ2 | d.f. | p | Coef. | χ2 | d.f. | p | |
Intercept | 0.3 | 0.24 | ||||||||||
Host species | - | 24.5 | 6 | <0.001 | ||||||||
Age (coef. for subadults) | 0.39 | 4.25 | 1 | 0.039 | 0.59 | 4.87 | 1 | 0.027 |
Ticks | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Host | Microtus arvalis | Apodemus agrarius | All rodent host species | |||||||||
Explained variation | 0.56 | 0.307 | 0.419 | |||||||||
Coef. | χ2 | d.f. | p | Coef. | χ2 | d.f. | p | Coef. | χ2 | d.f. | p | |
Intercept | 19.3 | 31.88 | 92.75 | |||||||||
Land use intensity | 0.56 | 4.24 | 2 | 0.039 | ||||||||
Woody vegetation | 4.18 | 5.42 | 1 | 0.019 | 3.17 | 6.41 | 1 | 0.011 | ||||
Month of survey | 0.25 | 24.72 | 1 | <0.001 | 0.43 | 7.96 | 1 | 0.004 | 0.33 | 26.89 | 1 | <0.001 |
Total abundance | 0.96 | 9.8 | 1 | 0.001 | 0.98 | 5.01 | 1 | 0.025 | 0.97 | 10.57 | 1 | 0.001 |
Host species | - | - | 37.57 | 6 | <0.001 | |||||||
Sex (coef. for males) | 3.46 | 12.34 | 1 | <0.001 | 1.52 | 4.1 | 1 | 0.042 | ||||
Fleas | ||||||||||||
Host | Microtus arvalis | Apodemus agrarius | All rodent host species | |||||||||
Explained variation | 0.173 | 0.113 | 0.17 | |||||||||
Coef. | χ2 | d.f. | p | Coef. | χ2 | d.f. | p | Coef. | χ2 | d.f. | p | |
Intercept | 0.01 | 0.02 | 0.01 | |||||||||
Land use intensity | 0.66 | 7.05 | 2 | 0.007 | ||||||||
Month of survey | 2.32 | 13.47 | 1 | <0.001 | 2.29 | 12.28 | 1 | <0.001 | 1.95 | 12.73 | 1 | <0.001 |
Total abundance | 1.03 | 7 | 1 | 0.008 | 1.02 | 4.8 | 1 | 0.028 | ||||
Species abundance | 1.04 | 6.51 | 1 | 0.01 | ||||||||
Sex (coef. for males) | 2.2 | 7.88 | 1 | 0.004 | 1.53 | 4.45 | 1 | 0.034 | ||||
Age (coef. for subadults) | 0.38 | 7.54 | 1 | 0.006 | ||||||||
Host body weight | 1.05 | 24.24 | 1 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benedek, A.M.; Boeraș, I.; Lazăr, A.; Sandu, A.; Cocîrlea, M.D.; Stănciugelu, M.; Cic, N.V.; Postolache, C. Effects of Season, Habitat, and Host Characteristics on Ectoparasites of Wild Rodents in a Mosaic Rural Landscape. Animals 2024, 14, 304. https://doi.org/10.3390/ani14020304
Benedek AM, Boeraș I, Lazăr A, Sandu A, Cocîrlea MD, Stănciugelu M, Cic NV, Postolache C. Effects of Season, Habitat, and Host Characteristics on Ectoparasites of Wild Rodents in a Mosaic Rural Landscape. Animals. 2024; 14(2):304. https://doi.org/10.3390/ani14020304
Chicago/Turabian StyleBenedek, Ana Maria, Ioana Boeraș, Anamaria Lazăr, Alexandra Sandu, Maria Denisa Cocîrlea, Maria Stănciugelu, Niculina Viorica Cic, and Carmen Postolache. 2024. "Effects of Season, Habitat, and Host Characteristics on Ectoparasites of Wild Rodents in a Mosaic Rural Landscape" Animals 14, no. 2: 304. https://doi.org/10.3390/ani14020304
APA StyleBenedek, A. M., Boeraș, I., Lazăr, A., Sandu, A., Cocîrlea, M. D., Stănciugelu, M., Cic, N. V., & Postolache, C. (2024). Effects of Season, Habitat, and Host Characteristics on Ectoparasites of Wild Rodents in a Mosaic Rural Landscape. Animals, 14(2), 304. https://doi.org/10.3390/ani14020304