Transcriptome Analysis and Identification of Cadmium-Induced Oxidative Stress Response Genes in Different Meretrix meretrix Developmental Stages
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Larval Rearing and Treatment with Cd
2.2. RNA Isolation, Library Construction, and Illumina Sequencing
2.3. Transcriptomic Data Quality Control and Assembly
2.4. Gene Function Annotation
2.5. Enrichment Analysis and Functional Annotation of Differentially Expressed Genes
2.6. Validation of Differentially Expressed Genes by qRT-PCR
2.7. Immunohistochemical Detection of Nrf2 in Different Stages of M. meretrix Larvae
2.8. Data Processing
3. Results
3.1. Summary of Data Quality
3.2. Analysis of Differentially Expressed Genes
3.2.1. Statistics of Differential Expressed Genes
3.2.2. GO and KEGG Functional Classification
3.2.3. Commonly Regulated Differential Genes
3.3. Quantitative RT-PCR Validation of the Differentially Expressed Genes
3.4. Changes in MT and Nrf2 mRNA Levels
3.5. Nrf2 Protein Immunohistochemistry in Different Developmental Stages of M. meretrix Larvae
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Alyahya, H.; Elgendy, A.H.; Farraj, S.A.; Elhedeny, M. Evaluation of heavy metal pollution in the Arabian Gulf using the clam Meretrix meretrix Linnaeus, 1758. Water Air Soil Pollut. 2011, 214, 499–507. [Google Scholar] [CrossRef]
- Chen, M.X.; Zhou, J.Y.; Lin, J.H.; Tang, H.C.; Shan, Y.F.; Chang, A.K.; Ying, X.P. Changes in oxidative stress biomarkers in Sinonovacula constricta in response to toxic metal accumulation during growth in an aquaculture farm. Chemosphere 2020, 248, 125974. [Google Scholar] [CrossRef]
- Pierron, F.; Normandeau, E.; Defo, M.A.; Campbell, P.G.C.; Bernatchez, L.; Couture, P. Effects of chronic metal exposure on wild fish populations revealed by high-throughput cDNA sequencing. Ecotoxicology 2011, 20, 1388–1399. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, X.; Xu, J.L. Heavy metal pollution in the East China Sea: A review. Mar. Pollut. Bull. 2020, 159, 111473. [Google Scholar] [CrossRef]
- Suhani, I.; Sahab, S.; Srivastava, V.; Singh, R.P. Impact of cadmium pollution on food safety and human health. Curr. Opin. Toxicol. 2021, 27, 1–7. [Google Scholar] [CrossRef]
- Zhang, H.; Reynolds, M. Cadmium exposure in living organisms: A short review. Sci. Total Environ. 2019, 678, 761–767. [Google Scholar] [CrossRef]
- Lee, D.C.; Choi, Y.J.; Kim, J.H. Toxic effects of waterborne cadmium exposure on hematological parameters, oxidative stress, neurotoxicity, and heat shock protein 70 in juvenile olive flounder, Paralichthys olivaceus. Fish Shellfish Immunol. 2022, 122, 476–483. [Google Scholar] [CrossRef]
- Gao, Y.L.; Hong, J.M.; Guo, Y.K.; Chen, M.X.; Chang, A.K.; Xie, L.; Ying, X.P. Assessment spermatogenic cell apoptosis and the transcript levels of metallothionein and p53 in Meretrix meretrix induced by cadmium. Ecotoxicol. Environ. Saf. 2021, 217, 112230. [Google Scholar] [CrossRef]
- Wang, J.H.; Deng, W.F.; Zou, T.; Bai, B.B.; Chang, A.K.; Ying, X.P. Cadmium-induced oxidative stress in Meretrix meretrix gills leads to mitochondria-mediated apoptosis. Ecotoxicology 2021, 30, 2011–2023. [Google Scholar] [CrossRef]
- Bai, B.B.; Yang, Y.Q.; Wei, J.Y.; Zheng, Q.; Wang, M.C.; Chang, A.K.; Ying, X.P. Cadmium-induced toxicity in Meretrix meretrix ovary is characterized by oxidative damage with changes in cell morphology and apoptosis-related factors. Front. Mar. Sci. 2022, 9, 1080516. [Google Scholar] [CrossRef]
- Belcher, J.D.; Chen, C.; Nguyen, J.; Zhang, P.; Abdulla, F.; Nguyen, P.; Killeen, T.; Xu, P.; O’Sullivan, G.; Nath, K.A.; et al. Control of oxidative stress and inflammation in sickle cell disease with the Nrf2 activator dimethyl fumarate. Antioxid. Redox Signal. 2017, 26, 748–762. [Google Scholar] [CrossRef] [PubMed]
- Navarro, A.; Faria, M.; Barata, C.; Piña, B. Transcriptional response of stress genes to metal exposure in zebra mussel larvae and adults. Environ. Pollut. 2011, 159, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Ekelund Ugge, G.M.O.; Jonsson, A.; Walstad, A.; Berglund, O. Evaluation of transcriptional biomarkers using a high-resolution regression approach: Concentration-dependence of selected transcripts in copper-exposed freshwater mussels (Anodonta anatina). Environ. Toxicol. Pharmacol. 2022, 90, 103795. [Google Scholar] [CrossRef] [PubMed]
- Falfushynska, H.; Wu, F.L.; Sokolov, E.P.; Sokolova, I.M. Salinity variation modulates cellular stress response to ZnO nanoparticles in a sentinel marine bivalve, the blue mussel Mytilus sp. Mar. Environ. Res. 2023, 183, 105834. [Google Scholar] [CrossRef]
- Alam, M.M.; Kishino, A.; Sung, E.; Sekine, H.; Abe, T.; Murakami, S.; Akaike, T.; Motohashi, H. Contribution of NRF2 to sulfur metabolism and mitochondrial activity. Redox Biol. 2023, 60, 102624. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.H.; Ma, H.L.; Liu, G.X.; Fan, S.G.; Deng, Y.Q.; Jiang, J.J.; Feng, J.; Guo, Z.X. The role of Nrf2 signaling pathway in the mud crab (Scylla paramamosain) in response to Vibrio parahaemolyticus infection. Fish Shellfish Immunol. 2023, 136, 108729. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Tang, H.C.; Jin, J.Y.; Fan, M.B.; Chang, A.K.; Ying, X.P. Effects of waterborne cadmium exposure on its internal distribution in Meretrix meretrix and detoxification by metallothionein and antioxidant enzymes. Front. Mar. Sci. 2020, 7, 00502. [Google Scholar] [CrossRef]
- Shaw, P.; Chattopadhyay, A. Nrf2-ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms. J. Cell. Physiol. 2020, 235, 3119–3130. [Google Scholar] [CrossRef]
- Zhuo, M.Q.; Chen, X.; Gao, L.; Zhang, H.T.; Zhu, Q.L.; Zheng, J.L.; Liu, Y.F. Early life stage exposure to cadmium and zinc within hour affected GH/IGF axis, Nrf2 signaling and HPI axis in unexposed offspring of marine medaka Oryzias melastigma. Aquat. Toxicol. 2023, 261, 106628. [Google Scholar] [CrossRef]
- Dinkova-Kostova, A.T.; Abramov, A.Y. The emerging role of Nrf2 in mitochondrial function. Free Radic. Biol. Med. 2015, 88, 179–188. [Google Scholar] [CrossRef]
- Rocha, T.L.; Bilbao, E.; Cardoso, C.; Soto, M.; Bebianno, M.J. Changes in metallothionein transcription levels in the mussel Mytilus galloprovincialis exposed to CdTe quantum dots. Ecotoxicology 2018, 27, 402–410. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.M.; Wang, X.Y.; Yang, H.S.; Liu, B.Z. Analysis of metallotionein expression and antioxidant enzyme activities in Meretrix meretrix larvae under sublethal cadmium exposure. Aquat. Toxicol. 2010, 100, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.L.; Feng, Y.; Fan, W.; Duan, J.; Duan, Y.J.; Xiong, G.Q.; Wang, K.Y.; Deng, Y.Q.; Geng, Y.; Ouyang, P.; et al. Potential ability for metallothionein and vitamin E protection against cadmium immunotoxicity in head kidney and spleen of grass carp (Ctenopharyngodon idellus). Ecotoxicol. Environ. Saf. 2019, 170, 246–252. [Google Scholar] [CrossRef]
- Giuliani, M.E.; Regoli, F. Identification of the Nrf2-Keap1 pathway in the European eel Anguilla anguilla: Role for a transcriptional regulation of antioxidant genes in aquatic organisms. Aquat. Toxicol. 2014, 150, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.N.; Liang, W.; Yang, T.Z.; Hu, Z.J.; Shen, H.D. Metallothionein, hemocyte status and superoxide dismutase/aspartate aminotransferase activity are sensitive biomarkers of cadmium stress in Onchidium reevesii. Aquat. Toxicol. 2019, 215, 105284. [Google Scholar] [CrossRef] [PubMed]
- Huan, P.; Wang, H.X.; Liu, B.Z. Transcriptomic analysis of the clam Meretrix meretrix on different larval stages. Mar. Biotechnol. 2012, 14, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.N.; Tang, Y.Y.; Zhao, J.R.; Li, T.Y.; Yang, R.P.; Zhang, D.Z.; Cheng, Y.X.; Tang, B.P.; Ding, F. Transcriptome analysis reveals antioxidant defense mechanisms in the red swamp crayfish Procambarus clarkia after exposure to chromium. Ecotoxicol. Environ. Saf. 2021, 227, 112911. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, C.F.; Shen, W.L.; Chen, J.Q.; Wu, X.W.; Lin, Z.H. Comparative transcriptome analysis reveals the biological mechanism of selective cadmium enrichment in Tegillarca granosa. Aquac. Rep. 2021, 21, 100960. [Google Scholar] [CrossRef]
- Xia, L.P.; Chen, S.H.; Dahms, H.U.; Ying, X.P.; Peng, X. Cadmium induced oxidative damage and apoptosis in the hepatopancreas of Meretrix meretrix. Ecotoxicology 2016, 5, 959–969. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.F.; Xu, L.L.; Ji, C.L.; Yu, D.L. Proteomic and metabolomic responses in D-shape larval mussels Mytilus galloprovincialis exposed to cadmium and arsenic. Fish Shellfish Immunol. 2016, 58, 514–520. [Google Scholar] [CrossRef]
- Xu, L.L.; Peng, X.; Yu, D.L.; Ji, C.L.; Zhao, J.M.; Wu, H.F. Proteomic responses reveal the differential effects induced by cadmium in mussels Mytilus galloprovincialis at early life stages. Fish Shellfish Immunol. 2016, 55, 510–515. [Google Scholar] [CrossRef]
- Meng, F.P.; Wang, Z.F.; Cheng, F.L.; Du, X.P.; Fu, W.C.; Wang, Q.; Yi, X.Y.; Li, Y.F.; Zhou, Y. The assessment of environmental pollution along the coast of Beibu Gulf, northern South China Sea: An integrated biomarker approach in the clam Meretrix meretrix. Mar. Environ. Res. 2013, 85, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Scarleta, M.P.J.; Halldórsson, H.P.; Granmo, A. Scope for growth and condition index in the clam Meretrix meretrix (L.) as biomarkers of pollution in Espírito Santo Estuary, Mozambique. Reg. Stud. Mar. Sci. 2015, 1, 63–71. [Google Scholar] [CrossRef]
- Wang, Q. Ecotoxicological effects of several heavy metals and organic pollutants on the hard clam Meretrix meretrix. Ph.D. Thesis, Institute of Oceanology Chinese Academy of Sciences, Qingdao, China, 2010. [Google Scholar]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Davidson, N.M.; Oshlack, A. Corset: Enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biol. 2014, 15, 410. [Google Scholar]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.Y.; Wang, W.X. Seasonal and spatial variations of biomarker responses of rock oysters in a coastal environment influenced by large estuary input. Environ. Pollut. 2018, 242, 1253–1265. [Google Scholar] [CrossRef] [PubMed]
- Moreira, R.; Pereiro, P.; Balseiro, P.; Milan, M.; Pauletto, M.; Bargelloni, L.; Novoa, B.; Figueras, A. Revealing Mytilus galloprovincialis transcriptomic profiles during ontogeny. Dev. Comp. Immunol. 2018, 84, 292–306. [Google Scholar] [CrossRef]
- Balseiro, P.; Moreira, R.; Chamorrro, R.; Figueras, A.; Novoa, B. Immune response during the larval stages of Mytilus galloprovincialis: Metamorphosis alters immunocompetence, body shape and behavior. Fish Shellfish Immunol. 2013, 35, 438–447. [Google Scholar] [CrossRef]
- Brischigliaro, M.; Zeviani, M. Cytochrome c oxidase deficiency. Biochim. Biophys. Acta (BBA)—Bioenerg. 2021, 1862, 148335. [Google Scholar] [CrossRef]
- Xia, X.L. Summary on respiratory chain pathway models of oxidative phosphorylation. Chem. Life 2017, 37, 635–637. [Google Scholar]
- Wikström, M.; Gennis, R.B.; Rich, P.R. Structures of the intermediates in the catalytic cycle of mitochondrial cytochrome c oxidase. Biochim. Biophys. Acta (BBA)—Bioenerg. 2023, 1864, 148933. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.L.; Li, Y.; Shi, W.L.; Chen, W.; Ma, Z.Q.; Feng, J.T.; Hashem, A.S.; Wu, H. Cloning and expression of the mitochondrial cytochrome c oxidase subunit II gene in Sitophilus zeamais and interaction mechanism with allyl isothiocyanate. Pestic. Biochem. Physiol. 2023, 192, 105392. [Google Scholar] [CrossRef]
- Abele, E.; Philip, E.; Gonzalez, P.M.; Puntarulo, S. Marine invertebrate mitochondria and oxidative stress. Front. Biosci. 2007, 12, 933–946. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.J.; Song, H.; Shi, P.; Liang, J.; Hu, Z.; Zhou, C.; Hu, P.P.; Yu, Z.L.; Zhang, T. Integrated mRNA and miRNA transcriptomic analysis reveals the response of Rapana venosa to the metamorphic inducer (juvenile oysters). Comput. Struct. Biotechnol. J. 2023, 21, 702–715. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.X.; Xu, K.D.; Li, J.J.; Wang, X.Y.; Ye, Y.Y.; Qi, P.Z. Molecular characterization of complement component 3 (C3) in Mytilus coruscus improves our understanding of bivalve complement system. Fish Shellfish Immunol. 2018, 76, 41–47. [Google Scholar] [CrossRef]
- Arimura, Y.; Funabiki, H. Structural mechanics of the Alpha-2-Macroglobulin transformation. J. Mol. Biol. 2022, 434, 167413. [Google Scholar] [CrossRef]
- Wang, F.R.; Chmil, C.; Pierce, F.; Ganapathy, K.; Gump, B.B.; MacKenzie, J.A.; Mechref, Y.; Bendinskas, K. Immobilized metal affinity chromatography and human serum proteomics. J. Chromatogr. B 2013, 934, 26–33. [Google Scholar] [CrossRef]
- Delanghe, J.R.; Langlois, M.R. Hemopexin: A review of biological aspects and the role in laboratory medicine. Clin. Chim. Acta 2001, 312, 13–23. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Dong, B.B.; Lu, J.; Wang, G.L.; Yu, Y.H. Hemopexin reduces blood-brain barrier injury and protects synaptic plasticity in cerebral ischemic rats by promoting EPCs through the HO-1 pathway. Brain Res. 2018, 1699, 177–185. [Google Scholar] [CrossRef]
- Mori, M.; Ito, T.; Washio, R.; Shibasaki, Y.; Namba, A.; Yabu, T.; Iwazaki, D.; Wada, N.; Anzai, H.; Shiba, H.; et al. Enhancement of immune proteins expression in skin mucus of Japanese flounder Paralicthys olivaceus upon feeding a diet supplemented with high concentration of ascorbic acid. Fish Shellfish. Immunol. 2021, 114, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.X.; Yang, Y.J.; Han, K.L.; Wu, L.T.; Wu, H.R.; Bian, X.; Wei, X.F.; Guo, Z.; Mu, L.L.; Ye, J.M. Purification and functional characterization of serum transferrin from Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2019, 88, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Pu, Y.; Zhong, L.Q.; Wang, K.; Duan, X.B.; Chen, D.Q. Lead impaired immune function and tissue integrity in yellow catfish (Peltobargus fulvidraco) by mediating oxidative stress, inflammatory response and apoptosis. Ecotoxicol. Environ. Saf. 2021, 226, 112857. [Google Scholar] [CrossRef] [PubMed]
- Jantawongsri, K.; Nørregaard, R.D.; Bach, L.; Dietz, R.; Sonne, C.; Jørgensen, K.; Lierhagen, S.; Ciesielski, T.M.; Jenssen, B.M.; Waugh, C.A.; et al. Effects of exposure to environmentally relevant concentrations of lead (Pb) on expression of stress and immune-related genes, and microRNAs in shorthorn sculpins (Myoxocephalus scorpius). Ecotoxicology 2022, 31, 1068–1077. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Klein, J.B.; Kang, Y.J. Metallothionein inhibits peroxynitrite-induced DNA and lipoprotein damage. J. Biol. Chem. 2000, 275, 38957–38960. [Google Scholar] [CrossRef]
- Gao, M.; Kang, Y.; Zhang, L.H.; Li, H.Y.; Qu, C.H.; Luan, X.Q.; Liu, L.J.; Zhang, S.Y. Troxerutin attenuates cognitive decline in the hippocampus of male diabetic rats by inhibiting NADPH oxidase and activating the Nrf2/ARE signaling pathway. Int. J. Mol. Med. 2020, 46, 1239–1248. [Google Scholar] [CrossRef] [PubMed]
- Canesi, L. Pro-oxidant and antioxidant processes in aquatic invertebrates. Ann. N. Y. Acad. Sci. 2015, 1340, 1–7. [Google Scholar] [CrossRef]
- Balbi, T.; Auguste, M.; Ciacci, C.; Canesi, L. Immunological responses of marine bivalves to contaminant exposure: Contribution of the -omics approach. Front. Immunol. 2021, 12, 618726. [Google Scholar] [CrossRef]
- Cao, R.; Wang, Q.; Yang, D.; Liu, Y.; Ran, W.; Qu, Y.; Wu, H.; Cong, M.; Li, F.; Ki, C.; et al. CO2-induced ocean acidification impairs the immune function of the Pacific oyster against Vibrio splendidus challenge: An integrated study from a cellular and proteomic perspective. Sci. Total Environ. 2018, 625, 1574–1583. [Google Scholar] [CrossRef]
- Lopez-Pedrouso, M.; Varela, Z.; Franco, D.; Fernandez, J.A.; Aboal, J.R. Can proteomics contribute to biomonitoring of aquatic pollution? A critical review. Environ. Pollut. 2020, 267, 11543. [Google Scholar] [CrossRef] [PubMed]
Primer Information | Gene Symbol | Sequence (5′–3′) |
---|---|---|
NADH dehydrogenase-R | Ndh | GCAAACGGAGCCTCAATA |
NADH dehydrogenase-F | AAGAATCGGGTCAAGGTG | |
Cytochrome c oxidase-R | CCO | AGGACAATGGGCATAAAG |
Cytochrome c oxidase-F | GGGCACCAATGATACTGAA | |
Alpha-2-macroglobulin-R | A2M | GCTAAGACGACATAGGCACT |
Alpha-2-macroglobulin-F | GAGAAACGAAATCCTGAAA | |
Hemopexin-R | HPX | GCAGTAGTAGCGTTCAAGC |
Hemopexin-F | AATCCCATACCCACCAGA | |
Serotransferrin-R | STF | TTTCCAGTGCCTCGTTGA |
Serotransferrin-F | pro-C3 | AGGTGGCGAACTCGGTTA |
Complement C3 precursor-R | ACAGAGTAGGGCAGTCGC | |
Complement C3 precursor-F | TCGTGAGCAGCACAGAAG | |
Mm β-actin-R | TTGTCTGGTGGTTCAACTATG | |
Mm β-actin-F | TCCACATCTGCTGGAAGGTG | |
Nrf2-R | Nrf2 | TTTTACCCGCAGCAACTA |
Nrf2-F | ATTCTCGTGCCTTCGTTT | |
MT-R | MT | GCAAACAACTTTACACCCTGGAC |
MT-F | CGAGGACTGTTCATCAACCACTG |
Sample | Raw Reads | Clean Reads | Clean Bases | Error-Rate | Q20 | Q30 | GC-pct |
---|---|---|---|---|---|---|---|
A-1 | 22,908,233 | 22,608,398 | 6.78 G | 0.03 | 96.62 | 90.84 | 35.66 |
A-2 | 22,807,303 | 22,438,671 | 6.73 G | 0.03 | 96.76 | 91.07 | 36.09 |
A-3 | 21,689,381 | 21,415,748 | 6.42 G | 0.03 | 97.29 | 92.28 | 39.58 |
A-4 | 22,456,576 | 22,190,209 | 6.66 G | 0.03 | 96.62 | 90.73 | 35.07 |
A-5 | 23,112,929 | 22,704,192 | 6.81 G | 0.03 | 97.31 | 92.30 | 35.96 |
A-6 | 22,529,731 | 22,138,576 | 6.64 G | 0.03 | 96.88 | 91.42 | 35.47 |
A-7 | 21,201,221 | 20,766,808 | 6.23 G | 0.03 | 96.70 | 91.09 | 36.61 |
A-8 | 23,160,593 | 22,752,311 | 6.83 G | 0.03 | 97.15 | 92.04 | 39.18 |
Gene ID | FPKM A-2 vs. A-1 | FPKM A-4 vs. A-3 | FPKM A-6 vs. A-5 | FPKM A-8 vs. A-7 | Description |
---|---|---|---|---|---|
Cluster-27498.58936 | Down | Up | Up | Down | Cytochrome c oxidase subunit Ⅰ |
Cluster-27498.35815 | Down | Up | Up | Down | Cytochrome c oxidase subunit Ⅲ |
Cluster-27498.57862 | Down | Up | Up | Down | NADH dehydrogenase subunit 5 |
Cluster-27498.58765 | Down | Up | Up | Down | Cytochrome c oxidase subunit Ⅱ |
Cluster-27498.2982 | Down | Up | Up | Down | NADH dehydrogenase subunit 4 |
Cluster-27498.46352 | Up | Up | Up | Down | Cytochrome c oxidase subunit Ⅲ |
Cluster-52252.0 | Up | Down | Up | Down | Complement C3 precursor |
Cluster-27498.52394 | Up | Down | Up | Down | alpha-2-macroglobulin |
Cluster-51975.0 | Up | Down | Up | Down | Hemopexin |
Cluster-27498.31390 | Up | Down | Up | Down | Serotransferrin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Wu, C.; Jin, J.; Tang, W.; Chen, Y.; Chang, A.K.; Ying, X. Transcriptome Analysis and Identification of Cadmium-Induced Oxidative Stress Response Genes in Different Meretrix meretrix Developmental Stages. Animals 2024, 14, 352. https://doi.org/10.3390/ani14020352
Xu Y, Wu C, Jin J, Tang W, Chen Y, Chang AK, Ying X. Transcriptome Analysis and Identification of Cadmium-Induced Oxidative Stress Response Genes in Different Meretrix meretrix Developmental Stages. Animals. 2024; 14(2):352. https://doi.org/10.3390/ani14020352
Chicago/Turabian StyleXu, Yiyuan, Chenghui Wu, Jianyu Jin, Wenhan Tang, Yuting Chen, Alan Kueichieh Chang, and Xueping Ying. 2024. "Transcriptome Analysis and Identification of Cadmium-Induced Oxidative Stress Response Genes in Different Meretrix meretrix Developmental Stages" Animals 14, no. 2: 352. https://doi.org/10.3390/ani14020352
APA StyleXu, Y., Wu, C., Jin, J., Tang, W., Chen, Y., Chang, A. K., & Ying, X. (2024). Transcriptome Analysis and Identification of Cadmium-Induced Oxidative Stress Response Genes in Different Meretrix meretrix Developmental Stages. Animals, 14(2), 352. https://doi.org/10.3390/ani14020352