Molecular Factors Involved in the Pathogenesis of Pyometra in Domestic Cats (Felis catus)
Simple Summary
Abstract
1. Introduction
2. Reproductive Cycle of Domestic Cats
3. Pyometra in Domestic Cats
4. Etiopathogenesis
5. Molecular Aspects Related to the Occurrence of Pyometra in Domestic Cats
5.1. Hormonal Factors
5.1.1. Sex Steroids and Receptors
Progesterone (P4)
Estrogen
Androgens
5.1.2. Kisspeptin
5.1.3. Oxytocin
5.2. Immunological Factors
5.2.1. Pro-Inflammatory Cytokines
5.2.2. Toll-like Receptors
5.2.3. Anti-Inflammatory Cytokines
5.2.4. Prostaglandins
5.3. Growth Factors
5.3.1. Vascular Endothelial Growth Factor (VEGF)
5.3.2. Transforming Growth Factor (TGF)
5.3.3. Epidermal Growth Factor (EGF)
5.4. Redox Mediators
5.4.1. Pro-Oxidant Factors
5.4.2. Antioxidant Factors
5.5. Acute Phase Proteins (APPs)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Satilmis, F. Pyometra in Queens—Changes in Haemato-Biochemical Parameters. Acta Sci. Vet. 2023, 51, 1–10. [Google Scholar] [CrossRef]
- Agudelo, C.F. Cystic Endometrial Hyperplasia-pyometra Complex in Cats. A Review. Vet. Q. 2005, 27, 173–182. [Google Scholar] [CrossRef]
- Hollinshead, F.; Krekeler, N. Pyometra in the Queen: To Spay or Not to Spay? J. Feline Med. Surg. 2016, 18, 21–33. [Google Scholar] [CrossRef] [PubMed]
- DOW, C. The Cystic Hyperplasia-Pyometra Complex in the Bitch. J. Comp. Pathol. 1959, 69, 237–250. [Google Scholar] [CrossRef]
- Hagman, R. Pyometra in Small Animals. Vet. Clin. N. Am. Small Anim. Pract. 2018, 48, 639–661. [Google Scholar] [CrossRef] [PubMed]
- Nak, D.; Misirlioglu, D.; Nak, Y.; Keskin, A. Clinical Laboratory Findings, Vaginal Cytology and Pathology in a Controlled Study of Pyometra in Cats. Aust. Vet. Pract. 2005, 35, 10–14. [Google Scholar]
- Rautela, R.; Katiyar, R. Review on Canine Pyometra, Oxidative Stress and Current Trends in Diagnostics. Asian Pac. J. Reprod. 2019, 8, 45–55. [Google Scholar] [CrossRef]
- Johnson, A. Diagnosis and Medical Treatment of Pyometra in the Queen. Clin. Theriogenol. 2022, 14, 151–154. [Google Scholar] [CrossRef]
- Demirel, M.A.; Acar, D.B. Ovarian Remnant Syndrome and Uterine Stump Pyometra in Three Queens. J. Feline Med. Surg. 2012, 14, 913–918. [Google Scholar] [CrossRef]
- Pailler, S.; Dolan, E.D.; Slater, M.R.; Gayle, J.M.; Lesnikowski, S.M.; DeClementi, C. Owner-Reported Long-Term Outcomes, Quality of Life, and Longevity after Hospital Discharge Following Surgical Treatment of Pyometra in Bitches and Queens. J. Am. Vet. Med. Assoc. 2022, 260, S57–S63. [Google Scholar] [CrossRef]
- Pailler, S.; Slater, M.R.; Lesnikowski, S.M.; Gayle, J.M.; Duvieusart, C.B.C.A.; Ledesma, E.J.; Lee, M.L.; Stevens, J.D.; DeClementi, C. Findings and Prognostic Indicators of Outcomes for Bitches with Pyometra Treated Surgically in a Nonspecialized Setting. J. Am. Vet. Med. Assoc. 2022, 260, S49–S56. [Google Scholar] [CrossRef] [PubMed]
- Fontbonne, A. Infertility in Queens: Clinical Approach, Experiences and Challenges. J. Feline Med. Surg. 2022, 24, 825–836. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, A.E.d.J.; Santos, L.C.; Santos, B.R.; Santos, E.O.; Cunha, M.C.d.S.G.; Snoeck, P.P.d.N.; de Lavor, M.S.L.; Silva, J.F. Estrogen and Progesterone Receptors and Antioxidant Enzymes Are Expressed Differently in the Uterus of Domestic Cats during the Estrous Cycle. Theriogenology 2023, 203, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, A.E.d.J.; Santos, L.C.; Santos, B.R.; Santos, E.O.; Cunha, M.C.d.S.G.; Snoeck, P.P.d.N.; de Lavor, M.S.L.; Silva, J.F. Pyometra Alters the Redox Status and Expression of Estrogen and Progesterone Receptors in the Uterus of Domestic Cats. J. Feline Med. Surg. 2023, 25, 1098612X231170159. [Google Scholar] [CrossRef]
- Santos, L.C.; Silva, J.F. Molecular Factors Involved in the Reproductive Morphophysiology of Female Domestic Cat (Felis catus). Animals 2023, 13, 3153. [Google Scholar] [CrossRef] [PubMed]
- Andrews, C.J.; Thomas, D.G.; Yapura, J.; Potter, M.A. Reproductive Biology of the 38 Extant Felid Species: A Review. Mammal Rev. 2019, 49, 16–30. [Google Scholar] [CrossRef]
- Griffin, B. Prolific Cats: The Estrous Cycle. Compend. Contin. Educ. Pract. Vet. 2001, 23, 1049–1056. [Google Scholar]
- Johnson, A.K. Normal Feline Reproduction: The Queen. J. Feline Med. Surg. 2022, 24, 204–211. [Google Scholar] [CrossRef]
- Da Silva, T.F.P.; da Silva, L.D.M.; Uchoa, D.C.; Monteiro, C.L.B.; Thomaz, L.d.A. Sexual Characteristics of Domestic Queens Kept in a Natural Equatorial Photoperiod. Theriogenology 2006, 66, 1476–1481. [Google Scholar] [CrossRef]
- Ferré-Dolcet, L.; Yeste, M.; Vendrell, M.; Rigau, T.; Rodríguez-Gil, J.E.; del Álamo, M.M.R. Placental and Uterine Expression of GLUT3, but Not GLUT1, Is Related with Serum Progesterone Levels during the First Stages of Pregnancy in Queens. Theriogenology 2018, 121, 82–90. [Google Scholar] [CrossRef]
- Veiga, G.A.L.; Miziara, R.H.; Angrimani, D.S.R.; Papa, P.C.; Cogliati, B.; Vannucchi, C.I. Cystic Endometrial Hyperplasia-Pyometra Syndrome in Bitches: Identification of Hemodynamic, Inflammatory, and Cell Proliferation Changes. Biol. Reprod. 2017, 96, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Schlafer, D.H.; Gifford, A.T. Cystic Endometrial Hyperplasia, Pseudo-Placentational Endometrial Hyperplasia, and Other Cystic Conditions of the Canine and Feline Uterus. Theriogenology 2008, 70, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.C.; dos Anjos Cordeiro, J.M.; da Silva Santana, L.; Santana, L.R.; Santos, B.R.; Barbosa, E.M.; da Silva, T.Q.M.; Corrêa, J.M.X.; Lavor, M.S.L.; da Silva, E.B.; et al. Pyometra and Estrous Cycle Modulate the Uterine Expression of the Kisspeptin System and Angiogenic and Immune Factors in Cats. Biol. Reprod. 2021, 104, 548–561. [Google Scholar] [CrossRef]
- Yaseen, A.; Kareem, D.; Waheed, Z.; Fahad, T. Histopathological Study of Some Abnormalities of Infertility in the Queens. Basrah J. Vet. Res. 2022, 21, 131–140. [Google Scholar] [CrossRef]
- Santana, C.H.; Santos, D.O.; Trindade, L.M.; Moreira, L.G.; Paixão, T.A.; Santos, R.L. Association of Pseudoplacentational Endometrial Hyperplasia and Pyometra in Dogs. J. Comp. Pathol. 2020, 180, 79–85. [Google Scholar] [CrossRef]
- Hagman, R.; Ström Holst, B.; Möller, L.; Egenvall, A. Incidence of Pyometra in Swedish Insured Cats. Theriogenology 2014, 82, 114–120. [Google Scholar] [CrossRef]
- Musleh Uddin, A. Pyometra in a Cat: A Clinical Case Report. Biomed. J. Sci. Tech. Res. 2021, 37, 29851–29856. [Google Scholar] [CrossRef]
- Binder, C.; Aurich, C.; Reifinger, M.; Aurich, J. Spontaneous Ovulation in Cats—Uterine Findings and Correlations with Animal Weight and Age. Anim. Reprod. Sci. 2019, 209, 106167. [Google Scholar] [CrossRef]
- Prapaiwan, N.; Manee-in, S.; Olanratmanee, E.; Srisuwatanasagul, S. Expression of Oxytocin, Progesterone, and Estrogen Receptors in the Reproductive Tract of Bitches with Pyometra. Theriogenology 2017, 89, 131–139. [Google Scholar] [CrossRef]
- Misk, T.N.; El-Sherry, T.M. Pyometra in Cats: Medical Versus Surgical Treatment. J. Curr. Vet. Res. 2020, 2, 86–92. [Google Scholar] [CrossRef]
- Pereira, M.C.; Schrank, M.; Mollo, A.; Romagnoli, S. Spontaneous Ovulation in the Cat: Incidence among Queens Presented at a Veterinary Teaching Facility. J. Feline Med. Surg. 2024, 26, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, S.; Bensaia, C.; Ferré-Dolcet, L.; Sontas, H.B.; Stelletta, C. Fertility Parameters and Reproductive Management of Norwegian Forest Cats, Maine Coon, Persian and Bengal Cats Raised in Italy: A Questionnaire-Based Study. J. Feline Med. Surg. 2019, 21, 1188–1197. [Google Scholar] [CrossRef] [PubMed]
- Holst, B.S. Feline Breeding and Pregnancy Management: What Is Normal and When to Intervene. J. Feline Med. Surg. 2022, 24, 221–231. [Google Scholar] [CrossRef]
- Szczubiał, M.; Wawrzykowski, J.; Dąbrowski, R.; Bochniarz, M.; Brodzki, P.; Kankofer, M. The Effect of Pyometra on Glycosylation of Proteins in the Uterine Tissues from Female Dogs. Theriogenology 2019, 131, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Lopes, C.E.; De Carli, S.; Riboldi, C.I.; De Lorenzo, C.; Panziera, W.; Driemeier, D.; Siqueira, F.M. Pet Pyometra: Correlating Bacteria Pathogenicity to Endometrial Histological Changes. Pathogens 2021, 10, 833. [Google Scholar] [CrossRef]
- Zheng, H.H.; Du, C.T.; Zhang, Y.Z.; Yu, C.; Huang, R.L.; Tang, X.Y.; Xie, G.H. A Study on the Correlation between Intrauterine Microbiota and Uterine Pyogenesis in Dogs. Theriogenology 2023, 196, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Szczubiał, M.; Kankofer, M.; Wawrzykowski, J.; Dąbrowski, R.; Bochniarz, M.; Brodzki, P. Activity of the Glycosidases β-Galactosidase, α-L-Fucosidase, β-N-Acetyl-Hexosaminidase, and Sialidase in Uterine Tissues from Female Dogs in Diestrus with and without Pyometra. Theriogenology 2022, 177, 133–139. [Google Scholar] [CrossRef]
- Marinković, D.; Aničić, M.; Vakanjac, S.; Nedić, S.; Magaš, V. Morphological Characteristics and Expression of Estrogen and Progesterone Receptors in the Canine Endometrium during the Estrus Cycle, Cystic Endometrial Hyperplasia and Pyometra. Acta Vet. Brno. 2018, 68, 239–250. [Google Scholar] [CrossRef]
- Tiptanavattana, N.; Khirilak, P.; Tharasanit, T.; Duangtum, N.; Jankaew, K.; Sae-Jia, P.; Kaewchana, N. Expression of Prostaglandin F2 Alpha Receptors (PTGFR) and C-Reactive Protein (CRP) in the Canine Uterus and Cervix with Opened- and Closed-Cervix Pyometra. Thai J. Vet. Med. 2022, 52, 45–56. [Google Scholar] [CrossRef]
- De Bosschere, H.; Ducatelle, R.; Tshamala, M. Uterine Oestrogen and Progesterone Receptor Expression in Experimental Pyometra in the Bitch. J. Comp. Pathol. 2003, 128, 99–106. [Google Scholar] [CrossRef]
- Lopes, C.E.; De Carli, S.; Weber, M.N.; Fonseca, A.C.V.; Tagliari, N.J.; Foresti, L.; Cibulski, S.P.; Mayer, F.Q.; Canal, C.W.; Siqueira, F.M. Insights on the Genetic Features of Endometrial Pathogenic Escherichia Coli Strains from Pyometra in Companion Animals: Improving the Knowledge about Pathogenesis. Infect. Genet. Evol. 2020, 85, 104453. [Google Scholar] [CrossRef] [PubMed]
- Niewiadomska, Z.; Adib-Lesaux, A.; Reyes-Gomez, E.; Gandoin, C.; Bouillin, C.; Gaillard, V.; Fontbonne, A. Uterine Issues in Infertile Queens: Nine Cases. Anim. Reprod. Sci. 2023, 251, 107225. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.C.; Cordeiro, J.M.d.A.; Santana, L.d.S.; Barbosa, E.M.; Santos, B.R.; Silva, T.Q.M.d.; Souza, S.S.d.; Corrêa, J.M.X.; Lavor, M.S.L.; Silva, E.B.d.; et al. Expression Profile of the Kisspeptin/Kiss1r System and Angiogenic and Immunological Mediators in the Ovary of Cyclic and Pregnant Cats. Domest. Anim. Endocrinol. 2022, 78, 106650. [Google Scholar] [CrossRef] [PubMed]
- Hirota, Y. Progesterone Governs Endometrial Proliferationdifferentiation Switching and Blastocyst Implantation. Endocr. J. 2019, 66, 199–206. [Google Scholar] [CrossRef]
- Abdelbaset, Z.; Sosa, G.; Abdel-Ghaffar, A.; Kandiel, M. Predictive Markers and Risk Factors in Canine and Feline Pyometra under Egyptian Conditions. Benha Vet. Med. J. 2022, 42, 170–175. [Google Scholar] [CrossRef]
- Gultiken, N.; Yarim, M.; Yarim, G.F.; Gacar, A.; Mason, J.I. Expression of 3β-Hydroxysteroid Dehydrogenase in Ovarian and Uterine Tissue during Diestrus and Open Cervix Cystic Endometrial Hyperplasia-Pyometra in the Bitch. Theriogenology 2015, 86, 572–578. [Google Scholar] [CrossRef]
- Misirlioglu, D.; Nak, D.; Sevimli, A.; Nak, Y.; Ozyigit, M.O.; Akkoc, A.; Cangul, I.T. Steroid Receptor Expression and HER-2/Neu (c-ErbB-2) Oncoprotein in the Uterus of Cats with Cystic Endometrial Hyperplasia-Pyometra Complex. J. Vet. Med. Ser. A Physiol. Pathol. Clin. Med. 2006, 53, 225–229. [Google Scholar] [CrossRef] [PubMed]
- De Bosschere, H.; Ducatelle, R.; Vermeirsch, H.; Simoens, P.; Coryn, M. Estrogen-α and Progesterone Receptor Expression in Cystic Endometrial Hyperplasia and Pyometra in the Bitch. Anim. Reprod. Sci. 2002, 70, 251–259. [Google Scholar] [CrossRef]
- Mueller, S.O.; Korach, K.S. Estrogen Receptors and Endocrine Diseases: Lessons from Estrogen Receptor Knockout Mice. Curr. Opin. Pharmacol. 2001, 1, 613–619. [Google Scholar] [CrossRef]
- Kovats, S. Estrogen Receptors Regulate Innate Immune Cells and Signaling Pathways. Cell. Immunol. 2015, 294, 63–69. [Google Scholar] [CrossRef]
- Chang, C.; Lee, S.O.; Wang, R.S.; Yeh, S.; Chang, T.M. Androgen Receptor (AR) Physiological Roles in Male and Female Reproductive Systems: Lessons Learned from AR-Knockout Mice Lacking AR in Selective Cells. Biol. Reprod. 2013, 89, 21. [Google Scholar] [CrossRef]
- Vermeirsch, H.; Van den Broeck, W.; Coryn, M.; Simoens, P. Immunohistochemical Detection of Androgen Receptors in the Canine Uterus throughout the Estrus Cycle. Theriogenology 2002, 57, 2203–2216. [Google Scholar] [CrossRef] [PubMed]
- Amelkina, O.; Zschockelt, L.; Painer, J.; Serra, R.; Villaespesa, F.; Krause, E.; Jewgenow, K.; Braun, B.C. Progesterone, Estrogen, and Androgen Receptors in the Corpus Luteum of the Domestic Cat, Iberian Lynx (Lynx pardinus) and Eurasian Lynx (Lynx lynx). Theriogenology 2016, 86, 2107–2118. [Google Scholar] [CrossRef] [PubMed]
- Amelkina, O.; Tanyapanyachon, P.; Thongphakdee, A.; Chatdarong, K. Identification of Feline Kiss1 and Distribution of Immunoreactive Kisspeptin in the Hypothalamus of the Domestic Cat. J. Reprod. Dev. 2019, 65, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Tanyapanyachon, P.; Amelkina, O.; Chatdarong, K. The Expression of Kisspeptin and Its Receptor in the Domestic Cat Ovary and Uterus in Different Stages of the Ovarian Cycle. Theriogenology 2018, 117, 40–48. [Google Scholar] [CrossRef]
- Santos, L.C.; dos Anjos Cordeiro, J.M.; da Silva Santana, L.; Santos, B.R.; Barbosa, E.M.; da Silva, T.Q.M.; Corrêa, J.M.X.; Niella, R.V.; Lavor, M.S.L.; da Silva, E.B.; et al. Kisspeptin/Kiss1r System and Angiogenic and Immunological Mediators at the Maternal-Fetal Interface of Domestic Cats. Biol. Reprod. 2021, 105, 217–231. [Google Scholar] [CrossRef]
- Zhang, P.; Tang, M.; Zhong, T.; Lin, Y.; Zong, T.; Zhong, C.; Zhang, B.P.; Ren, M.; Kuang, H. Bin Expression and Function of Kisspeptin during Mouse Decidualization. PLoS ONE 2014, 9, e97647. [Google Scholar] [CrossRef]
- León, S.; Fernadois, D.; Sull, A.; Sull, J.; Calder, M.; Hayashi, K.; Bhattacharya, M.; Power, S.; Vilos, G.A.; Vilos, A.G.; et al. Beyond the Brain-Peripheral Kisspeptin Signaling Is Essential for Promoting Endometrial Gland Development and Function. Sci. Rep. 2016, 6, 29073. [Google Scholar] [CrossRef]
- Schaefer, J.; Vilos, A.G.; Vilos, G.A.; Bhattacharya, M.; Babwah, A.V. Uterine Kisspeptin Receptor Critically Regulates Epithelial Estrogen Receptor α Transcriptional Activity at the Time of Embryo Implantation in a Mouse Model. Mol. Hum. Reprod. 2021, 27, gaab060. [Google Scholar] [CrossRef]
- Kurt, S.; Eşki, F.; Mis, L. Investigation of the Usability of Kisspeptin and Oxidative Stress Parameters in the Early Diagnosis of Asymptomatic Cystic Endometrial Hyperplasia in Dogs. Reprod. Domest. Anim. 2021, 56, 1529–1535. [Google Scholar] [CrossRef]
- Yang, Y.; Song, S.; Gu, S.; Gu, Y.; Zhao, P.; Li, D.; Cheng, W.; Liu, C.; Zhang, H. Kisspeptin Prevents Pregnancy Loss by Modulating the Immune Microenvironment at the Maternal-Fetal Interface in Recurrent Spontaneous Abortion. Am. J. Reprod. Immunol. 2024, 91, e13818. [Google Scholar] [CrossRef] [PubMed]
- Gorbunova, O.L.; Shirshev, S.V. Role of Kisspeptin in Regulation of Reproductive and Immune Reactions. Biochemistry 2020, 85, 839–853. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jin, L.; Kong, L.; Nie, L.; Yuan, D. Physiological and Pathological Roles of Locally Expressed Kisspeptin and KISS1R in the Endometrium. Hum. Reprod. 2023, 38, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Yang, H.; Han, L.; Ma, M. Oxytocin in Women’s Health and Disease. Front. Endocrinol. 2022, 13, 786271. [Google Scholar] [CrossRef] [PubMed]
- Tamminen, T.; Sahlin, L.; Masironi-Malm, B.; Dahlbom, M.; Katila, T.; Taponen, J.; Laitinen-Vapaavuori, O. Expression of Uterine Oxytocin Receptors and Blood Progesterone, 13,14-Dihydro-15-Keto-Prostaglandin F2α, and Ionized Calcium Levels in Dystocic Bitches. Theriogenology 2019, 135, 38–45. [Google Scholar] [CrossRef]
- Siemieniuch, M.J.; Mlynarczuk, J.J.; Skarzynski, D.J.; Okuda, K. Possible Involvement of Oxytocin and Its Receptor in the Local Regulation of Prostaglandin Secretion in the Cat Endometrium. Anim. Reprod. Sci. 2011, 123, 89–97. [Google Scholar] [CrossRef]
- Talat Naoman, U. Causes and Treatment of Feline Dystocia. J. Appl. Vet. Sci. 2021, 6, 28–31. [Google Scholar] [CrossRef]
- Sasidharan, J.K.; Patra, M.K.; Khan, J.A.; Singh, A.K.; Karikalan, M.; De, U.K.; Saxena, A.C.; Dubal, Z.B.; Singh, S.K.; Kumar, H.; et al. Differential Expression of Inflammatory Cytokines, Prostaglandin Synthases and Secretory Leukocyte Protease Inhibitor in the Endometrium and Circulation in Different Graded CEH-Pyometra in Bitch. Theriogenology 2023, 197, 139–149. [Google Scholar] [CrossRef]
- Zhang, J.-M.; An, J. Cytokines, Inflammation, and Pain. Int. Anesthesiol. Clin. 2007, 45, 27–37. [Google Scholar] [CrossRef]
- Abdelnaby, E.A.; Alhaider, A.K.; Ghoneim, I.M.; Salem, N.Y.; Ramadan, E.S.; Farghali, H.A.; Khattab, M.S.; AbdElKader, N.A.; Emam, I.A. Effect of Pyometra on Vascularity Alterations, Oxidative Stress, Histopathology and Inflammatory Molecules in Feline. Reprod. Biol. 2024, 24, 100855. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Z.; Cao, J.; Chen, Y.; Dong, Y. A Novel and Compact Review on the Role of Oxidative Stress in Female Reproduction. Reprod. Biol. Endocrinol. 2018, 16, 80. [Google Scholar] [CrossRef]
- Jursza, E.; Szóstek, A.Z.; Kowalewski, M.P.; Boos, A.; Okuda, K.; Siemieniuch, M.J. LPS-Challenged TNF α Production, Prostaglandin Secretion, and TNF α /TNFRs Expression in the Endometrium of Domestic Cats in Estrus or Diestrus, and in Cats with Pyometra or Receiving Medroxyprogesterone Acetate. Mediat. Inflamm. 2014, 2014, 689280. [Google Scholar] [CrossRef]
- Jursza-Piotrowska, E.; Socha, P.; Skarzynski, D.J.; Siemieniuch, M.J. Prostaglandin Release by Cultured Endometrial Tissues after Challenge with Lipopolysaccharide and Tumor Necrosis Factor α, in Relation to the Estrous Cycle, Treatment with Medroxyprogesterone Acetate, and Pyometra. Theriogenology 2016, 85, 1177–1185. [Google Scholar] [CrossRef]
- Jursza-Piotrowska, E.; Siemieniuch, M.J. Comparison of the Effect of Lipopolysaccharide on Tumor Necrosis Factor α (TNF-α) Secretion and TNF and TNFR1 MRNA Levels in Feline Endometrium throughout the Estrous Cycle during Pyometra and after Medroxyprogesterone Acetate Treatment. J. Reprod. Dev. 2016, 62, 385–391. [Google Scholar] [CrossRef]
- Chotimanukul, S.; Sirivaidyapong, S. Differential Expression of Toll-like Receptor 4 (TLR4) in Healthy and Infected Canine Endometrium. Theriogenology 2011, 76, 1152–1161. [Google Scholar] [CrossRef]
- Jursza, E.; Kowalewski, M.P.; Boos, A.; Skarzynski, D.J.; Socha, P.; Siemieniuch, M.J. The Role of Toll-like Receptors 2 and 4 in the Pathogenesis of Feline Pyometra. Theriogenology 2015, 83, 596–603. [Google Scholar] [CrossRef]
- Jursza-Piotrowska, E.; Siemieniuch, M.J. Identifying Diagnostic Endocrine Markers and Changes in Endometrial Gene Expressions during Pyometra in Cats. Reprod. Biol. 2016, 16, 174–180. [Google Scholar] [CrossRef]
- Yount, S.M.; Lassiter, N. The Pharmacology of Prostaglandins for Induction of Labor. J. Midwifery Womens. Health 2013, 58, 133–144. [Google Scholar] [CrossRef]
- Konturek, S.J.; Pawlik, W. Physiology and Pharmacology of Prostaglandins. Dig. Dis. Sci. 1986, 31, 6S–19S. [Google Scholar] [CrossRef]
- Hagman, R.; Karlstam, E.; Persson, S.; Kindahl, H. Plasma PGF2α Metabolite Levels in Cats with Uterine Disease. Theriogenology 2009, 72, 1180–1187. [Google Scholar] [CrossRef]
- Romagnoli, S.; Ferre-Dolcet, L. Reversible Control of Reproduction In Queens: Mastering the Use of Reproductive Drugs to Manipulate Cyclicity. J. Feline Med. Surg. 2022, 24, 853–870. [Google Scholar] [CrossRef]
- Al-Zubaidi, S.F.; Alneamah, G.A.A.; Mahdi, A.S.; Wali, A.A. Pyometra Treatment in Bitches with Different Protocols. Adv. Anim. Vet. Sci. 2024, 12, 120–124. [Google Scholar] [CrossRef]
- Singh, L.K.; Patra, M.K.; Mishra, G.K.; Singh, V.; Upmanyu, V.; Saxena, A.C.; Singh, S.K.; Das, G.K.; Kumar, H.; Krishnaswamy, N. Endometrial Transcripts of Proinflammatory Cytokine and Enzymes in Prostaglandin Synthesis Are Upregulated in the Bitches with Atrophic Pyometra. Vet. Immunol. Immunopathol. 2018, 205, 65–71. [Google Scholar] [CrossRef]
- Tamada, H.; Adachi, N.; Kawate, N.; Inaba, T.; Hatoya, S.; Sawada, T. Positive Correlation between Patency and MRNA Levels for Cyclooxygenase-2 and Prostaglandin E Synthase in the Uterine Cervix of Bitches with Pyometra. J. Vet. Med. Sci. 2016, 78, 525–528. [Google Scholar] [CrossRef]
- Saraiva, A.L.; Payan-Carreira, R.; Gärtner, F.; Santana, I.; Rêma, A.; Lourenço, L.M.; Pires, M.A. Immunohistochemical Expression of Cyclooxygenase-2 (COX-2) in Feline Endometrial Adenocarcinoma and in Normal and Hyperplastic Endometria. Reprod. Domest. Anim. 2015, 50, 333–340. [Google Scholar] [CrossRef]
- Kempisty, B.; Bukowska, D.; Wozna, M.; Piotrowska, H.; Jackowska, M.; Zuraw, A.; Ciesiolka, S.; Antosik, P.; Maryniak, H.; Ociepa, E.; et al. Endometritis and Pyometra in Bitches: A Review. Vet. Med. 2013, 58, 289–297. [Google Scholar] [CrossRef]
- Kida, K.; Maezono, Y.; Kawate, N.; Inaba, T.; Hatoya, S.; Tamada, H. Epidermal Growth Factor, Transforming Growth Factor-α, and Epidermal Growth Factor Receptor Expression and Localization in the Canine Endometrium during the Estrous Cycle and in Bitches with Pyometra. Theriogenology 2010, 73, 36–47. [Google Scholar] [CrossRef]
- Kim, M.; Park, H.J.; Seol, J.W.; Jang, J.Y.; Cho, Y.S.; Kim, K.R.; Choi, Y.; Lydon, J.P.; Demayo, F.J.; Shibuya, M.; et al. VEGF-A Regulated by Progesterone Governs Uterine Angiogenesis and Vascular Remodelling during Pregnancy. EMBO Mol. Med. 2013, 5, 1415–1430. [Google Scholar] [CrossRef]
- Autiero, M.; Luttun, A.; Tjwa, M.; Carmeliet, P. Placental Growth Factor and Its Receptor, Vascular Endothelial Growth Factor Receptor-1: Novel Targets for Stimulation of Ischemic Tissue Revascularization and Inhibition of Angiogenic and Inflammatory Disorders. J. Thromb. Haemost. 2003, 1, 1356–1370. [Google Scholar] [CrossRef]
- Massagué, J. TGFβ Signalling in Context. Nat. Rev. Mol. Cell Biol. 2012, 13, 616–630. [Google Scholar] [CrossRef]
- Boomsma, R.A.; Mavrogianis, P.A.; Verhage, H.G. Immunocytochemical Localization of Transforming Growth Factor α, Epidermal Growth Factor and Epidermal Growth Factor Receptor in the Cat Endometrium and Placenta. Histochem. J. 1997, 29, 495–504. [Google Scholar] [CrossRef]
- Sabbah, D.A.; Hajjo, R.; Sweidan, K. Review on Epidermal Growth Factor Receptor (EGFR) Structure, Signaling Pathways, Interactions, and Recent Updates of EGFR Inhibitors. Curr. Top. Med. Chem. 2020, 20, 815–834. [Google Scholar] [CrossRef]
- Rybska, M.; Woźna-Wysocka, M.; Wąsowska, B.; Skrzypski, M.; Kubiak, M.; Błaszak, B.; Łukomska, A.; Nowak, T.; Jaśkowski, J.M. Expression of Transforming Growth Factor Beta Isoforms in Canine Endometrium with Cystic Endometrial Hyperplasia–Pyometra Complex. Animals 2021, 11, 1844. [Google Scholar] [CrossRef]
- Vilhena, H.; Figueiredo, M.; Cerón, J.; Pastor, J.; Miranda, S.; Craveiro, H.; Pires, M.A.; Tecles, F.; Rubio, C.P.; Dabrowski, R.; et al. Acute Phase Proteins and Antioxidant Responses in Queens with Pyometra. Theriogenology 2018, 115, 30–37. [Google Scholar] [CrossRef]
- Nandi, A.; Yan, L.J.; Jana, C.K.; Das, N. Role of Catalase in Oxidative Stress- And Age-Associated Degenerative Diseases. Oxid. Med. Cell. Longev. 2019, 2019, 9613090. [Google Scholar] [CrossRef]
- Dandekar, A.; Mendez, R.; Zhang, K. Cross Talk Between ER Stress, Oxidative Stress, and Inflammation in Health and Disease. In Stress Responses: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2015; Volume 1292, pp. 205–214. ISBN 9781493925223. [Google Scholar]
- Del Rio, D.; Stewart, A.J.; Pellegrini, N. A Review of Recent Studies on Malondialdehyde as Toxic Molecule and Biological Marker of Oxidative Stress. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 316–328. [Google Scholar] [CrossRef]
- Tsikas, D. Assessment of Lipid Peroxidation by Measuring Malondialdehyde (MDA) and Relatives in Biological Samples: Analytical and Biological Challenges. Anal. Biochem. 2017, 524, 13–30. [Google Scholar] [CrossRef]
- Ighodaro, O.M.; Akinloye, O.A. First Line Defence Antioxidants-Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPX): Their Fundamental Role in the Entire Antioxidant Defence Grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Santos, C.; Pires, M.d.A.; Santos, D.; Payan-Carreira, R. Distribution of Superoxide Dismutase 1 and Glutathione Peroxidase 1 in the Cyclic Canine Endometrium. Theriogenology 2016, 86, 738–748. [Google Scholar] [CrossRef]
- Azadmanesh, J.; Borgstahl, G.E.O. A Review of the Catalytic Mechanism of Human Manganese Superoxide Dismutase. Antioxidants 2018, 7, 25. [Google Scholar] [CrossRef]
- Yazlık, M.O.; Mutluer, İ.; Kaya, U.; Özkan, H.; Müştak, İ.B.; Çolakoğlu, H.E.; Altınbaş, Y.F.; Vural, M.R. The Role of Nutritional-Immunological Indices in Estimating Serum LPS and Antioxidant Enzyme Activity and Sepsis Status in Female Dogs with Pyometra Caused by E. Coli. Anim. Reprod. Sci. 2023, 255, 107276. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.S.; Chan, H.W.; Yu, L.C. Glutathione Peroxidase and Glutathione Reductase Activities Are Partially Responsible for Determining the Susceptibility of Cells to Oxidative Stress. Toxicology 2006, 226, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, A.E.d.J.; Santos, L.C.; Santos, B.R.; Santos, E.O.; Cunha, M.C.d.S.G.; Snoeck, P.P.d.N.; de Lavor, M.S.L.; Silva, J.F. Spatial and Temporal Expression Profile of Sex Steroid Receptors and Antioxidant Enzymes in the Maternal-Fetal Interface of Domestic Cats. Theriogenology 2023, 210, 234–243. [Google Scholar] [CrossRef]
- Rossi, G. Acute Phase Proteins in Cats: Diagnostic and Prognostic Role, Future Directions, and Analytical Challenges. Vet. Clin. Pathol. 2023, 52, 37–49. [Google Scholar] [CrossRef]
- Hagman, R.; Rönnberg, E.; Pejler, G. Canine Uterine Bacterial Infection Induces Upregulation of Proteolysis-Related Genes and Downregulation of Homeobox and Zinc Finger Factors. PLoS ONE 2009, 4, e8039. [Google Scholar] [CrossRef]
- Cerón, J.J.; Eckersall, P.D.; Martínez-Subiela, S. Acute Phase Proteins in Dogs and Cats: Current Knowledge and Future Perspectives. Vet. Clin. Pathol. 2005, 34, 85–99. [Google Scholar] [CrossRef]
- Donato, G.; Pennisi, M.G.; Persichetti, M.F.; Archer, J.; Masucci, M. A Retrospective Comparative Evaluation of Selected Blood Cell Ratios, Acute Phase Proteins, and Leukocyte Changes Suggestive of Inflammation in Cats. Animals 2023, 13, 2579. [Google Scholar] [CrossRef] [PubMed]
- Trumel, C.; Gaillard, E.; Leynaud, V.; Aumann, M.; Braun, J.P. Comparison of the Diagnostic Accuracy of Markers of the Acute Phase of Inflammation in Cats. A Preliminary Evaluation. Comp. Clin. Path. 2019, 28, 505–511. [Google Scholar] [CrossRef]
- Hadžimusić, N.; Livnjak, A.; Velić, L. Some Acute Phase Proteins and Biochemistry Parameters of Female Dogs Affected with Pyometra. Annu. Res. Rev. Biol. 2024, 39, 41–47. [Google Scholar] [CrossRef]
- Kann, R.K.C.; Seddon, J.M.; Henning, J.; Meers, J. Acute Phase Proteins in Healthy and Sick Cats. Res. Vet. Sci. 2012, 93, 649–654. [Google Scholar] [CrossRef]
- Rosa, R.M.; Mestrinho, L.A.P. Acute Phase Proteins in Cats. Cienc. Rural 2019, 49, e20180790. [Google Scholar] [CrossRef]
- Jitpean, S.; Pettersson, A.; Höglund, O.V.; Holst, B.S.; Olsson, U.; Hagman, R. Increased Concentrations of Serum Amyloid A in Dogs with Sepsis Caused by Pyometra. BMC Vet. Res. 2014, 10, 273. [Google Scholar] [CrossRef] [PubMed]
- El-Bahr, S.M.; El-Deeb, W.M. Acute-Phase Proteins, Oxidative Stress Biomarkers, Proinflammatory Cytokines, and Cardiac Troponin in Arabian Mares Affected with Pyometra. Theriogenology 2016, 86, 1132–1136. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, A.E.d.J.; Santos, L.C.; Silva, J.F. Molecular Factors Involved in the Pathogenesis of Pyometra in Domestic Cats (Felis catus). Animals 2024, 14, 2987. https://doi.org/10.3390/ani14202987
Nascimento AEdJ, Santos LC, Silva JF. Molecular Factors Involved in the Pathogenesis of Pyometra in Domestic Cats (Felis catus). Animals. 2024; 14(20):2987. https://doi.org/10.3390/ani14202987
Chicago/Turabian StyleNascimento, Acácia Eduarda de Jesus, Luciano Cardoso Santos, and Juneo Freitas Silva. 2024. "Molecular Factors Involved in the Pathogenesis of Pyometra in Domestic Cats (Felis catus)" Animals 14, no. 20: 2987. https://doi.org/10.3390/ani14202987
APA StyleNascimento, A. E. d. J., Santos, L. C., & Silva, J. F. (2024). Molecular Factors Involved in the Pathogenesis of Pyometra in Domestic Cats (Felis catus). Animals, 14(20), 2987. https://doi.org/10.3390/ani14202987