Bat Ecology and Microbiome of the Gut: A Narrative Review of Associated Potentials in Emerging and Zoonotic Diseases
Simple Summary
Abstract
1. Introduction
2. Literature Review Process
3. Ecology and Microbiome of the Gastrointestine of Chiroptera
4. Microbiome and Zoonotic Potential
5. Bat Microbiota
5.1. Bat Virome
5.2. Bacteriome
5.3. Mycobiome
5.4. Protozoa
6. Final Considerations and Perspectives
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lei, M.; Dong, D. Phylogenomic analyses of bat subordinal relationships based on transcriptome data. Sci. Rep. 2016, 6, 27726. [Google Scholar] [CrossRef] [PubMed]
- Federici, L.; Masulli, M.; De Laurenzi, V.; Allocati, N. An overview of bats microbiota and its implication in transmissible diseases. Front. Microbiol. 2022, 13, 1012189. [Google Scholar] [CrossRef] [PubMed]
- Kunz, T.; Braun de Torres, E.; Bauer, D.; Lobova, T.; Fleming, T. Ecosystem services provided by bats. Ann. N. Y. Acad. Sci. 2011, 1223, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Aizpurua, O.; Nyholm, L.; Morris, E.; Chaverri, G.; Herrera, M.L.G.; Flores Martínez, J.; Lin, A.; Razgour, O.; Gilbert, M.; Alberdi, A. The role of the gut microbiota in the dietary niche expansion of fishing bats. Anim. Microbiome 2021, 3, 76. [Google Scholar] [CrossRef]
- Troy, L.B.; Altringham, J.D. Bats: Biology and Behaviour. Oxford University Press, Inc., New York, 262 pp. ISBN 0-19-854075-2. J. Mammal. 1996, 78, 986–987. [Google Scholar] [CrossRef]
- Dhivahar, J.; Anutthaman, P.; Kathiravan, K.; Basavaraj, S.K.; Ganesh, N.P. Bat-associated microbes: Opportunities and perils, an overview. Heliyon 2023, 9, e22351. [Google Scholar] [CrossRef]
- Calisher, C.H.; Childs, J.E.; Field, H.E.; Holmes, K.V.; Schountz, T. Bats: Important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 2006, 19, 531–545. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patterson, B.; Willig, M.; Stevens, R. Trophic strategies, niche partitioning, and patterns of ecological organization. In Bat Ecology; Kunz, T.H., Fenton, M.B., Eds.; University of Chicago: Chicago, IL, USA, 2003; pp. 536–579. [Google Scholar]
- Galindo-González, J.; Guevara, S.; Sosa, V. Bat- and Bird-Generated Seed Rains at Isolated Trees in Pastures in a Tropical Rainforest. Conserv. Biol. 2000, 14, 1693–1703. [Google Scholar] [CrossRef]
- Garg, K.M.; Lamba, V.; Sanyal, A.; Pilot, D.; Balaji, C. Next Generation Sequencing Revolutionizes Organismal Biology Research in Bats. J. Mol. Evol. 2023, 91, 391–404. [Google Scholar] [CrossRef]
- Mickleburgh, S.; Waylen, K.; Racey, P. Bats as bushmeat: A global review. Oryx 2009, 432, 217–234. [Google Scholar] [CrossRef]
- Warach, S.; Al-Rawi, Y.; Furlan, A.J.; Fiebach, J.B.; Wintermark, M.; Lindsten, A.; Smyej, J.; Bharucha, D.B.; Pedraza, S.; Rowley, H.A. Refinement of the magnetic resonance diffusion-perfusion mismatch concept for thrombolytic patient selection: Insights from the desmoteplase in acute stroke trials. Stroke 2012, 439, 2313–2318. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Baker, M.L.; Kulcsar, K.; Misra, V.; Plowright, R.; Mossman, K. Novel Insights into Immune Systems of Bats. Front. Immunol. 2020, 11, 26. [Google Scholar] [CrossRef]
- Hayman, D.T.S. Bat tolerance to viral infections. Nat. Microbiol. 2019, 4, 728–729. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hua, R.; Ma, Y.S.; Yang, L.; Hao, J.J.; Hua, Q.Y.; Shi, L.Y.; Yao, X.Q.; Zhi, H.Y.; Liu, Z. Experimental evidence for cancer resistance in a bat species. Nat. Commun. 2024, 151, 1401. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kuzmin, I.V.; Bozick, B.; Guagliardo, S.A.; Kunkel, R.; Shak, J.R.; Tong, S.; Rupprecht, C.E. Bats, emerging infectious diseases, and the rabies paradigm revisited. Emerg. Health Threat. J. 2011, 4, 7159. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lange, C.; Coulibaly, K.J.; Ako, A.; Vakou, S.; Koffi, E.; Mendelsohn, E.; Ball, S.; Martinez, S.F.L.; Saylors, K.; Manzan, J.; et al. Human interactions with bats and bat coronaviruses in rural Côte d’Ivoire. One Health 2023, 16, 100569. [Google Scholar] [CrossRef]
- Monadjem, A.; Peter, J.T.; Woody, C.M.; Corrie, S. Bats of Southern and Central Africa; WITS University Press: Johannesburg, South Africa, 2010; ISBN 978-1-86814-508-9. [Google Scholar]
- Srinivasulu, C.; Paul, A.R.; Shahroukh, M. A key to the bats Mammalia: Chiroptera of South Asia. J. Threat. Taxa 2010, 2, 1001–1076. [Google Scholar] [CrossRef]
- Gunnell, G.F.; Simmons, N.B. Evolutionary History of Bats: Fossils, Molecules and Morphology; Cambridge University Press: Cambridge, UK, 2012; ISBN 978-0-521-76824-5. [Google Scholar]
- Pal, S.; Arora, B.; Chhuttani, P.; Broor, S.; Choudhury, S.; Joshi, R.; Ray, S. Rabies virus infection of a flying fox bat, Pteropus policephalus in Chandigarh, Northern India. Trop. Geogr. Med. 1980, 32, 265–267. [Google Scholar]
- Gunawardena, P.S.; Marston, D.A.; Ellis, R.J.; Wise, E.L.; Karawita, A.C.; Breed, A.C.; McElhinney, L.M.; Johnson, N.; Banyard, A.C.; Fooks, A.R. Lyssavirus in Indian Flying Foxes, Sri Lanka. Emerg. Infect. Dis. 2016, 22, 1456–1459. [Google Scholar] [CrossRef]
- Karunarathna, S.C.; Haelewaters, D.; Lionakis, M.S.; Tibpromma, S.; Jianchu, X.; Hughes, A.C.; Mortimer, P.E. Assessing the threat of bat-associated fungal pathogens. One Health 2023, 16, 100553. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weinberg, M.; Yovel, Y. Revising the paradigm: Are bats really pathogen reservoirs or do they possess an efficient immune system? iScience 2022, 25, 104782. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- López-Baucells, A.; Rocha, R.; Fernández-Llamazares, Á. When Bats Go Viral: Negative Framings in Virological Research Imperil Bat Conservation. Mammal. Rev. 2018, 48, 62–66. [Google Scholar] [CrossRef]
- Mahon, M.; Sack, A.; Aleuy, O.; Barbera, C.; Brown, E.; Buelow, H.; Civitello, D.; Cohen, J.; de Wit, L.; Forstchen, M.; et al. A meta-analysis on global change drivers and the risk of infectious disease. Nature 2024, 629, 830–836. [Google Scholar] [CrossRef]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.-C.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.; et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome 2020, 8, 103. [Google Scholar] [CrossRef]
- Zárate, S.; Taboada, B.; Yocupicio-Monroy, M.; Arias, C.F. Human Virome. Arch. Med. Res. 2017, 48, 701–716. [Google Scholar] [CrossRef]
- Ochman, H.; Worobey, M.; Kuo, C.H.; Ndjango, J.B.N.; Peeters, M.; Beatrice, H.H.; Philip, H. Evolutionary Relationships of Wild Hominids Recapitulated by Gut Microbial Communities. PLoS Biol. 2010, 8, e1000546. [Google Scholar] [CrossRef]
- Roeselers, G.; Mittge, E.; Stephens, W.Z.; Parichy, D.M.; Cavanaugh, C.M.; Guillemin, K.; Rawls, J.F. Evidence for a core gut microbiota in the zebrafish. ISME J. 2011, 5, 1595–1608. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.D.; Phelan, G.; Dowd, S.E.; McDonough, M.M.; Ferguson, A.W.; Delton, H.J.; Siles, L.; Ordóñez-Garza, N.; San Francisco, M.; Baker, R.J. Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography. Mol. Ecol. 2012, 21, 2617–2627. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.G.; Powell, S.; Kronauer, D.J.; Vasconcelos, H.L.; Frederickson, M.E.; Pierce, N.E. Stability and phylogenetic correlation in gut microbiota: Lessons from ants and apes. Mol. Ecol. 2014, 23, 1268–1283. [Google Scholar] [CrossRef]
- Muegge, B.; Kuczynski, J.; Knights, D.; Clemente, J.; González, A.; Fontana, L.; Henrissat, B.; Knight, R.; Gordon, J. Diet Drives Convergence in Gut Microbiome Functions Across Mammalian Phylogeny and Within Humans. Science 2011, 332, 970–974. [Google Scholar] [CrossRef]
- Moiseienko, M.; Vlaschenko, A. Quantitative evaluation of individual food intake by insectivorous vespertilionid bats Chiroptera, Vespertilionidae. Biol. Open 2021, 106, bio058511. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Strobel, S.; Roswag, A.; Becker, N.I.; Trenczek, T.E.; Encarnação, J.A. Insectivorous bats digest chitin in the stomach using acidic mammalian chitinase. PLoS ONE 2013, 8, e72770. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Diane, S.D.; Yau, K.N.; Ee, L.C.; Yogis, A.; Wey, L.W.; Jayaraj, V.K. Isolation and identification of gastrointestinal microbiota from the short-nosed fruit bat Cynopterus brachyotis brachyotis. Microbiol. Res. 2013, 168, 485–496. [Google Scholar] [CrossRef]
- Zepeda Mendoza, M.L.; Xiong, Z.; Escalera-Zamudio, M.; Runge, A.K.; Thézé, J.; Streicker, D.; Frank, H.K.; Loza-Rubio, E.; Liu, S.; Ryder, O.A.; et al. Hologenomic adaptations underlying the evolution of sanguivory in the common vampire bat. Nat. Ecol. Evol. 2018, 2, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Song, S.J.; Sanders, J.G.; Baldassarre, D.T.; Chaves, J.A.; Johnson, N.S.; Piaggio, A.J.; Stuckey, M.J.; Nováková, E.; Metcalf, J.L.; Chomel, B.B.; et al. Is there convergence of gut microbes in blood-feeding vertebrates? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019, 374, 20180249. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, J.; Li, L.; Jiang, H.; Yuan, L.; Zhang, L.; Ma, J.E.; Zhang, X.; Cheng, M.; Chen, J. Fecal Bacteriome and Mycobiome in Bats with Diverse Diets in South China. Curr. Microbiol. 2018, 75, 1352–1361. [Google Scholar] [CrossRef] [PubMed]
- Kunz, T.H.; Diaz, C.A. Folivory in fruit-eating bats, with new evidence from Artibeus jamaicensis (Chiroptera: Phyllostomidae). Biotropica 1995, 27, 106–120. [Google Scholar] [CrossRef]
- Anders, J.L.; Mychajliw, A.M.; Moustafa, M.A.M.; Mohamed, W.M.A.; Hayakawa, T.; Nakao, R.; Koizumi, I. Dietary niche breadth influences the effects of urbanization on the gut microbiota of sympatric rodents. Ecol. Evol. 2022, 12, e9216. [Google Scholar] [CrossRef]
- Carrillo-Araujo, M.; Taş, N.; Alcántara-Hernández, R.J.; Gaona, O.; Schondube, J.E.; Medellín, R.A.; Jansson, J.K.; Falcón, L.I. Phyllostomid bat microbiome composition is associated to host phylogeny and feeding strategies. Front. Microbiol. 2015, 6, 447. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gaona, O.; Cerqueda-García, D.; Falcón, L.I.; Vázquez-Domínguez, G.; Valdespino-Castillo, P.M.; Neri-Barrios, C.X. Microbiota composition of the dorsal patch of reproductive male Leptonycteris yerbabuenae. PLoS ONE 2019, 1412, e0226239. [Google Scholar] [CrossRef]
- Gaona, O.; Gómez-Acata, E.S.; Cerqueda-García, D.; Neri-Barrios, C.X.; Falcón, L.I. Fecal microbiota of different reproductive stages of the central population of the lesser-long nosed bat, Leptonycteris yerbabuenae. PLoS ONE 2019, 147, e0219982. [Google Scholar] [CrossRef]
- Grisnik, M.; Bowers, O.; Moore, A.J.; Jones, B.F.; Campbell, J.R.; Walker, D.M. The cutaneous microbiota of bats has in vitro antifungal activity against the white nose pathogen. FEMS Microbiol. Ecol. 2020, 96, fiz193. [Google Scholar] [CrossRef] [PubMed]
- Hamm, P.S.; Dunlap, C.A.; Mullowney, M.W.; Caimi, N.A.; Kelleher, N.L.; Thomson, R.J.; Porras-Alfaro, A.; Northup, D.E. Streptomyces buecherae sp. nov., an actinomycete isolated from multiple bat species. Antonie Van Leeuwenhoek 2020, 113, 2213–2221. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; He, X.; Liu, Q.; Sun, Y.; Liu, H.; Zhang, Q.; Liang, J.; Peng, Z.; Liu, Z.; Zhang, L. Flight is the key to postprandial blood glucose balance in the fruit bats Eonycteris spelaea and Cynopterus sphinx. Ecol. Evol. 2017, 721, 8804–8811. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Luna, N.; Muñoz, M.; Castillo-Castañeda, A.; Hernandez, C.; Urbano, P.; Shaban, M.; Paniz-Mondolfi, A.; Ramírez, J.D. Characterizing the blood microbiota of omnivorous and frugivorous bats (Chiroptera: Phyllostomidae) in Casanare, eastern Colombia. PeerJ 2023, 11, e15169. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Darko, K.O.; Huang, Y.; He, C.; Yang, H.; He, S.; Li, J.; Li, J.; Hocher, B.; Yin, Y. Resistant Starch Regulates Gut Microbiota: Structure, Biochemistry and Cell Signalling. Cell Physiol. Biochem. 2017, 42, 306–318. [Google Scholar] [CrossRef] [PubMed]
- Berman, T.S.; Weinberg, M.; Moreno, K.R.; Czirják, G.Á.; Yovel, Y. In sickness and in health: The dynamics of the fruit bat gut microbiota under a bacterial antigen challenge and its association with the immune response. Front. Immunol. 2023, 14, 1152107. [Google Scholar] [CrossRef]
- Corduneanu, A.; Wu-Chuang, A.; Maitre, A.; Obregon, D.; Sándor, A.; Cabezas-Cruz, A. Structural differences in the gut microbiome of bats using terrestrial vs. aquatic feeding resources. BMC Microbiol. 2023, 23, 93. [Google Scholar] [CrossRef] [PubMed]
- Vengust, M.; Knapic, T.; Weese, J.S. The fecal bacterial microbiota of bats; Slovenia. PLoS ONE 2018, 13, e0196728. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, D.L.; Gao, Y.Z.; Ge, X.Y.; Shi, Z.L.; Zhou, N.Y. Special features of bat microbiota differ from those of terrestrial mammals. Front. Microbiol. 2020, 11, 504478. [Google Scholar] [CrossRef]
- Wu, H.; Xing, Y.; Sun, H.; Mao, X. Gut microbial diversity in two insectivorous bats: Insights into the effect of different sampling sources. Microbiol. Open 2019, 8, e670. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.D.; Kaufman, E.J.; Peel, A.J. Viral Co-Infection in Bats: A Systematic Review. Viruses 2023, 15, 1860. [Google Scholar] [CrossRef] [PubMed]
- Silva-Ramos, C.R.; Chala-Quintero, S.M.; Faccini-Martínez, Á.A.; Hidalgo, M.; Pulido-Villamarín, A.d.P.; Pérez-Torres, J.; Cuervo, C. Pathogenic Leptospira Species in Bats: Molecular Detection in a Colombian Cave. Trop. Med. Infect. Dis. 2022, 7, 84. [Google Scholar] [CrossRef] [PubMed]
- Becker, D.J.; Bergner, L.M.; Bentz, A.B.; Orton, R.J.; Altizer, S.; Streicker, D.G. Genetic diversity, infection prevalence, and possible transmission routes of Bartonella spp. in vampire bats. PLoS Negl. Trop. Dis. 2018, 12, e0006786. [Google Scholar] [CrossRef] [PubMed]
- Millán, J.; López-Roig, M.; Delicado, V.; Serra-Cobo, J.; Esperón, F. Widespread infection with hemotropic mycoplasmas in bats in Spain, including a hemoplasma closely related to “Candidatus Mycoplasma hemohominis”. Comp. Immunol. Microbiol. Infect. Dis. 2015, 39, 9–12. [Google Scholar] [CrossRef]
- Muñoz-Leal, S.; Faccini-Martínez, Á.A.; Pérez-Torres, J.; Chala-Quintero, S.M.; Herrera-Sepúlveda, M.T.; Cuervo, C.; Labruna, M.B. Novel Borrelia genotypes in bats from the Macaregua Cave, Colombia. Zoonoses Public Health. 2021, 68, 12–18. [Google Scholar] [CrossRef] [PubMed]
- De Rezende, M.B.; Herrera, H.M.; Carvalho, C.M.E.; Carvalho Anjos, E.A.; Ramos, C.A.N.; de Araújo, F.R.; Torres, J.M.; de Oliveira, C.E. Detection of Leishmania spp. in Bats from an Area of Brazil Endemic for Visceral Leishmaniasis. Transbound. Emerg. Dis. 2017, 64, e36–e42. [Google Scholar] [CrossRef] [PubMed]
- Vieira, T.M.; de Oliveira Silva, S.; Lima, L.; Sabino-Santos, G.; Duarte, E.R.; Lima, S.M.; Pereira, A.A.S.; Ferreira, F.C.; de Araújo, W.S.; Teixeira, M.M.G.; et al. Leishmania diversity in bats from an endemic area for visceral and cutaneous leishmaniasis in Southeastern Brazil. Acta Trop. 2022, 228, 106327. [Google Scholar] [CrossRef]
- Schaer, J.; Perkins, S.; Decher, J.; Leendertz, F.; Fahr, J.; Weber, N.; Matuschewski, K. High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa. Proc. Natl. Acad. Sci. USA 2013, 110, 17415–17419. [Google Scholar] [CrossRef]
- Jaimes-Dueñez, J.; Cantillo-Barraza, O.; Triana-Chávez, O.; Mejia-Jaramillo, A.M. Molecular surveillance reveals bats from eastern Colombia infected with Trypanosoma theileri and Trypanosoma wauwau-like parasites. Prev. Vet. Med. 2020, 184, 105159. [Google Scholar] [CrossRef]
- Nichols, M.D.; Lord, W.D.; Haynie, M.L.; Brennan, R.E.; Jackson, V.L.; Monterroso, W.S. Trypanosoma cruzi in a Mexican free-tailed bat (Tadarida brasiliensis) in Oklahoma, USA. J. Wildl. Dis. 2019, 55, 444–448. [Google Scholar] [PubMed]
- Hodo, C.L.; Goodwin, C.C.; Mayes, B.C.; Mariscal, J.A.; Waldrup, K.A.; Hamer, S.A. Trypanosome species, including Trypanosoma cruzi, in sylvatic and peridomestic bats of Texas, USA. Acta Trop. 2016, 164, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Bergner, L.M.; Becker, D.J.; Tello, C.; Carrera, J.E.; Streicker, D.G. Detection of Trypanosoma cruzi in the saliva of diverse neotropical bats. Zoonoses Public Health 2021, 68, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Torres-Castro, M.; Cuevas-Koh, N.; Hernández-Betancourt, S.; Noh-Pech, H.; Estrella, E.; Herrera-Flores, B.; Panti-May, J.A.; Waleckx, E.; Sosa-Escalante, J.; Peláez-Sánchez, R. Natural infection with Trypanosoma cruzi in bats captured in Campeche and Yucatán, México. Biomédica 2021, 41, 131–140. [Google Scholar] [CrossRef]
- Quiroga, N.; Campos-Soto, R.; Yañez-Meza, A.; Rodríguez-San Pedro, A.; Allendes, J.L.; Bacigalupo, A.; Botto-Mahan, C.; Correa, J.P. Trypanosoma cruzi DNA in Desmodus rotundus (common vampire bat) and Histiotus montanus (small big-eared brown bat) from Chile. Acta Trop. 2022, 225, 106206. [Google Scholar] [CrossRef]
- Cornelius Ruhs, E.; Chia, W.N.; Foo, R.; Peel, A.J.; Li, Y.; Larman, H.B.; Irving, A.T.; Wang, L.; Brook, C.E. Applications of VirScan to broad serological profiling of bat reservoirs for emerging zoonoses. Front. Public Health 2023, 11, 1212018. [Google Scholar] [CrossRef]
- Leigue Dos Santos, L.; Montiani-Ferreira, F.; Lima, L.; Lange, R.; de Barros Filho, I.R. Bacterial microbiota of the ocular surface of captive and free-ranging microbats: Desmodus rotundus, Diameus youngi and Artibeus lituratus. Vet. Ophthalmol. 2014, 17, 157–161. [Google Scholar] [CrossRef]
- Hassan, A. Evaluating the Role of Diet, Taxonomy, Sex, and Geography of the Oral and Rectal Microbiome of Puerto Rican Bats. Ph.D. Thesis, Power Point, Institue of the Environment (IOE) and Center for Environmental Sciences and Engineering (CESE) and Department of Ecology and Evolutionary Biology, University of Connecticut|UConn, Storrs, CT, USA, 2019. [Google Scholar]
- Alwin Prem Anand, A.; Chattopadhyay, B.; Kandula, S. Isolation and Characterization of Cellulose-Degrading and Xylanolytic Bacteria from the Short-Nosed Fruit Bat Cynopterus sphinx. Acta Chiropterologica 2012, 14, 233–239. [Google Scholar] [CrossRef]
- Gay, N.; Olival, K.J.; Bumrungsri, S.; Siriaroonrat, B.; Bourgarel, M.; Morand, S. Parasite and viral species richness of Southeast Asian bats: Fragmentation of area distribution matters. Int. J. Parasitol. Parasites Wildl. 2014, 3, 161–170. [Google Scholar] [CrossRef]
- Hatta, Y.; Omatsu, T.; Tsuchiaka, S.; Katayama, Y.; Taniguchi, S.; Masangkay, J.S.; Puentespina, R., Jr.; Eres, E.; Cosico, E.; Une, Y.; et al. Detection of Campylobacter jejuni in rectal swab samples from Rousettus amplexicaudatus in the Philippines. J. Vet. Med. Sci. 2016, 788, 1347–1350. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schuh, A.J.; Amman, B.R.; Guito, J.C.; Graziano, J.C.; Sealy, T.K.; Towner, J.S. Tick salivary gland components dampen Kasokero virus infection and shedding in its vertebrate reservoir, the Egyptian rousette bat Rousettus aegyptiacus. Parasites Vectors 2023, 16, 249. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Victoria, J.G.; Wang, C.; Jones, M.; Fellers, G.M.; Kunz, T.H.; Delwart, E. Bat guano virome: Predominance of dietary viruses from insects and plants plus novel mammalian viruses. J. Virol. 2010, 84, 6955–6965. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kudagammana, H.D.W.S.; Thevanesam, V.; Chu, D.K.W.; Eriyagama, N.B.; Peiris, J.S.M.; Noordeen, F. Coronaviruses in guano from Pteropus medius bats in Peradeniya, Sri Lanka. Transbound. Emerg. Dis. 2018, 65, 1122–1124. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fofanov, V.Y.; Furstenau, T.N.; Sanchez, D.; Hepp, C.M.; Cocking, J.; Sobek, C.; Pagel, N.; Walker, F.; Chambers, C.L. Guano exposed: Impact of aerobic conditions on bat fecal microbiota. Ecol. Evol. 2018, 8, 5563–5574. [Google Scholar] [CrossRef]
- Krutzsch, P.H.; Watson, R.H. Isolation of coccidioides immitis from bat guano and preliminary findings on laboratory infectivity of bats with Coccidioides immitis. Life Sci. 1978, 22, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.; Stombaugh, J.; Gordon, J.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef]
- Castillo, D.J.; Rifkin, R.F.; Cowan, D.A.; Potgieter, M. The Healthy Human Blood Microbiome: Fact or Fiction? Front. Cell. Infect. Microbiol. 2019, 9, 148. [Google Scholar] [CrossRef]
- Ramanantsalama, R.V.; Goodman, S.M.; Dietrich, M.; Lebarbenchon, C. Interaction between Old World fruit bats and humans: From large scale ecosystem services to zoonotic diseases. Acta Trop. 2022, 231, 106462. [Google Scholar] [CrossRef] [PubMed]
- Eby, P.; Peel, A.J.; Hoegh, A.; Madden, W.; Giles, J.R.; Hudson, P.J.; Plowright, R.K. Pathogen spillover driven by rapid changes in bat ecology. Nature 2023, 613, 340–344. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Latinne, A.; Nga, N.T.T.; Long, N.V.; Ngoc, P.T.B.; Thuy, H.B.; PREDICT Consortium; Long, N.V.; Long, P.T.; Phuong, N.T.; Quang, L.T.V.; et al. One Health Surveillance Highlights Circulation of Viruses with Zoonotic Potential in Bats, Pigs, and Humans in Viet Nam. Viruses 2023, 15, 790. [Google Scholar] [CrossRef]
- Esposito, M.M.; Turku, S.; Lehrfield, L.; Shoman, A. The Impact of Human Activities on Zoonotic Infection Transmissions. Animals 2023, 13, 1646. [Google Scholar] [CrossRef] [PubMed]
- Païssé, S.; Valle, C.; Servant, F.; Courtney, M.; Burcelin, R.; Amar, J.; Lelouvier, B. Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing. Transfusion 2016, 56, 1138–1147. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.M.; Segata, N. Multiple levels of the unknown in microbiome research. BMC Biol. 2019, 17, 48. [Google Scholar] [CrossRef] [PubMed]
- Bouilloud, M.; Galan, M.; Pradel, J.; Loiseau, A.; Ferrero, J.; Gallet, R.; Roche, B.; Charbonnel, N. Exploring the potential effects of forest urbanization on the interplay between small mammal communities and their gut microbiota. Anim. Microbiome 2024, 6, 16. [Google Scholar] [CrossRef]
- Mafra, D.; Borges, N.; Baptista, B.; Martins, L.; Borland, G.; Shiels, P.; Stenvinkel, P. What Can the Gut Microbiota of Animals Teach Us about the Relationship between Nutrition and Burden of Lifestyle Diseases? Nutrients 2024, 16, 1789. [Google Scholar] [CrossRef]
- Guy, C.; Ratcliffe, J.M.; Mideo, N. The influence of bat ecology on viral diversity and reservoir status. Ecol. Evol. 2020, 10, 5748–5758. [Google Scholar] [CrossRef]
- Forni, D.; Cagliani, R.; Clerici, M.; Sironi, M. Molecular evolution of human coronavirus genomes. Trends Microbiol. 2017, 25, 35–48. [Google Scholar] [CrossRef]
- Clayton, E.; Munir, M. Fundamental Characteristics of Bat Interferon Systems. Front. Cell Infect. Microbiol. 2020, 10, 527921. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Latinne, A.; Hu, B.; Olival, K.; Zhu, G.; Zhang, L.; Li, H.; Chmura, A.; Field, H.; Zambrana-Torrelio, C.; Epstein, J.H.; et al. Origin and cross-species transmission of bat coronaviruses in China. Nat. Commun. 2020, 11, 4235. [Google Scholar] [CrossRef]
- Poon, L.L.M.; Guan, Y.; Nicholls, J.M.; Yuen, K.Y.; Peiris, J.S.M. The aetiology, origins, and diagnosis of severe acute respiratory syndrome. Lancet Infect. Dis. 2004, 4, 663–671. [Google Scholar] [CrossRef]
- Boni, M.F.; Lemey, P.; Jiang, X.; Lam, T.T.; Perry, B.W.; Castoe, T.A.; Rambaut, A.; Robertson, D.L. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat. Microbiol. 2020, 5, 1408–1417. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Aravena, M.; McKee, C.; Gamble, A.; Lunn, T.; Morris, A.; Snedden, C.E.; Yinda, C.K.; Port, J.R.; Buchholz, D.W.; Yeo, Y.Y.; et al. Ecology, evolution and spillover of coronaviruses from bats. Nat. Rev. Microbiol. 2022, 20, 299–314. [Google Scholar] [CrossRef] [PubMed]
- Frutos, R.; Pliez, O.; Gavotte, L.; Devaux, C.A. There is no “origin” to SARS-CoV-2. Environ. Res. 2022, 207, 112173. [Google Scholar] [CrossRef]
- Dietrich, M.; Markotter, W. Studying the microbiota of bats: Accuracy of direct and indirect samplings. Ecol. Evol. 2019, 9, 1730–1735. [Google Scholar] [CrossRef]
- Bevans, A.I.; Fitzpatrick, D.M.; Stone, D.M.; Butler, B.P.; Smith, M.P.; Cheetham, S. Phylogenetic relationships and diversity of bat-associated Leptospira and the histopathological evaluation of these infections in bats from Grenada, West Indies. PLoS Neglected Trop. Dis. 2020, 14, e0007940. [Google Scholar] [CrossRef]
- Pereira, F.; Canata, D.; Salomon, T.; Hackenhaar, F.; Ramos Pereira, M.J.; Benfato, M.; Rampelotto, P. Oxidative Stress and Antioxidant Defense in the Heart, Liver, and Kidney of Bat Species with Different Feeding Habits. Int. J. Mol. Sci. 2023, 24, 16369. [Google Scholar] [CrossRef]
- Whitaker, J.O., Jr.; Dannelly, H.K.; Prentice, D.A. Chitinase in insectivorous bats. J. Mammal. 2004, 85, 15–18. [Google Scholar] [CrossRef]
- Veliz, E.A.; Martínez-Hidalgo, P.; Hirsch, A.M. Chitinase-producing bacteria and their role in biocontrol. AIMS Microbiol. 2017, 3, 689–705. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lemieux-Labonté, V.; Simard, A.; Willis, C.K.; Lapointe, F.J. Enrichment of beneficial bacteria in the skin microbiota of bats persisting with white-nose syndrome. Microbiome 2017, 5, 115. [Google Scholar] [CrossRef]
- Vanderwolf, K.J.; Campbell, L.J.; Taylor, D.R.; Goldberg, T.L.; Blehert, D.S.; Lorch, J.M. Mycobiome Traits Associated with Disease Tolerance Predict Many Western North American Bat Species Will Be Susceptible to White-Nose Syndrome. Microbiol. Spectr. 2021, 91, e0025421. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hoyt, J.R.; Kilpatrick, A.M.; Langwig, K.E. Ecology and impacts of white-nose syndrome on bats. Nat. Rev. Microbiol. 2021, 19, 196–210. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, C.J.; Polley, S. Genomic Insights into the Past, Current, and Future Evolution of Human Parasites of the Genus Plasmodium. In Genetics and Evolution of Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2017; pp. 487–507. [Google Scholar] [CrossRef]
- Perkins, S.L.; Schaer, J. A Modern Menagerie of Mammalian Malaria. Trends Parasitol. 2016, 32, 772–782. [Google Scholar] [CrossRef]
- Yang, Y.; Xin, S.; Murata, F.H.; Cerqueira-Cézar, C.K.; Kwok, O.C.; Su, C.; Dubey, J.P. Recent epidemiologic, clinical, subclinical and genetic diversity of Toxoplasma gondii infections in bats. Res. Vet. Sci. 2021, 140, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Maia, C.; Dantas-Torres, F.; Campino, L. Parasite biology: The reservoir hosts. In The Leishmaniases: Old Neglected Tropical Diseases; Springer: Cham, Switzerland, 2018; pp. 79–106. [Google Scholar]
- Dixon, B.R. Giardia duodenalis in humans and animals—Transmission and disease. Res. Vet. Sci. 2021, 135, 283–289. [Google Scholar] [CrossRef]
- Ryan, U.M.; Feng, Y.; Fayer, R.; Xiao, L. Taxonomy and molecular epidemiology of Cryptosporidium and Giardia—A 50 year perspective (1971–2021). Int. J. Parasitol. 2021, 51, 1099–1119. [Google Scholar] [CrossRef] [PubMed]
- Kváč, M.; Hořická, A.; Sak, B.; Prediger, J.; Salát, J.; Širmarová, J.; Bartonička, T.; Clark, M.; Chelladurai, J.R.; Gillam, E.; et al. Novel Cryptosporidium bat genotypes III and IV in bats from the USA and Czech Republic. Parasitol. Res. 2015, 114, 3917–3921. [Google Scholar] [CrossRef]
- Schiller, S.E.; Webster, K.N.; Power, M. Detection of Cryptosporidium hominis and novel Cryptosporidium bat genotypes in wild and captive Pteropus hosts in Australia. Infect. Genet. Evol. 2016, 44, 254–260. [Google Scholar] [CrossRef]
- Murakoshi, F.; Recuenco, F.C.; Omatsu, T.; Sano, K.; Taniguchi, S.; Masangkay, J.S.; Alviola, P.; Eres, E.; Cosico, E.; Alvarez, J.; et al. Detection and molecular characterization of Cryptosporidium and Eimeria species in Philippine bats. Parasitol. Res. 2016, 1155, 1863–1869. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.D.; Siobhon, E.; Yaoyu, F.; Lihua, X.; Una, R. How significant are bats as potential carriers of zoonotic Cryptosporidium and Giardia? Curr. Res. Parasitol. Vector-Borne Dis. 2023, 4, 100155. [Google Scholar] [CrossRef]
- Adhikari, R.B.; Maharjan, M.; Ghimire, T.R. Prevalence of Gastrointestinal Parasites in the Frugivorous and the Insectivorous Bats in Southcentral Nepal. J. Parasitol. Res. 2020, 2020, 8880033. [Google Scholar] [CrossRef]
- Suzuki, T. Links between Natural Variation in the Microbiome and Host Fitness in Wild Mammals. Integr. Comp. Biol. 2017, 57, 756–769. [Google Scholar] [CrossRef] [PubMed]
- Corrêa Scheffer, K.; Iamamoto, K.; Miyuki, A.K.; Mori, E.; Estevez, G.A.I.; Achkar, S.M.; Willian de Oliveira, F. Murciélagos hematófagos como reservorios de la rabia. Rev. Peru Med. Exp. Salud Publica 2014, 312, 302–309. [Google Scholar] [CrossRef]
- Wang, J.; Pan, Y.F.; Yang, L.F.; Yang, W.H.; Lv, K.; Luo, C.M.; Wang, J.; Kuang, G.P.; Wu, W.C.; Gou, Q.Y.; et al. Individual bat virome analysis reveals co-infection and spillover among bats and virus zoonotic potential. Nat. Commun. 2023, 14, 4079. [Google Scholar] [CrossRef] [PubMed]
- Geldenhuys, M.; Mortlock, M.; Weyer, J.; Bezuidt, O.; Seamark, E.C.J.; Kearney, T.; Gleasner, C.; Erkkila, T.H.; Cui, H.; Markotter, W. A metagenomic viral discovery approach identifies potential zoonotic and novel mammalian viruses in Neoromicia bats within South Africa. PLoS ONE 2018, 13, e0194527. [Google Scholar] [CrossRef]
- Ikegame, S.; Carmichael, J.C.; Wells, H.; Furler, R.L.; Acklin, J.A.; Chiu, H.P.; Oguntuyo, K.Y.; Cox, R.M.; Patel, A.R.; Kowdle, S.; et al. Zoonotic potential of a novel bat morbillivirus. bioRxiv 2021. [Google Scholar] [CrossRef]
- Reese, A.; Dunn, R. Drivers of Microbiome Biodiversity: A Review of General Rules, Feces, and Ignorance. mBio 2018, 9, 10-1128. [Google Scholar] [CrossRef]
- Hadjisterkotis, E. The destruction and conservation of the Egyptian Fruit bat Rousettus aegyptiacus in Cyprus: A historic review. Eur. J. Wildl. Res. 2006, 52, 282–287. [Google Scholar] [CrossRef]
- Islam, A.; Khan, A.K.M.; Choudhury, S.; Hasan, M.D.; Islam, S.; Munro, S.; Ibne Noman, M.Z.; Sayeed, M.A.; Chowdhury, N.; Dutta, P.; et al. Land use change drives bat roosting ecology and human-bat food competition on cultivated food resources promotes Nipah virus spillover to humans in Bangladesh. In Proceedings of the ASTMH 2023 Annual Meeting, Chicago, IL, USA, 18–22 October 2023. [Google Scholar]
- Rocha, R.; Aziz, S.A.; Brook, C.E.; Carvalho, W.D.; Cooper-Bohannon, R.; Frick, W.F.; Huang, J.C.C.; Kingston, T.; López-Baucells, A.; Maas, B.; et al. Bat conservation and zoonotic disease risk: A research agenda to prevent misguided persecution in the aftermath of COVID-19. Anim. Conserv. 2020, 24, 303–307. [Google Scholar] [CrossRef]
- Petit, S.; Scanlon, A.T.; Naikatini, A.; Pukala, T. Dillenia (Dilleniaceae) pollen heteromorphy and presentation, and implications for pollination by bats. Ecol. Evol. 2024, 14, e10997. [Google Scholar] [CrossRef]
- Long, E.; Racey, P.A. An exotic plantation crop as a keystone resource for an endemic megachiropteran, Pteropus rufus, in Madagascar. J. Trop. Ecol. 2007, 23, 397–407. [Google Scholar] [CrossRef]
- Hughes, M.; Braun de Torrez, E.; Buckner, E.; Ober, H. Consumption of endemic arbovirus mosquito vectors by bats in the southeastern United States. J. Vector Ecol. 2022, 47, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, I.; Razgour, O.; Rigal, F.; Whittaker, R. Landscape features drive insectivorous bat activity in Indian rice fields. Landsc. Ecol. 2023, 38, 1–16. [Google Scholar] [CrossRef]
- Parker, M.; Fritts, S.; Weaver, S.; Meierhofer, M.; Dutton, J. Inter-and intraspecific variability of total mercury concentrations in bats of Texas (USA). Environ. Res. 2024, 259, 119570. [Google Scholar] [CrossRef]
- Athar, F.; Zheng, Z.; Riquier, S.; Zacher, M.; Alcock, D.; Galazyuk, A.; Noelle Cooper, L.; Schountz, T.; Wang, L.F.; Teeling, E.C.; et al. Limited Cell-Autonomous Anticancer Mechanisms in Long-Lived Bats. bioRxiv 2024. [Google Scholar] [CrossRef]
- Presley, S.; Graf, J.; Hassan, A.; Sjodin, A.; Willig, M. Effects of Host Species Identity and Diet on the Biodiversity of the Microbiota in Puerto Rican Bats. Curr. Microbiol. 2021, 78, 3526–3540. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Li, Z.; Dai, W.; Parise, K.L.; Leng, H.; Jin, L.; Liu, S.; Sun, K.; Hoyt, J.R.; Feng, J. Bacterial community dynamics on bats and the implications for pathogen resistance. Environ. Microbiol. 2022, 24, 1484–1498. [Google Scholar] [CrossRef]
- Gonzalez, V.; Arinjay, B. Molecular, ecological, and behavioral drivers of the bat-virus relationship. iScience 2022, 25, 104779. [Google Scholar] [CrossRef]
- Guo, M.; Xie, S.; Wang, J.; Zhang, Y.; He, X.; Luo, P.; Deng, J.; Zhou, C.; Qin, J.; Huang, C.; et al. The difference in the composition of gut microbiota is greater among bats of different phylogenies than among those with different dietary habits. Front. Microbiol. 2023, 14, 1207482. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, H.; McComas, K.; Buttke, D.; Roh, S.; Wild, M. One Health messaging about bats and rabies: How framing of risks, benefits and attributions can support public health and wildlife conservation goals. Wildl. Res. 2017, 44, 200–206. [Google Scholar] [CrossRef]
- Petriello, M.; Edgeley, C.; Chambers, C.; Lee, M. Factors Influencing Support for Bat Management and Conservation in the Wildland-Urban Interface. Hum. Dimens. Wildl. 2024, 28, 170–186. [Google Scholar] [CrossRef]
- Chaves, V. Relationship between Human Disturbance and Bat Species Diversity in Urban Green Spaces in Costa Rica. Int. J. Biol. 2024, 4, 23–34. [Google Scholar] [CrossRef]
- Bochaton, C.; Picard, R.; Cochard, D.; Conche, V.; Lidour, K.; Arnaud, L. The recent history of an insular bat population reveals an environmental disequilibrium and conservation concerns. Novit. Caribaea 2023, 23, 22–50. [Google Scholar] [CrossRef]
Etiological Agent | Disease | |
---|---|---|
Bacteria | Bartonella spp. | Bartonellosis |
Pasteurella spp. | Pasteurellosis | |
Borrelia spp. | Borreliosis or Lyme disease | |
Leptospira spp. | Leptospirosis | |
Aeromonas hydrophila | Bloodstream infection | |
Rickettsia spp. | Rickettsiosis | |
Salmonella typhi | Typhoid fever | |
Fungi | Histoplasma capsulatum | Histoplasmosis |
Coccidioides spp. | Coccidioidomycosis or valley fever | |
Candida spp. | Candidiasis | |
Cryptococcus spp. | Cryptococcal diseases including meningitis | |
Protozoa | Babesia spp. | Babesiosis |
Entamoeba histolytica | Amoebiasis | |
Trypanosoma cruzi | Chagas disease | |
Plasmodium spp. | Malaria | |
Cryptosporidium spp. | Cryptosporidiosis | |
Leishmania spp. | Leishmaniasis | |
Toxoplasma spp. | Toxoplasmosis | |
Giardia spp. | Giardiasis | |
Viruses | Henipavirus hendraense | Paramyxovirosis |
Henipavirus nipahense | Paramyxovirosis | |
SARS coronavirus, SARS-CoV-2 | Coronavirosis | |
MERS coronavirus | Beta-coronavirosis | |
Ebola virus and Marburg virus | Filovirosis |
Insectivorous | Frugivorous/Nectarivorous | Piscivorous | Hematophagous | Omnivorous | |
---|---|---|---|---|---|
Adenoviridae | • | • | |||
Alfainfluenzavirus | • | ||||
Alphavirus | • | ||||
Astrovirus | • | ||||
Bacteriophage | • | ||||
Betainfluenzavirus | • | ||||
Betapapillomavirus | • | ||||
Bunyaviridae | • | • | |||
Caliciviridae | |||||
Chordopoxvirinae | • | ||||
Circoviridae | • | ||||
Coronaviridae | • | • | • | ||
Equine encephalitis virus | • | ||||
Filoviridae | • | ||||
Gammaretrovirus | • | ||||
Hepatovirus | • | ||||
Herpesviridae | • | • | |||
Lloviu Virus | • | ||||
Lyssavirus | • | • | • | • | |
Mammarenavirus | • | ||||
Mastadenovirus | • | • | |||
Metapneumovirus | • | ||||
Morbillivirus | • | ||||
Nairoviridae | • | ||||
Orthopoxvirus | • | ||||
Paramyxoviridae | • | ||||
Paramyxovirus | • | ||||
Picornaviridae | • | ||||
Picornaviridae | • | • | |||
Porcine endogenous retrovirus | • | ||||
Roseolovirus | • | ||||
Rotavirus | • | • | |||
Totivirus-like | • | ||||
a, b-Coronaviridae | • | • |
Insectivorous | Frugivorous/ Nectarivorous | Piscivorous | Hematophagous | Omnivorous | |
---|---|---|---|---|---|
Acidobacteriota | • | ||||
Aeromonas | • | ||||
Aeromonas hydrophila | • | ||||
Anaplasma | • | ||||
Anaplasma phagocytophilum | • | ||||
Bacillus | • | ||||
Bacillus cereus | • | ||||
Bacteroidota | • | ||||
Bartonella | • | • | • | ||
Burkholderia | • | ||||
Campylobacter coli | • | ||||
Campylobacter jejuni | • | ||||
Campylobacterota | • | ||||
Cetobacterium | • | ||||
Citrobacter | • | ||||
Ehrlichia | • | ||||
Enterobacter | • | ||||
Enterococcus | • | • | |||
Enterococcus faecalis | • | ||||
Escherichia | • | ||||
Firmicutes | • | • | |||
Fructobacillus | • | ||||
Gemella | • | ||||
Helicobacter | • | ||||
Hhemoplasms | • | ||||
Klebsiella | • | ||||
Lactobacillus | • | ||||
Lactococcus | • | ||||
Mycoplasma | • | ||||
Neisseriaceae | • | ||||
Neorickettsia | • | ||||
Paeniclostridium | • | ||||
Pantoea agglomerans | • | ||||
Paraclostridium | • | ||||
Pasteurellaceae | • | ||||
Photobacterium | • | ||||
Plesiomonas | • | • | |||
Pseudomonas aeruginosa | • | ||||
Staphylococcacee | • | ||||
Staphylococcus aureus | • | ||||
Staphylococcus saprophyticus | • | ||||
Tenericutes | • | ||||
Undibacterium | • | ||||
Ureaplasma | • | ||||
Weissella | • | ||||
Yersiniaceae | • |
Insectivorous | Frugivorous/Nectarivorous | Piscivorous | Hematophagous | Omnivorous | |
---|---|---|---|---|---|
Ajellomycetaceae | • | ||||
Alternaria alternata | • | ||||
Amycolatopsis mediterranei | • | ||||
Ascomycota | • | • | |||
Aspergillus flavus | • | ||||
Aspergillus spp. | • | • | |||
Basidiomycota | • | • | |||
Candida albicans | • | ||||
Candida glabrata | • | ||||
Candida parapsilosis | • | ||||
Candida spp. | • | • | |||
Cryptococcus spp. | • | • | |||
Cutaneotrichosporon moniliiforme | • | ||||
Debaryomyces hansenii | • | ||||
Debaryomyces spp. | • | ||||
Fusarium spp. | • | ||||
Histoplasma capsulatum | • | ||||
Penicillium spp. | • | ||||
Pneumocystis | • | ||||
Scopulariopsis spp. | • |
Insectivorous | Frugivorous/Nectarivorous | Piscivorous | Hematophagous | Omnivorous | |
---|---|---|---|---|---|
Acanthamoeba castellanii | • | ||||
Cryptosporidiidae | • | ||||
Cryptosporidium spp. | • | ||||
Cryptosporidium spp. | • | • | |||
Eimeria spp. | • | • | |||
Entamoeba spp. | • | • | |||
Giardia spp. | • | • | |||
Isospora spp. | • | ||||
Sarcocystis glareoli | • |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazzoni, E.; Cacciotto, C.; Zobba, R.; Pittau, M.; Martella, V.; Alberti, A. Bat Ecology and Microbiome of the Gut: A Narrative Review of Associated Potentials in Emerging and Zoonotic Diseases. Animals 2024, 14, 3043. https://doi.org/10.3390/ani14203043
Bazzoni E, Cacciotto C, Zobba R, Pittau M, Martella V, Alberti A. Bat Ecology and Microbiome of the Gut: A Narrative Review of Associated Potentials in Emerging and Zoonotic Diseases. Animals. 2024; 14(20):3043. https://doi.org/10.3390/ani14203043
Chicago/Turabian StyleBazzoni, Emanuela, Carla Cacciotto, Rosanna Zobba, Marco Pittau, Vito Martella, and Alberto Alberti. 2024. "Bat Ecology and Microbiome of the Gut: A Narrative Review of Associated Potentials in Emerging and Zoonotic Diseases" Animals 14, no. 20: 3043. https://doi.org/10.3390/ani14203043
APA StyleBazzoni, E., Cacciotto, C., Zobba, R., Pittau, M., Martella, V., & Alberti, A. (2024). Bat Ecology and Microbiome of the Gut: A Narrative Review of Associated Potentials in Emerging and Zoonotic Diseases. Animals, 14(20), 3043. https://doi.org/10.3390/ani14203043