A New Species of the Cyrtodactylus pulchellus Group (Squamata: Gekkonidae) from Surat Thani Province, Thailand Underscores This Group’s Remarkable Diversity on the Thai-Malay Peninsula †
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Molecular Analyses
2.3. Morphological Measurement
2.4. Statistical Analyses
3. Results
3.1. Phylogenetic Relationships
3.2. Morphology
3.3. Systematic Account
3.3.1. Diagnosis
3.3.2. Description of Holotype
3.3.3. Color of Holotype in Life
3.3.4. Color of Holotype in Preservative
3.3.5. Morphological Variation
3.3.6. Distribution and Natural History
3.3.7. Comparisons
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SVL | Snout–vent length, taken from the tip of snout to the vent; |
TW | Tail width, taken at the base of the tail immediately posterior to the postcloacal swelling; |
TL | Tail length, taken from vent to the tip of the tail, original or regenerated; |
FL | Forearm length, taken from the posterior margin of the elbow while flexed 90° to the inflection of the flexed wrist; |
TBL | Tibia length, taken from the posterior surface of the knee while flexed 90° to the base of the heel; |
AG | Axilla to groin length, taken from the posterior margin of the forelimb at its insertion point on the body to the anterior margin of the hind limb at its insertion point on the body; |
HL | Head length, the distance from the posterior margin of the retroarticular process of the lower jaw to the tip of the snout; |
HW | Head width, measured at the angle of the jaws; |
HD | Head depth, the maximum height of head from the occiput to the throat; |
ED | Eye diameter, the greatest horizontal diameter of the eyeball; |
EE | Eye to ear distance, measured from the anterior edge of the ear opening to the posterior edge of the eyeball; |
ES | Eye to snout distance, measured from anterior most margin of the eyeball to the tip of snout; |
EN | Eye to nostril distance, measured from the anterior margin of the eyeball to the posterior margin of the external nares; |
IO | Inter orbital distance, measured between the anterior edges of the orbit; |
EL | Ear length, the greatest vertical distance of the ear opening; |
IN | Internarial distance, measured between the nares across the rostrum. |
SL | Supralabial scales, counted from the largest scale immediately posterior to the dorsal inflection of the posterior portion of the upper jaw to the rostral scale; |
SL-mideye | The numbers of supralabial scales, counted from the largest scale immediately below the middle of the eyeball to the rostral scales; |
IL | Infralabial scales, counted from the largest scale immediately posterior to the dorsal inflection of the posterior portion of the upper jaw to the mental scale; |
IL-mideye | The numbers of infralabial scales, counted from the largest scale immediately below the middle of the eyeball to the mental scales; |
PVT | The number of paravertebral tubercles between limb insertions, counted in a straight line immediately left or right of the vertebral column; |
LRT | The number of longitudinal rows of body tubercles, counted transversely across the center of the dorsum from one ventrolateral fold to the other; |
VS | The number of longitudinal rows of ventral scales, counted transversely across the center of the abdomen from one ventrolateral fold to the other; |
4FLU | The number of small, unmodified subdigital lamellae distal to the digital inflection on the fourth finger, counted from the digital inflection to the claw; |
4FLE | The number of expanded subdigital lamellae proximal to the digital inflection on the fourth finger, counted from the base of the first phalanx where it contacts the body of the hand to the largest scale on the digital inflection; |
4FL | The total number of subdigital lamellae beneath the fourth finger (4FLU + 4FLE); |
4TLU | The number of small, unmodified subdigital lamellae distal to the digital inflection on the fourth toe, counted from the digital inflection to the claw; |
4TLE | The number of expanded subdigital lamellae proximal to the digital inflection on the fourth toe, counted from the base of the first phalanx where it contacts the body of the foot to the largest scale on the digital inflection; |
4TL | The total number of subdigital lamellae beneath the fourth toe (4TLU + 4TLE); |
FPP | The total number of precloacal and femoral pores in male (i.e., the sum of the number of femoral and precloacal scales bearing pores combined as a single meristic referred to as the femoroprecloacal pores); |
PCT | The number of rows and total number of postcloacal (hemipenial) tubercles in adult male; |
BB | The number of dark body bands between nuchal loop and hind limb insertions; |
LCB | The number of light caudal bands on the original tail; |
DCB | The number of dark caudal bands on the original tail. |
References
- Grismer, L.L.; Wood, P.L., Jr.; Le, M.D.; Quah, E.S.; Grismer, J.L. Evolution of habitat preference in 243 species of Bent-toed geckos (Genus Cyrtodactylus Gray, 1827) with a discussion of karst habitat conservation. Ecol. Evol. 2020, 10, 13717–13730. [Google Scholar] [CrossRef] [PubMed]
- Grismer, L.L.; Wood, P.L.; Poyarkov, N.A.; Le, M.D.; Kraus, F.; Agarwal, I.; Oliver, P.M.; Nguyen, S.N.; Nguyen, T.Q.; Karunarathna, S. Phylogenetic partitioning of the third-largest vertebrate genus in the world, Cyrtodactylus Gray, 1827 (Reptilia; Squamata; Gekkonidae) and its relevance to taxonomy and conservation. Vertebr. Zool. 2021, 71, 101–154. [Google Scholar] [CrossRef]
- Grismer, L.L.; Wood, P.L., Jr.; Poyarkov, N.A.; Le, M.D.; Karunarathna, S.; Chomdej, S.; Suwannapoom, C.; Qi, S.; Liu, S.; Che, J. Karstic landscapes are foci of species diversity in the world’s third-largest vertebrate genus Cyrtodactylus Gray, 1827 (Reptilia: Squamata; Gekkonidae). Diversity 2021, 13, 183. [Google Scholar] [CrossRef]
- Ahda, Y.; Nugraha, F.A.D.; Tjong, D.H.; Kurniawan, N.; Amardi, Y.; Fauzi, M.A.; Lin, S.M. A new species of the Cyrtodactylus quadrivirgatus complex (Chordata, Reptilia, Squamata, Gekkonidae) from Sumatra Barat, Indonesia. ZooKeys 2023, 1168, 367–368. [Google Scholar] [CrossRef] [PubMed]
- Boruah, B.; Narayanan, S.; Aravind, N.A.; Lalronunga, S.; Deepak, V.; Das, A. Description of six new species of Cyrtodactylus Gray (Squamata: Gekkonidae) from northeastern India. Vertebr. Zool. 2024, 74, 453–486. [Google Scholar] [CrossRef]
- Grismer, L.L.; Pawangkhanant, P.; Idiiatullina, S.S.; Trofimets, A.V.; Nazarov, R.A.; Suwannapoom, C.; Poyarkov, N.A. A new species of Cyrtodactylus Gray, 1827 (Squamata: Gekkonidae) from the Thai-Malay Peninsula and the independent evolution of cave ecomorphology on opposite sides of the Gulf of Thailand. Zootaxa 2023, 5352, 109–136. [Google Scholar] [CrossRef]
- Grismer, L.L.; Aowphol, A.; Grismer, J.L.; Aksornneam, A.; Quah, E.S.; Murdoch, M.L.; Gregory, J.J.; Nguyen, E.; Kaatz, A.; Bringsoe, H.; et al. A new species of the Cyrtodactylus chauquangensis group (Squamata, Gekkonidae) from the borderlands of extreme northern Thailand. ZooKeys 2024, 1203, 211–238. [Google Scholar] [CrossRef]
- Uetz, P.; Freed, P.; Hošek, J. The Reptile Database. Available online: http://www.reptiledatabase.org (accessed on 31 August 2024).
- Ampai, N.; Rujirawan, A.; Yodthong, S.; Termprayoon, K.; Stuart, B.L.; Aowphol, A. A new species of karst-dwelling bent-toed gecko of the Cyrtodactylus intermedius group (Squamata, Gekkonidae) from eastern Thailand and the phylogenetic placement of C. intermedius. ZooKey 2024, 1211, 101–130. [Google Scholar] [CrossRef]
- Chhin, S.; Neang, T.; Chan, S.; Kong, K.; Ou, R.; Samorn, V.; Sor, R.; Lou, V.; Sin, S.; Chhim, M. A new species in the Cyrtodactylus intermedius (Squamata: Gekkonidae) group from an isolated limestone karst formation in southwestern Cambodia. Zootaxa 2024, 5474, 1–20. [Google Scholar] [CrossRef]
- Pauwels, O.S.G.; Chotjuckdikul, N.; Donbundit, N.; Sumontha, M.; Meesook, W. Cyrtodactylus panitvongi, a new cave-dwelling Bent-toed Gecko from Lopburi Province, central Thailand (Squamata: Gekkonidae). Zootaxa 2024, 5512, 373–388. [Google Scholar] [CrossRef]
- Sumontha, M.; Panitvong, N.; Kunya, K.; Donbundit, N.; Suthanthangjai, W.; Suthanthangjai, M.; Phanamphon, E.; Pauwels, O.S.G. Two new cave-dwelling species of Bent-toed Geckos from Saraburi and Loei provinces, Thailand (Squamata: Gekkonidae: Cyrtodactylus). Zootaxa 2024, 5512, 272–294. [Google Scholar] [CrossRef]
- Grismer, L.L.; Poyarkov, N.A.; Quah, E.S.; Grismer, J.L.; Wood, P.L., Jr. The biogeography of bent-toed geckos, Cyrtodactylus (Squamata: Gekkonidae). PeerJ 2022, 10, e13153. [Google Scholar] [CrossRef] [PubMed]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2020, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Grismer, L.L.; Wood, P.L., Jr.; Quah, E.S.; Anuar, S.; Muin, M.A.; Sumontha, M.; Ahmad, N.; Bauer, A.M.; Wangkulangkul, S.; Grismer, J.L. A phylogeny and taxonomy of the Thai-Malay Peninsula Bent-toed Geckos of the Cyrtodactylus pulchellus complex (Squamata: Gekkonidae): Combined morphological and molecular analyses with descriptions of seven new species. Zootaxa 2012, 3520, 1–55. [Google Scholar] [CrossRef]
- Grismer, L.L.; Wood, P.L., Jr.; Anuar, S.; Quah, E.S.; Muin, M.A.; Mohamed, M.; Chan, K.; Sumarli, A.X.; Loredo, A.I.; Heinz, H.M. The phylogenetic relationships of three new species of the Cyrtodactylus pulchellus complex (Squamata: Gekkonidae) from poorly explored regions in northeastern Peninsular Malaysia. Zootaxa 2014, 3786, 359–381. [Google Scholar] [CrossRef] [PubMed]
- Grismer, L.L.; Wood, P.L., Jr.; Anuar, S.; Grismer, M.S.; Quah, E.S.; Murdoch, M.L.; Muin, M.A.; Davis, H.R.; Aguilar, C.; Klabacka, R.; et al. Two new Bent-toed Geckos of the Cyrtodactylus pulchellus complex from Peninsular Malaysia and multiple instances of convergent adaptation to limestone forest ecosystems. Zootaxa 2016, 4105, 401–429. [Google Scholar] [CrossRef]
- Quah, E.S.; Grismer, L.L.; Wood Jr, P.J.; SA, M.S. The discovery and description of a new species of Bent-toed Gecko of the Cyrtodactylus pulchellus complex (Squamata: Gekkonidae) from the Langkawi Archipelago, Kedah, Peninsular Malaysia. Zootaxa 2019, 4668, zootaxa-4668.1.3. [Google Scholar] [CrossRef]
- Wood, P.L., Jr.; Grismer, L.L.; Muin, M.A.; Anuar, S.; Oaks, J.R.; Sites, J.W., Jr. A new potentially endangered limestone-associated Bent-toed Gecko of the Cyrtodactylus pulchellus (Squamata: Gekkonidae) complex from northern Peninsular Malaysia. Zootaxa 2020, 4751, 437–460. [Google Scholar] [CrossRef]
- Termprayoon, K.; Rujirawan, A.; Ampai, N.; Wood, P.L., Jr.; Aowphol, A. A new insular species of the Cyrtodactylus pulchellus group (Reptilia, Gekkonidae) from Tarutao Island, southern Thailand revealed by morphological and genetic evidence. ZooKeys 2021, 1070, 101–134. [Google Scholar] [CrossRef]
- Termprayoon, K.; Rujirawan, A.; Grismer, L.L.; Wood, P.L., Jr.; Aowphol, A. Two new karst-adapted species in the Cyrtodactyluspulchellus group (Reptilia, Gekkonidae) from southern Thailand. ZooKeys 2023, 1179, 313–352. [Google Scholar] [CrossRef]
- Grismer, L.L. Lizards of Peninsular Malaysia, Singapore, and Their Adjacent Archipelagos: Their Description, Distribution, and Natural History, 1st ed.; Edition Chimaira: Frankfurt, Germany, 2011; p. 728. [Google Scholar]
- Macey, J.R.; Larson, A.; Ananjeva, N.B.; Papenfuss, T.J. Evolutionary shifts in three major structural features of the mitochondrial genome among iguanian lizards. J. Mol. Evol. 1997, 44, 660–674. [Google Scholar] [CrossRef] [PubMed]
- Wood, P.L., Jr.; Heinicke, M.P.; Jackman, T.R.; Bauer, A.M. Phylogeny of bent-toed geckos (Cyrtodactylus) reveals a west to east pattern of diversification. Mol. Phylogenet. Evol. 2012, 65, 992–1003. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Trifinopoulos, J.; Nguyen, L.T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016, 44, W232–W235. [Google Scholar] [CrossRef] [PubMed]
- Hoang, D.T.; Chernomor, O.; Von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; IEEE: New York, NY, USA, 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 28 June 2023).
- Thorpe, R. Quantitative handling of characters useful in snake systematics with particular reference to intraspecific variation in the ringed snake Natrix natrix (L.). Biol. J. Linn. Soc. 1975, 7, 27–43. [Google Scholar] [CrossRef]
- Thorpe, R. A review of the numerical methods for recognising and analysing racial differentiation. Numer. Taxon. 1983, 1, 404–423. [Google Scholar] [CrossRef]
- Turan, C. A note on the examination of morphometric differentiation among fish populations: The truss system. Turk. J. Zool. 1999, 23, 259–264. [Google Scholar]
- Lleonart, J.; Salat, J.; Torres, G.J. Removing allometric effects of body size in morphological analysis. J. Theor. Biol. 2000, 205, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.O.; Grismer, L.L. A standardized and statistically defensible framework for quantitative morphological analyses in taxonomic studies. Zootaxa 2021, 5023, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Reist, J.D. An empirical evaluation of several univariate methods that adjust for size variation in morphometric data. Can. J. Zool. 1985, 63, 1429–1439. [Google Scholar] [CrossRef]
- McCoy, M.W.; Bolker, B.M.; Osenberg, C.W.; Miner, B.G.; Vonesh, J.R. Size correction: Comparing morphological traits among populations and environments. Oecologia 2006, 148, 547–554. [Google Scholar] [CrossRef]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Available online: https://ggplot2.tidyverse.org (accessed on 28 June 2023).
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. R Package for Community Ecologists: Popular Ordination Methods, Ecological Null Models and Diversity Analysis. Available online: https://github.com/vegandevs/vegan (accessed on 27 August 2024).
- Department of Mineral Resources. Geological Map of Thailand, Scale 1:50,000 (F4926IV Sheet 4926IV Ban Wang Ri); Department of Mineral Resources: Bangkok, Thailand, 2011.
- Ngo, H.T.; Do, Q.H.; Do, D.T.; Bui, T.P.T.; Ho, A.T.N.; Nguyen, T.Q.; Ziegler, T.; Le, M.D. Another new species of Cyrtodactylus (Squamata: Gekkonidae) from Binh Dinh Province, south-central Vietnam. Zootaxa 2024, 5446, 105–120. [Google Scholar] [CrossRef]
- Termprayoon, K.; Rujirawan, A.; Grismer, L.L.; Wood, P.L., Jr.; Aowphol, A. Taxonomic reassessment and phylogenetic placement of Cyrtodactylus phuketensis (Reptilia, Gekkonidae) based on morphological and molecular evidence. ZooKeys 2021, 1040, 91–121. [Google Scholar] [CrossRef]
- Sabaj, M.H. Codes for natural history collections in ichthyology and herpetology. Copeia 2020, 108, 593–669. [Google Scholar] [CrossRef]
Species | n | Cyrtodactylus kanchanadit sp. nov. | C. astrum | C. dayangbuntingensis | C. langkawiensis | C. lekaguli | C. stellatus | C. sungaiupe | C. wangkhramensis |
---|---|---|---|---|---|---|---|---|---|
Cyrtodactylus kanchanadit sp. nov. | 4 | 1.23 (0.52–1.78) | |||||||
C. astrum | 12 | 9.29 (8.59–10.93) | 1.43 (0.00–3.10) | ||||||
C. dayangbuntingensis | 3 | 8.56 (7.99–9.11) | 9.65 (9.25–10.84) | 0.15 (0.07–0.22) | |||||
C. langkawiensis | 10 | 8.91 (8.28–10.06) | 10.32 (9.68–12.63) | 7.71 (7.32–8.88) | 0.67 (0.00–1.88) | ||||
C. lekaguli | 5 | 4.53 (3.97–5.55) | 9.64 (8.99–11.33) | 8.65 (8.45–8.98) | 9.60 (9.20–10.86) | 0.63 (0.00–1.35) | |||
C. stellatus | 5 | 8.80 (8.09–9.89) | 10.46 (9.79–12.24) | 9.58 (9.30–10.40) | 10.67 (10.17–12.49) | 9.41 (8.83–10.53) | 0.52 (0.08–1.12) | ||
C. sungaiupe | 7 | 9.13 (8.58–9.84) | 9.87 (9.31–10.84) | 8.29 (8.20–8.35) | 9.17 (8.79–10.36) | 8.87 (8.68–9.21) | 9.97 (9.65–10.55) | 0.02 (0.00–0.07) | |
C. wangkhramensis | 7 | 9.36 (8.73–10.18) | 9.82 (9.09–11.07) | 7.82 (7.53–8.16) | 8.60 (8.19–9.65) | 9.08 (8.90–9.36) | 9.99 (9.44–11.14) | 6.74 (6.55–6.89) | 0.31 (0.00–0.59) |
PC1 | PC2 | PC3 | |
---|---|---|---|
SVLadj | 0.038 | −0.163 | −0.144 |
TWadj | 0.857 | 0.098 | −0.076 |
FLadj | 0.379 | −0.475 | 0.427 |
TBLadj | 0.431 | 0.056 | −0.033 |
AGadj | 0.283 | −0.653 | −0.094 |
HLadj | 0.389 | 0.302 | 0.604 |
HWadj | 0.854 | 0.173 | −0.132 |
HDadj | 0.294 | 0.602 | −0.556 |
EDadj | −0.109 | 0.285 | 0.659 |
EEadj | 0.576 | 0.307 | −0.366 |
ESadj | 0.689 | 0.544 | 0.214 |
ENadj | 0.639 | 0.402 | 0.254 |
IOadj | −0.295 | 0.490 | 0.173 |
ELadj | 0.070 | −0.376 | −0.017 |
INadj | 0.833 | −0.296 | −0.140 |
SL | 0.552 | −0.090 | 0.094 |
IL | 0.576 | −0.275 | −0.118 |
PVT | −0.610 | 0.381 | −0.137 |
LRT | 0.196 | 0.129 | −0.519 |
VS | 0.145 | 0.570 | 0.074 |
4TL | −0.221 | 0.322 | 0.231 |
BB | 0.440 | −0.310 | 0.471 |
Eigenvalue | 5.436 | 3.046 | 2.228 |
Percent of variance | 24.707 | 13.845 | 10.127 |
Cumulative proportion | 24.707 | 38.553 | 48.679 |
Characters | Cyrtodactylus kanchanadit sp. nov. | C. lekaguli | t | p | ||
---|---|---|---|---|---|---|
n = 6 | n = 24 | |||||
SVLadj | 2.00 ± 0.03 | (1.97–2.04) | 2.00 ± 0.03 | (1.9–2.04) | 73.500 b | 0.9586 |
TWadj | 0.95 ± 0.12 | (0.77–1.04) | 0.83 ± 0.06 | (0.71–0.95) | 33.000 b | 0.0459 * |
FLadj | 1.24 ± 0.01 | (1.22–1.25) | 1.20 ± 0.02 | (1.18–1.23) | −4.632 | <0.0001 * |
TBLadj | 1.28 ± 0.01 | (1.27–1.29) | 1.27 ± 0.02 | (1.22–1.30) | −1.522 | 0.1393 |
AGadj | 1.69 ± 0.01 | (1.68–1.70) | 1.67 ± 0.02 | (1.62–1.71) | −3.944 a | 0.0007 * |
HLadj | 1.47 ± 0.01 | (1.45–1.48) | 1.45 ± 0.01 | (1.43–1.48) | −2.656 | 0.0129 * |
HWadj | 1.30 ± 0.01 | (1.28–1.31) | 1.29 ± 0.02 | (1.25–1.32) | −1.331 | 0.1939 |
HDadj | 1.05 ± 0.02 | (1.01–1.06) | 1.06 ± 0.02 | (1.02–1.09) | 1.243 | 0.2242 |
EDadj | 0.83 ± 0.01 | (0.81–0.85) | 0.82 ± 0.03 | (0.77–0.90) | −1.013 | 0.3195 |
EEadj | 0.91 ± 0.02 | (0.87–0.93) | 0.90 ± −0.02 | (0.77–0.90) | −0.380 | 0.6995 |
ESadj | 1.07 ± 0.02 | (1.06–1.09) | 1.06 ± 0.01 | (1.03–1.09) | −1.890 | 0.0692 |
ENadj | 0.95 ± 0.02 | (0.93–0.97) | 0.94 ± 0.02 | (0.91–0.99) | −1.569 | 0.1280 |
IOadj | 0.85 ± 0.02 | (0.83–0.87) | 0.85 ± 0.03 | (0.79–0.94) | 0.264 | 0.7936 |
ELadj | 0.29 ± 0.04 | (0.2–0.32) | 0.27 ± 0.07 | (0.13–0.37) | −0.617 | 0.5422 |
INadj | 0.55 ± 0.03 | (0.51–0.60) | 0.51 ± 0.04 | (0.40–0.56) | 29.000 b | 0.0275 * |
SL | 13.00 ± 1.10 | (12–15) | 11.63 ± 1.13 | (9–14) | −2.671 | 0.0125 * |
IL | 10.83 ± 0.75 | (10–12) | 10.13 ± 1.57 | (7–13) | −1.065 | 0.2960 |
PVT | 32.33 ± 2.07 | (29–35) | 37.38 ± 4.33 | (31–49) | 127.000 b | 0.0045 * |
LRT | 21.33 ± 1.75 | (18–23) | 21.92 ± 1.1 | (20–25) | 79.500 b | 0.7018 |
VS | 35.33 ± 1.75 | (32–37) | 37.08 ± 3.96 | (31–47) | 1.623 a | 0.1210 |
4TL | 21.67 ± 0.82 | (21–23) | 21.42 ± 1.18 | (19–23) | 67.000 b | 0.8077 |
BB | 5.00 ± 0.00 | (5) | 4.00 ± 0.29 | (3–5) | 3.000 b | <0.0001 * |
ZMKU R 01091 | ZMKU R 01092 | ZMKU R 01093 | ZMKU R 01094 | ZMKU R 01095 | ZMKU R 01096 | |
---|---|---|---|---|---|---|
Type series | H | P | P | P | P | P |
Sex | M | M | M | F | F | M |
SVL | 101.1 | 101.1 | 94.5 | 108.5 | 108.2 | 92.5 |
Tail condition | Re | Re | Re | Re | Re | Re |
TL | 135.8 | 107.2 | 98.4 | 112.9 | 91.9 | 81.8 |
TW | 10.8 | 10.7 | 10.3 | 10.7 | 10.6 | 7.0 |
FL | 16.6 | 17.0 | 16.8 | 18.4 | 18.0 | 16.8 |
TBL | 19.4 | 18.7 | 18.1 | 20.0 | 19.3 | 18.2 |
AG | 48.9 | 49.1 | 46.1 | 55.3 | 52.4 | 43.4 |
HL | 29.5 | 29.6 | 28.1 | 29.9 | 31.7 | 27.7 |
HW | 20.4 | 20.2 | 18.8 | 21.1 | 20.4 | 17.6 |
HD | 11.6 | 11.4 | 10.5 | 12.2 | 10.9 | 10.1 |
ED | 6.7 | 6.9 | 6.1 | 7.2 | 7.8 | 6.1 |
EE | 8.2 | 8.4 | 8.0 | 8.6 | 7.6 | 7.6 |
ES | 12.4 | 12.3 | 11.0 | 12.0 | 12.2 | 10.7 |
EN | 9.4 | 9.3 | 8.4 | 9.0 | 9.3 | 8.2 |
IO | 4.6 | 4.1 | 3.7 | 4.6 | 4.7 | 4.2 |
EL | 2.1 | 1.6 | 2.0 | 1.8 | 1.9 | 2.3 |
IN | 4.0 | 3.7 | 3.4 | 3.9 | 3.8 | 2.9 |
SL | 15L/14R | 12L/13R | 13L/12R | 13L/13R | 12L/12R | 13L/11R |
SL-mideye | 11L/10R | 7L/10R | 9L/9R | 9L/9R | 9L/9R | 9L/8R |
IL | 10L/12R | 12L/12R | 11L/12R | 11L/11R | 10L/10R | 11L/10R |
IL-mideye | 9L/8R | 8L/9R | 7L/8R | 8L/8R | 7L/7R | 8L/8R |
PVT | 35 | 32 | 29 | 34 | 32 | 32 |
LRT | 22 | 21 | 22 | 23 | 18 | 22 |
VS | 35 | 37 | 36 | 36 | 36 | 32 |
4FLU | 13L/13R | 13L/13R | 13L/12R | 14L/15R | 13L/13R | 16L/16R |
4FLE | 6L/6R | 6L/6R | 6L/6R | 6L/6R | 6L/6R | 6L/6R |
4FL | 19L/19R | 19L/19R | 19L/18R | 20L/21R | 19L/19R | 22L/22R |
4TLU | 14L/14R | 14L/14R | 14L/14R | 15L/15R | 13L/14R | 16L/16R |
4TLE | 8L/8L | 7L/7R | 7L/8R | 7L/7R | 8L/8R | 7L/6R |
4TL | 22L/22R | 21L/21R | 21L/22R | 22L/22R | 21L/22R | 23L/22R |
FPP in males | 37 | 36 | 34 | / | / | 32 |
No of pore-bearing scales on precloacal groove | 8(4L/4R) | 8(4L/4R) | 7(3L/4R) | / | / | 7(4L/3R) |
PCT rows | 1 | 1 | 2 | / | / | 2 |
No of PCT per row | 3L/3R | 3L/2R | (2 + 4)L/1 + 3)R | / | / | (1 + 4)L/1 + 3)R |
BB | 5 | 5 | 5 | 5 | 5 | 5 |
LCB | / | / | / | / | / | / |
DCB | / | / | / | / | / | / |
Body band/interspace ratio | 0.89 | 1.14 | 1.38 | 1.56 | 1.35 | 1.66 |
Deep precloacal groove in male | Yes | Yes | Yes | / | / | Yes |
Femoroprecloacal pores continuous | Yes | Yes | Yes | / | / | Yes |
Tuberculation | Weak | Weak | Weak | Weak | Weak | Weak |
Tubercles on ventral surface of forelimb | No | No | No | No | No | No |
Tubercles in gular region | No | No | No | No | No | No |
Ventrolateral fold tuberculate | No | No | No | No | No | No |
Dorsum bearing scattered pattern of white tubercles | No | No | No | No | No | No |
Adult posterior caudal region white | / | / | / | / | / | / |
White caudal bands in adults immaculate | No | No | No | No | No | No |
Portion of caudal tubercles on original tail | / | / | / | / | / | / |
ZMKU R 01097 | ZMKU R 01098 | ZMKU R 01099 | |
---|---|---|---|
RF | RF | RF | |
Age | IM | IM | J |
SVL | 83.3 | 82.1 | 64.0 |
SL | 13L/14R | 12L/14R | 14L/12R |
SL-mideye | 9L/10R | 8L/10R | 11L/9R |
IL | 10L/11R | 12L/11R | 10L/10R |
IL-mideye | 7L/7R | 7L/7R | 7L/7R |
PVT | 31 | 32 | 32 |
LRT | 22 | 22 | 22 |
VS | 37 | 34 | 33 |
4FLU | 14L/14R | 13L/13R | 14L/14R |
4FLE | 6L/6R | 6L/6R | 6L/6R |
4FL | 20L/20R | 19L/19R | 20L/20R |
4TLU | 14L/14R | 13L/14R | 14L/14R |
4TLE | 7L/8R | 7L/7R | 7L/7R |
4TL | 21L/22R | 20L/21R | 21L/21R |
BB | 5 | 5 | 5 |
LCB | / | / | / |
DCB | / | / | / |
Body band/interspace ratio | 1.52 | 1.41 | / |
Tuberculation | Weak | Weak | Weak |
Tubercles on ventral surface of forelimb | No | No | No |
Tubercles in gular region | No | No | No |
Ventrolateral fold tuberculate | No | No | No |
Dorsum bearing scattered pattern of white tubercles | No | No | No |
Hatchlings/uveniles with white tail tip | / | / | Yes |
Portion of caudal tubercles on original tail | / | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Termprayoon, K.; Rujirawan, A.; Grismer, L.L.; Aowphol, A. A New Species of the Cyrtodactylus pulchellus Group (Squamata: Gekkonidae) from Surat Thani Province, Thailand Underscores This Group’s Remarkable Diversity on the Thai-Malay Peninsula. Animals 2024, 14, 3226. https://doi.org/10.3390/ani14223226
Termprayoon K, Rujirawan A, Grismer LL, Aowphol A. A New Species of the Cyrtodactylus pulchellus Group (Squamata: Gekkonidae) from Surat Thani Province, Thailand Underscores This Group’s Remarkable Diversity on the Thai-Malay Peninsula. Animals. 2024; 14(22):3226. https://doi.org/10.3390/ani14223226
Chicago/Turabian StyleTermprayoon, Korkhwan, Attapol Rujirawan, Larry Lee Grismer, and Anchalee Aowphol. 2024. "A New Species of the Cyrtodactylus pulchellus Group (Squamata: Gekkonidae) from Surat Thani Province, Thailand Underscores This Group’s Remarkable Diversity on the Thai-Malay Peninsula" Animals 14, no. 22: 3226. https://doi.org/10.3390/ani14223226
APA StyleTermprayoon, K., Rujirawan, A., Grismer, L. L., & Aowphol, A. (2024). A New Species of the Cyrtodactylus pulchellus Group (Squamata: Gekkonidae) from Surat Thani Province, Thailand Underscores This Group’s Remarkable Diversity on the Thai-Malay Peninsula. Animals, 14(22), 3226. https://doi.org/10.3390/ani14223226