Effective Survey Methods for the Elusive Data Deficient Black Flying Squirrel (Aeromys tephromelas) in Sabah, Malaysia Facilitate First Vocalisation Record
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Survey Parameters
2.3. Data Collection
- Emergent: >30 m
- Upper Canopy: 23–29 m
- Lower Canopy: 15–22 m
- Understory: 6–14 m
- Undergrowth: 0–5 m
2.4. Data Analysis
3. Results
3.1. Observations
3.2. Feeding
3.3. Bioacoustics
4. Discussion
4.1. Observations
4.2. Feeding Ecology
4.3. Bioacoustic Communication
4.4. Sympatry
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koprowski, J.L.; Nandini, R. Global hotspots and knowledge gaps for tree and flying squirrels. Curr. Sci. 2008, 95, 851–856. [Google Scholar]
- Thorington, R.W., Jr.; Heaney, L.R. Body proportions and gliding adaptations of flying squirrels (Petauristinae). J. Mammal. 1981, 62, 101–114. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.-Y.; Jackson, S.M.; Li, F.; Jiang, M.; Zhao, W.; Song, W.-Y.; Jiang, X.-L. Discovery and description of a mysterious Asian flying squirrel (Rodentia, Sciuridae, Biswamoyopterus) from Mount Gaoligong, southwest China. ZooKeys 2019, 864, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Marsh, C.W.; Greer, A.G. Forest land-use in Sabah, Malaysia: An introduction to Danum Valley. Phil. Trans. R. Soc. Lond. 2011, 366, 3168–3176. [Google Scholar] [CrossRef]
- Hutchinson, C.S. Geology of North-West Borneo: Sarawak, Brunei and Sabah, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Lee, B. Aeromys tephromelas. The IUCN Red List of Threatened Species. Available online: https://www.iucnredlist.org/species/556/22271336 (accessed on 18 September 2024).
- Aplin, K.; Lunde, D. Iomys horsfieldii (Errata Version Published in 2017). The IUCN Red List of Threatened Species. 2016. Available online: https://www.iucnredlist.org/species/10845/115099730 (accessed on 20 September 2024).
- Gerrie, R.; Kennerley, R.; Koprowski, J. Petaurillus hosei (Errata Version Published in 2017). The IUCN Red List of Threatened Species. 2016. Available online: https://www.iucnredlist.org/species/16715/115137752 (accessed on 20 September 2024).
- Gerrie, R.; Kennerley, R.; Koprowski, J. Hylopetes platyurus. The IUCN Red List of Threatened Species. 2019. Available online: https://www.iucnredlist.org/species/136262/22244459 (accessed on 20 September 2024).
- Duckworth, J.W. Hylopetes spadiceus (Errata Version Published in 2017). The IUCN Red List of Threatened Species. 2016. Available online: https://www.iucnredlist.org/species/10607/115098135 (accessed on 20 September 2024).
- Duckworth, J.W. Petaurista petaurista (Errata Version Published in 2017). The IUCN Red List of Threatened Species. 2016. Available online: https://www.iucnredlist.org/species/16723/115138344 (accessed on 20 September 2024).
- Clayton, E. Pteromyscus pulverulentus. The IUCN Red List of Threatened Species. 2016. Available online: https://www.iucnredlist.org/species/18703/22245307 (accessed on 20 September 2024).
- Molur, S. Petaurista elegans. The IUCN Red List of Threatened Species. 2016. Available online: https://www.iucnredlist.org/species/16719/22272724 (accessed on 20 September 2024).
- Clayton, E. Petinomys setosus. The IUCN Red List of Threatened Species. 2016. Available online: https://www.iucnredlist.org/species/16739/22241609 (accessed on 20 September 2024).
- Gerrie, R.; Kennerley, R.; Koprowski, J. Aeromys thomasi (Errata Version Published in 2017). The IUCN Red List of Threatened Species. 2016. Available online: https://www.iucnredlist.org/species/557/115050074 (accessed on 20 September 2024).
- Clayton, E. Petinomys genibarbis (Errata Version Published in 2017). The IUCN Red List of Threatened Species. 2016. Available online: https://www.iucnredlist.org/species/16735/115138813 (accessed on 20 September 2024).
- Rodrigues, A.S.; Pilgrim, J.D.; Lamoreux, J.F.; Hoffmann, M.; Brooks, T.M. The value of the IUCN Red List for conservation. Trends Ecol. Evol. 2006, 21, 71–76. [Google Scholar] [CrossRef]
- Bland, L.M.; Collen, B.; Orme, C.D.L.; Bielby, J. Predicting the conservation status of data-deficient species. Conserv. Biol. 2015, 29, 250–259. [Google Scholar] [CrossRef]
- State of Sabah. Wildlife Conservation Enactment 1997; 1997. Available online: https://sagc.sabah.gov.my/sites/default/files/law/WildlifeConservationEnactment1997.pdf (accessed on 17 August 2024).
- Haysom, J.K.; Deere, N.J.; Wearn, O.R.; Mahyudin, A.; Jami, J.b.; Reynolds, G.; Struebig, M.J. Life in the canopy: Using camera-traps to inventory arboreal rainforest mammals in Borneo. Front. For. Glob. Change 2021, 4, 673071. [Google Scholar] [CrossRef]
- Noor, N.M.; Kean, C.W.; Vun, Y.L.; Mohamed-Hussein, Z.A. In vitro conservation of Malaysian biodiversity—Achievements, challenges and future directions. In Vitro Cell. Dev. Biol. Plant 2011, 47, 26–36. [Google Scholar] [CrossRef]
- Harding, L.E. Rare mammals recorded in Borneo—Malaysia. TAPROBANICA J. Asian Biodivers. 2012, 3, 107. [Google Scholar] [CrossRef]
- Arifuddin, M.; Izereen, M.; Fred, T.; Suganthi, A.; Jayaraj, V. Rapid Assessment of Nocturnal Sciurid and Avifauna Diversity in Kadamaian–Kinabalu Park for Ecotourism Potential. J. Trop. Biol. Conserv. (JTBC) 2021, 18, 57–69. [Google Scholar]
- McLean, K. Borneo’s Gliding Giants. Available online: https://news.nationalgeographic.org/borneos-gliding-giants/ (accessed on 10 August 2024).
- Kee, S.-L.; Sompud, J.; Pei, K.J.-C.; Mahmud, S.; Goh, C.; Liau, P.; Fadzil, Y. Nocturnal mammals of Segaliud-Lokan Forest Reserve, Sabah. Trans. Sci. Technol. 2018, 5, 131–136. [Google Scholar]
- Munds, R.A.; Ali, R.; Nijman, V.; Nekaris, K.A.I.; Goossens, B. Living together in the night: Abundance and habitat use of sympatric and allopatric populations of slow lorises and tarsiers. Endanger. Species Res. 2013, 22, 269–277. [Google Scholar] [CrossRef]
- Weigl, P.D. Resource Overlap, Interspecific Interactions and the Distribution of the Flying Squirrels, Glaucomys volans and G. sabrinus. Am. Midl. Nat. 1978, 100, 83–96. [Google Scholar] [CrossRef]
- Suis, M.A.F.; Miun, J.; Tingkoi, L.; Hastie, A.Y.L.; Chyang, A.C.Y.; Nilus, R. A Demi-Decade of Mammal Research: A Rapid Assessment within the Heart of Borneo in Sabah. Trop. Life Sci. Res. 2023, 34, 261. [Google Scholar] [PubMed]
- Medway, L.T.H. Mammals of Borneo: Field Keys and an Annotated checklist. J. Malay. Branch R. Asiat. Soc. 1963, 36. i–xiv, 1–193. [Google Scholar]
- Ketol, B.; Anwarali, F.; Marni, W.; Sait, I.; Lakim, M.; Yambun, P.I.; Salleh, M.A.; Rahman, M.A.; Abdullah, M. Checklist of mammals from Gunung Silam, Sabah, Malaysia. J. Trop. Biol. Conserv. (JTBC) 2009, 5. Available online: https://jurcon.ums.edu.my/ojums/index.php/jtbc/article/view/192 (accessed on 30 August 2024).
- Rahman, M.A.; Abdullah, M.A. Notes on birds and mammals in a limestone forest of banggi Island, Sabah, Malaysia. Malay. Nat. J. 2002, 56, 145–152. [Google Scholar]
- Jackson, S.; Schouten, P. Gliding Mammals of the World; CSIRO Publishing: Clayton, Australia, 2012. [Google Scholar]
- Bernard, H.; Bili, R.; Matsuda, I.; Hanya, G.; Wearn, O.R.; Wong, A.; Ahmad, A.H. Species Richness and Distribution of Primates in Disturbed and Converted Forest Landscapes in Northern Borneo. Trop. Conserv. Sci. 2016, 9, 1940082916680104. [Google Scholar] [CrossRef]
- Hazebroek, H.P.; Adlin, T.Z.; Sinun, W. Danum Valley: The Rain Forest, 1st ed.; Natural History Publications (Borneo): Kota Kinabalu, Malaysia, 2012. [Google Scholar]
- Phillips, Q.; Phillips, K. Phillipps’ Field Guide to the Mammals of Borneo and Their Ecology; Princeton University Press: Princeton, NJ, USA; Guelph, ON, Canada, 2016. [Google Scholar]
- Whitworth, A.; Braunholtz, L.D.; Huarcaya, R.P.; MacLeod, R.; Beirne, C. Out on a limb: Arboreal camera traps as an emerging methodology for inventorying elusive rainforest mammals. Trop. Conserv. Sci. 2016, 9, 675–698. [Google Scholar] [CrossRef]
- Ariana, W.; Marco, C.; Nekaris, K.A.I. Red Light for Nocturnal Observations. In Ecology and Conservation of Lorises and Pottos; Nekaris, K.A.I., Burrows, A.M., Eds.; Cambridge University Press: Cambridge, UK, 2020; pp. 279–294. [Google Scholar]
- Kumara, H.N.; Radhakrishna, S. Evaluation of census techniques to estimate the density of slender Loris (Loris lydekkerianus) in Southern India. Curr. Sci. 2013, 104, 1083–1086. [Google Scholar]
- Oliver, K.; Ngoprasert, D.; Savini, T. Slow loris density in a fragmented, disturbed dry forest, north-east Thailand. Am. J. Primatol. 2019, 81, e22957. [Google Scholar] [CrossRef] [PubMed]
- Nekaris, K.; Blackham, G.; Nijman, V. Conservation implications of low encounter rates of five nocturnal primate species (Nycticebus spp.) in Asia. Biodivers. Conserv. 2008, 17, 733–747. [Google Scholar] [CrossRef]
- Miard, P.; Xin, F.K.; Hampshire, S.; Rosely, N.F.N.; Bernard, H.; Ruppert, N. Diversity, Encounter Rate and Detection of Non-Volant Nocturnal Mammals on Two Malaysian Islands. Trop. Life Sci. Res. 2024, 35, 49–85. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Sanchez, M.; Hawkins, M.T.; Yu, F.T.Y.; Maldonado, J.E.; Leonard, J.A. Endemism and diversity of small mammals along two neighboring Bornean mountains. PeerJ 2019, 7, e7858. [Google Scholar] [CrossRef]
- Bohnett, E.; Goossens, B.; Bakar, M.S.A.; Abidin, T.R.; Lim, H.-Y.; Hulse, D.; Ahmad, B.; Hoctor, T.; Gardner, P. Examining diversity of terrestrial mammal communities across forest reserves in Sabah, Borneo. Biodivers. Conserv. 2022, 31, 1709–1734. [Google Scholar] [CrossRef]
- Barnes, M.D.; Craigie, I.D.; Harrison, L.B.; Geldmann, J.; Collen, B.; Whitmee, S.; Balmford, A.; Burgess, N.D.; Brooks, T.; Hockings, M.; et al. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun. 2016, 7, 12747. [Google Scholar] [CrossRef]
- Sugai, L.S.M.; Silva, T.S.F.; Ribeiro, J.W.; Llusia, D. Terrestrial Passive Acoustic Monitoring: Review and Perspectives. BioScience 2019, 69, 15–25. [Google Scholar] [CrossRef]
- Hart, A.G.; Dawson, M.; Fourie, R.; MacTavish, L.; Goodenough, A.E. Comparing the effectiveness of camera trapping, driven transects and ad hoc records for surveying nocturnal mammals against a known species assemblage. Community Ecol. 2022, 23, 27–39. [Google Scholar] [CrossRef]
- Kaizer, M.C.; Alvim, T.H.G.; Novaes, C.L.; McDevitt, A.D.; Young, R.J. Snapshot of the Atlantic Forest canopy: Surveying arboreal mammals in a biodiversity hotspot. Oryx 2022, 56, 825–836. [Google Scholar] [CrossRef]
- Underwood, A.H.; Derhè, M.A.; Jacups, S. Thermal imaging outshines spotlighting for detecting cryptic, nocturnal mammals in tropical rainforests. Wildl. Res. 2022, 49, 491–499. [Google Scholar] [CrossRef]
- Pocknee, C.A.; Lahoz-Monfort, J.J.; Martin, R.W.; Wintle, B.A. Cost-effectiveness of thermal imaging for monitoring a cryptic arboreal mammal. Wildl. Res. 2021, 48, 625–634. [Google Scholar] [CrossRef]
- Finley, R.B. Observation of nocturnal animals by red light. J. Mammal. 1959, 40, 591–594. [Google Scholar] [CrossRef]
- Ankel-Simons, F.; Rasmussen, D.T. Diurnality, nocturnality, and the evolution of primate visual systems. Am. J. Phys. Anthropol. 2008, 137, 100–117. [Google Scholar] [CrossRef] [PubMed]
- Veilleux, C.C.; Cummings, M.E. Nocturnal light environments and species ecology: Implications for nocturnal color vision in forests. J. Exp. Biol. 2012, 215, 4085. [Google Scholar] [CrossRef]
- Joffe, B.; Peichl, L.; Hendrickson, A.; Leonhardt, H.; Solovei, I. Diurnality and Nocturnality in Primates: An Analysis from the Rod Photoreceptor Nuclei Perspective. Evol. Biol. 2014, 41, 1–11. [Google Scholar] [CrossRef]
- Obrist, M.K.; Pavan, G.; Sueur, J.; Riede, K.; Llusia, D.; Márquez, R. Bioacoustics approaches in biodiversity inventories. ABC Taxa 2010, 8, 68–99. [Google Scholar]
- Teixeira, D.; Maron, M.; van Rensburg, B.J. Bioacoustic monitoring of animal vocal behavior for conservation. Conserv. Sci. Pract. 2019, 1, e72. [Google Scholar] [CrossRef]
- McDermott, J.H. The cocktail party problem. Curr. Biol. 2009, 19, R1024–R1027. [Google Scholar] [CrossRef]
- Schmidt, A.K.D.; Balakrishnan, R. Ecology of acoustic signalling and the problem of masking interference in insects. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2015, 201, 133–142. [Google Scholar] [CrossRef]
- Gilley, L.M.; Diggins, C.A.; Pearson, S.M.; Best, T.L. Vocal repertoire of captive northern and southern flying squirrels (Glaucomys sabrinus and G. volans). J. Mammal. 2019, 100, 518–530. [Google Scholar] [CrossRef]
- Diggins, C.A. Behaviors associated with vocal communication of squirrels. Ecosphere 2021, 12, e03572. [Google Scholar] [CrossRef]
- Newar, S.L.; Bowman, J. Think Before They Squeak: Vocalizations of the Squirrel Family. Front. Ecol. Evol. 2020, 8, 193. [Google Scholar] [CrossRef]
- Ross, S.-J.; O’Connell, D.P.; Deichmann, J.L.; Desjonquères, C.; Gasc, A.; Phillips, J.N.; Sethi, S.S.; Wood, C.M.; Burivalova, Z. Passive acoustic monitoring provides a fresh perspective on fundamental ecological questions. Funct. Ecol. 2023, 37, 959–975. [Google Scholar] [CrossRef]
- Francis, F.J. Using a contingent valuation method to evaluate an ecotourism site in Borneo, Malaysia: A case of the Rainforest Discovery Centre, Malaysia. J. Policy Res. Tour. Leis. Events 2022, 1–15. [Google Scholar] [CrossRef]
- Sugau, J.; Pereira, J.; Lee, Y.; Wong, K. The Sandakan Herbarium turns a hundred. Sandakania 2016, 21, 1–20. [Google Scholar]
- Sabah Forestry Department. Available online: https://forest.sabah.gov.my/ (accessed on 11 August 2024).
- Abdul-Hadi, A.; Mansor, S.; Pradhan, B.; Tan, C. Seasonal variability of chlorophyll-a and oceanographic conditions in Sabah waters in relation to Asian monsoon—A remote sensing study. Environ. Monit. Assess. 2013, 185, 3977–3991. [Google Scholar] [CrossRef]
- Kamgaing, T.O.W.; Bobo, K.S.; Djekda, D.; Azobou, K.B.V.; Hamadjida, B.R.; Balangounde, M.Y.; Simo, K.J.; Yasuoka, H. Population density estimates of forest duikers (Philantomba monticola & Cephalophus spp.) differ greatly between survey methods. Afr. J. Ecol. 2018, 56, 908–916. [Google Scholar]
- Sen, A.; Smith, G.; Butler, G. On a basic assumption in the line transect method. Biom. J. 1978, 20, 363–369. [Google Scholar] [CrossRef]
- Lasky, M.; Bombaci, S. Human-induced fear in wildlife: A review. J. Nat. Conserv. 2023, 74, 126448. [Google Scholar] [CrossRef]
- Oliver, K.; Ngoprasert, D.; Savini, T. Assessment of survey protocol for estimates of abundance for elusive nocturnal primates. Wildl. Res. 2020, 47, 372–380. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, W.; Zhang, J.; Wyrwa, J.; Sun, F. Aerodynamic characteristics and pitching adjusting mechanism of the flying squirrel with deployed patagium. IEEE Access 2019, 7, 185554–185564. [Google Scholar] [CrossRef]
- Mitchell, W.F.; Clarke, R.H. Using infrared thermography to detect night-roosting birds. J. Field Ornithol. 2019, 90, 39–51. [Google Scholar] [CrossRef]
- Newar, S.L.; Schneiderová, I.; Hughes, B.; Bowman, J. Ultrasound and ultraviolet: Crypsis in gliding mammals. PeerJ 2024, 12, e17048. [Google Scholar] [CrossRef] [PubMed]
- Gursky, S.; Nekaris, K. Nocturnal primate communication: Ecology, evolution and conservation. Folia Primatol. 2019, 90, 273–278. [Google Scholar] [CrossRef]
- Ding, H.; Shu, X.; Jin, Y.; Fan, T.; Zhang, H. Recent advances in nanomaterial-enabled acoustic devices for audible sound generation and detection. Nanoscale 2019, 11, 5839–5860. [Google Scholar] [CrossRef]
- Ando, M.; Shiraishi, S.; Uchida, T. Field observations of the feeding behavior in the Japanese giant flying squirrel, Petaurista leucogenys. J. Fac. Agr. Kyushu. Univ. 1984, 28, 161–175. [Google Scholar] [CrossRef]
- Muul, I. Behavioral and Physiological Influences on the Distribution of the Flyingsquirrel, Glaucomys Volans; University of Michigan: Ann Arbor, MI, USA, 1965. [Google Scholar]
- Ashton, P.S.; Hall, P. Comparisons of structure among mixed dipterocarp forests of north-western Borneo. J. Ecol. 1992, 80, 459–481. [Google Scholar] [CrossRef]
- Kohyama, T.; Suzuki, E.; Partomihardjo, T.; Yamada, T.; Kubo, T. Tree species differentiation in growth, recruitment and allometry in relation to maximum height in a Bornean mixed dipterocarp forest. J. Ecol. 2003, 91, 797–806. [Google Scholar] [CrossRef]
- Wet Tropics Management Authority, Educational Resources. Available online: https://www.wettropics.gov.au/educational-resources (accessed on 18 September 2024).
- MacKenzie, D.I. what are the issues with presence–absence data for wildlife managers? J. Wildl. Manag. 2005, 69, 849–860. [Google Scholar] [CrossRef]
- Oswald, J.N.; Van Cise, A.M.; Dassow, A.; Elliott, T.; Johnson, M.T.; Ravignani, A.; Podos, J. A collection of best practices for the collection and analysis of bioacoustic data. Appl. Sci. 2022, 12, 12046. [Google Scholar] [CrossRef]
- Harvey, E.; Gounand, I.; Ward, C.L.; Altermatt, F. Bridging ecology and conservation: From ecological networks to ecosystem function. J. Appl. Ecol. 2017, 54, 371–379. [Google Scholar] [CrossRef]
- Jumian, J.; (Rainforest Discovery Centre, Sepilok, Sabah, Malaysia). Personal Communication, 2023.
- Koli, V.K.; Bhatnagar, C. Seasonal variation in the activity budget of Indian giant flying squirrel (Petaurista philippensis) in tropical deciduous forest, Rajasthan, India. Folia Zool. 2016, 65, 38–45. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Lee, L.-L. Home range and activity of the Indian giant flying squirrel (Petaurista philippensis) in Taiwan: Influence of diet, temperature, and rainfall. Acta Theriol. 2012, 57, 269–276. [Google Scholar] [CrossRef]
- Link, A.; Muñoz-Delgado, J.; Montilla, S.O. Nocturnality and Activity Budgets of Owl Monkeys in Tropical Ecosystems. In Owl Monkeys: Biology, Adaptive Radiation, and Behavioral Ecology of the Only Nocturnal Primate in the Americas; Fernandez-Duque, E., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 353–373. [Google Scholar]
- Rode-Margono, E.J.; Anne-Isola Nekaris, K.; Nijman, V. Impact of climate and moonlight on a venomous mammal, the Javan slow loris (Nycticebus javanicus Geoffroy, 1812). Contrib. Zool. 2014, 83, 217–225. [Google Scholar] [CrossRef]
- Ahmad, S.; Hameed, S.; Ali, H.; Khan, T.U.; Mehmood, T.; Nawaz, M.A. New Distribution Records of Small Kashmir Flying Squirrel Eoglaucomys fimbriatus (Gray, 1837) (Mammalia: Sciuridae), with Notes on its Diel Activity in the Musk Deer National Park, Azad Jammu and Kashmir, Pakistan. Acta Zool. Bulg. 2023, 75, 477–484. [Google Scholar]
- Miard, P. Distribution, Methodological Validation and Ecology of Nocturnal Island Mammals in Peninsular Malaysia; Universiti Sains Malaysia: Pulau Pinang, Malaysia, 2020. [Google Scholar]
- Hampshire, S.; (Georg-August-University Goettingen, Germany). Personal Observation, 2023.
- Sahimi, H.N.M.; Chubo, J.K.; Tah, M.M.T.M.; Saripuddin, N.B.; Rahim, S.S.A. The Distribution and Population Density of Bornean Tarsier, “ Tarsius Bancanus Borneanus (Elliot)” in Secondary and Rehabilitated Forests of Universiti Putra Malaysia, Bintulu Sarawak Campus, Sarawak, Malaysia. Trop. Life Sci. Res. 2018, 29, 139–154. [Google Scholar] [CrossRef]
- Laurance, W.F. Ecological Correlates of Extinction Proneness in Australian Tropical Rain Forest Mammals. Conserv. Biol. 1991, 5, 79–89. [Google Scholar] [CrossRef]
- Hiby, L.; Krishna, M.B. Line Transect Sampling from a Curving Path. Biometrics 2004, 57, 727–731. [Google Scholar] [CrossRef]
- Miard, P.; (Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Malaysia). Personal Observation, 2019.
- Socha, J.J.; Jafari, F.; Munk, Y.; Byrnes, G. How animals glide: From trajectory to morphology. Can. J. Zool. 2015, 93, 901–924. [Google Scholar] [CrossRef]
- Krishna, M.C.; Kumar, A.; Tripathi, O.P. Gliding performance of the red giant gliding squirrel Petaurista petaurista in the tropical rainforest of Indian eastern Himalaya. Wildl. Biol. 2016, 22, wlb.00855. [Google Scholar] [CrossRef]
- Liu, P.-Y.; Cheng, A.-C.; Huang, S.-W.; Lu, H.-P.; Oshida, T.; Liu, W.; Yu, H.-T. Body-size Scaling is Related to Gut Microbial Diversity, Metabolism and Dietary Niche of Arboreal Folivorous Flying Squirrels. Sci. Rep. 2020, 10, 7809. [Google Scholar] [CrossRef] [PubMed]
- Michaux, J.; Hautier, L.; Simonin, T.; Vianey-Liaud, M. Phylogeny, adaptation and mandible shape in Sciuridae (Rodentia, Mammalia). Mammalia 2008, 72, 286–296. [Google Scholar] [CrossRef]
- Muul, I.; Lim, B.L. Comparative morphology, food habits, and ecology of some Malaysian arboreal rodents. In The Ecology Arboreal Folivores; Conservation and Research Center, National Zoological Park, Smithsonian Institution: Washington, DC, USA, 1978; pp. 361–368. [Google Scholar]
- Thorington, R.W., Jr.; Koprowski, J.L.; Steele, M.A.; Whatton, J.F. Squirrels of the World; Johns Hopkins University Press: Baltimore, MD, USA, 2012. [Google Scholar]
- Whishaw, I.Q.; Sarna, J.R.; Pellis, S.M. Evidence for rodent-common and species-typical limb and digit use in eating, derived from a comparative analysis of ten rodent species. Behav. Brain Res. 1998, 96, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Kawamichi, T. Seasonal Changes in the Diet of Japanese Giant Flying Squirrels in Relation to Reproduction. J. Mammal. 1997, 78, 204–212. [Google Scholar] [CrossRef]
- Nandini, R.; Parthasarathy, N. Food habits of the Indian giant flying squirrel (Petaurista philippensis) in a rain forest fragment, Western Ghats. J. Mammal. 2008, 89, 1550–1556. [Google Scholar] [CrossRef]
- Lee, P.F.; Progulske, D.R.; Lin, Y.S. Ecological studies on two sympatric Petaurista species in Taiwan. Bull. Inst. Zool. Acad. Sin. 1986, 25, 113–123. [Google Scholar]
- Suzuki, H.; Kajimura, H. How much do field mice prefer dwarf bamboo seeds? Two-choice experiments between seeds of Sasa borealis and several tree species on the forest floor. Ecol. Evol. 2023, 13, e10636. [Google Scholar] [CrossRef]
- Nakashima, Y.; Inoue, E.; Inoue-Murayama, M.; Abd Sukor, J.R. Functional uniqueness of a small carnivore as seed dispersal agents: A case study of the common palm civets in the Tabin Wildlife Reserve, Sabah, Malaysia. Oecologia 2010, 164, 721–730. [Google Scholar] [CrossRef]
- Marten, K.; Marler, P. Sound transmission and its significance for animal vocalization. Behav. Ecol. Sociobiol. 1977, 2, 271–290. [Google Scholar] [CrossRef]
- Terada, T.; Waku, D.; Koizumi, K.; Shimura, Y.; Yasuoka, A.; Kudo, K.; Ogawa, H. Call Classification of the Japanese Giant Flying Squirrel (Petaurista leucogenys) Using Principal Component Analysis. J. Agric. Sci. Tokyo Univ. Agric. 2021, 66, 11–17. [Google Scholar]
- Shen, P.S. Acoustic Behavior of White-Faced Flying Squirrel (Petaurista lena) in Guanghua Village, Alishan; National Sun Yat-sen University: Koahsiung, Taiwan, 2013. [Google Scholar]
- Balph, D.M.; Balph, D.F. Sound Communication of Uinta Ground Squirrels. J. Mammal. 1966, 47, 440–450. [Google Scholar] [CrossRef]
- Vega-Hidalgo, Á.; Flatt, E.; Whitworth, A.; Symes, L. Acoustic assessment of experimental reforestation in a Costa Rican rainforest. Ecol. Indic. 2021, 133, 108413. [Google Scholar] [CrossRef]
- Thapa, S.; Katuwal, H.B.; Koirala, S.; Dahal, B.V.; Devkota, B.; Rana, R.; Dhakal, H.; Karki, R.; Basnet, H. Sciuridae (Order: Rodentia) in Nepal. 2016. Available online: https://www.researchgate.net/publication/312595722_Sciuridae_Order_Rodentia_in_Nepal (accessed on 11 September 2024).
- Diggins, C.A.; Gilley, L.M.; Kelly, C.A.; Ford, W.M. Using Ultrasonic Acoustics to Detect Cryptic Flying Squirrels: Effects of Season and Habitat Quality. Wildl. Soc. Bull. 2020, 44, 300–308. [Google Scholar] [CrossRef]
- Nandini, R. Evolution of Sexual Size Dimorphism in Squirrels; Auburn University: Auburn, AL, USA, 2011. [Google Scholar]
- Yasuma, S.; Andau, M. Mammals of Sabah Part 2: Habitat and Ecology; JICA and Sabah Wildlife Department, Kota Kinabalu: Sabah, Malaysia, 2000. [Google Scholar]
- Bryce, J.; Johnson, P.J.; Macdonald, D.W. Can niche use in red and grey squirrels offer clues for their apparent coexistence? J. Appl. Ecol. 2002, 39, 875–887. [Google Scholar] [CrossRef]
- Shafique, C.M.; Barkati, S.; Oshida, T.; Ando, M. Comparison of Diets between Two Sympatric Flying Squirrel Species in Northern Pakistan. J. Mammal. 2006, 87, 784–789. [Google Scholar] [CrossRef]
Common Name | Species | IUCN Status |
---|---|---|
Black flying squirrel (giant) | Aeromys tephromelas | DD (2016) [6] |
Horsfield’s flying squirrel | Iomys horsfeldii | LC (2016) [7] |
Hose’s flying squirrel | Petaurillus hosei | DD (2016) [8] |
Jentink’s flying squirrel | Hylopetes platyurus | DD (2017) [9] |
Red-cheeked flying squirrel | Hylopetes spadiceus | LC (2016) [10] |
Red giant flying squirrel | Petaurista petaurista | LC (2016) [11] |
Smoky flying squirrel | Pteromyscus pulverulentus | EN (2016) [12] |
Spotted giant flying squirrel | Petaurista elegans | LC (2016) [13] |
Temmink’s flying squirrel | Petinomys setosus | VU (2016) [14] |
Thomas’ flying squirrel (giant) | Aeromys thomasi | LC (2016) [15] |
Whiskered flying squirrel | Petinomys genibarbis | VU (2016) [16] |
Manufacturer | Model | Purpose |
---|---|---|
Pulsar (Roubaix, France) | Helion XQ 38F | Thermal imaging monoscope |
Wolfeyes (Sydney, Australia) | Dingo (800 Lumen) | Red spotlight (headtorch) |
Panasonic (Bracknell, UK) | Lumix DMC-TZ61 | Digital camera (video recording) |
Petterson Elektronik AB (Uppsala, Sweden) | M500-384 USB | Ultrasonic recorder |
MiLESEEY (Shenzhen, China) | PF260 Rangefinder | Rangefinder |
Garmin (Southhampton, UK) | GPSMAP 64S | GPS |
BT Meter (Zhuhai, China) | 100 WM | Barometer, Anemometer, Thermo-hygrometer |
Behaviour | Description |
---|---|
Resting | Stationary in a sitting position not interacting with their surroundings, can have eyes closed |
Observing | Stationary in a sitting or standing position with active observation of their surroundings |
Grooming | Licking and cleaning of own fur (autogrooming) |
Feeding | Consumption of food |
Foraging | Movement with active search of food, either visual or olfactory |
Moving | Continuous and locomotion by running or jumping from one location to another with no discernible purpose |
Gliding | Locomotion in air using the patagium to glide from one substrate to another |
Fleeing | Interruption of natural behaviour resulting in instantaneous and rapid movement away from the source of the threat |
Vocalisation | Vocalisation can be heard from the individual |
Unknown | Behaviour cannot be discerned |
Species | Date | Time | Point or Opp | Transect | First Detection (Eyeshine, Thermal or Acoustic) | Radial Distance to Observer (m) | Height in Tree (m) (Tree Height m) |
---|---|---|---|---|---|---|---|
Aeromys tephromelas | 7 February 2023 | 22:18 | Point | RT | Eyeshine | 4 | 8 (10) |
Aeromys tephromelas | 8 February 2023 | 22:56 | Opp | KF | Eyeshine | 10 | 9 (10) |
Aeromys tephromelas | 8 February 2023 | 23:26 | Point | KF | Thermal | 3 | 15 (20) |
Aeromys tephromelas | 9 February 2023 | 20:56 | Opp | LT | Eyeshine | 11 | 11 (12) |
Aeromys tephromelas | 10 February 2023 | 23:04 | Point | RT | Eyeshine | 16 | 10 (40) |
Aeromys tephromelas | 10 February 2023 | 20:40 | Point | RT | Eyeshine | 1 | 25 (40) |
Aeromys tephromelas | 15 February 2023 | 22:09 | Point | RT | Eyeshine | 12 | 8 (10) |
Aeromys tephromelas | 15 February 2023 | 22:03 | Opp | RT | Eyeshine | 8 | 8 (10) |
Aeromys tephromelas | 7 March 2023 | 20:00 | Point | TC | Eyeshine | 5 | 20 (30) |
Petaurista petaurista | 3 February 2023 | 20:25 | Point | CW | Eyeshine | 1 | 8 (10) |
Petaurista petaurista | 3 February 2023 | 21:32 | Point | CW | Eyeshine | 4 | 12 (15) |
Petaurista petaurista | 3 February 2023 | 20:31 | Point | CW | Eyeshine | 8 | 16 (18) |
Petaurista petaurista | 6 February 2023 | 21:46 | Opp | BT | Eyeshine | 5 | 16 (25) |
Petaurista petaurista | 6 February 2023 | 21:45 | Opp | BT | Eyeshine | 18 | 23 (24) |
Petaurista petaurista | 7 February 2023 | 23:00 | Point | RT | Eyeshine | 18 | 20 (22) |
Petaurista petaurista | 8 February 2023 | 21:10 | Point | CW | Eyeshine | 4 | 35 (50) |
Petaurista petaurista | 9 February 2023 | 20:55 | Opp | LT | Eyeshine | 11 | 11 (30) |
Petaurista petaurista | 9 February 2023 | 22:24 | Point | BT | Eyeshine | 12 | 25 (35) |
Petaurista petaurista | 13 February 2023 | 20:49 | Point | CW | Eyeshine | 5 | 8 (9) |
Petaurista petaurista | 8 February 2023 | 21:31 | Opp | CW | Eyeshine | 8 | 24 (24) |
Petaurista petaurista | 1 March 2023 | 21:36 | Point | MD | Eyeshine | 2 | 20 (20) |
Petaurista petaurista | 1 March 2023 | 21:14 | Point | MD | Thermal | 5 | 25 (25) |
Petaurista petaurista | 1 March 2023 | 21:35 | Point | MD | Eyeshine | 38 | 35 (40) |
Petaurista petaurista | 1 March 2023 | 21:19 | Point | MD | Eyeshine | 34 | 40 (55) |
Petaurista petaurista | 1 March 2023 | 21:18 | Point | MD | Eyeshine | 38 | 45 (50) |
Petaurista petaurista | 7 March 2023 | 20:41 | Point | TC | Eyeshine | 1 | 19 (20) |
Petaurista petaurista | 8 March 2023 | 21:02 | Point | PPS | Eyeshine | 5 | 3 (25) |
Petaurista petaurista | 14 March 2023 | 21:38 | Point | TC | Eyeshine | 19 | 25 (50) |
Aeromys thomasi | 3 February 2023 | 20:46 | Point | CW | Eyeshine | 2 | 27 (30) |
Aeromys thomasi | 8 February 2023 | 21:11 | Point | CW | Thermal | 6 | 27 (30) |
English Name | Species | Tree Family | Tree Species | Part Fed On |
---|---|---|---|---|
Black flying squirrel | Aeromys tephromelas | Meliaceae | Heynea trijuga | Unknown |
Meliaceae | Azadirachta excelsa | Buds | ||
Thomas’ flying squirrel | Aeromys thomasi | Dipterocapaceae | Parashorea tomentella | Buds |
Red giant flying squirrel | Petaurista petauristsa | Rubiaceae | Neolamarckia cadamba | Unknown |
Sapotaceae | Palaquium dasphyllum | Leaves |
Call Parameters | Mean | Range |
---|---|---|
Call Duration (s) | 0.14 | 0.08–0.18 |
Lower Frequency (kHz) | 1.19 | 0.75–1.62 |
Upper Frequency (kHz) | 2.37 | 2.11–2.69 |
Frequency Range (kHz) (per individual call) | 1.19 | 0.78–1.72 |
Peak Frequency (kHz) | 1.97 | 1.89–2.58 |
Bandwidth (90%) (kHz) | 0.69 | 0.48–1.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hampshire, S.; Miard, P. Effective Survey Methods for the Elusive Data Deficient Black Flying Squirrel (Aeromys tephromelas) in Sabah, Malaysia Facilitate First Vocalisation Record. Animals 2024, 14, 3323. https://doi.org/10.3390/ani14223323
Hampshire S, Miard P. Effective Survey Methods for the Elusive Data Deficient Black Flying Squirrel (Aeromys tephromelas) in Sabah, Malaysia Facilitate First Vocalisation Record. Animals. 2024; 14(22):3323. https://doi.org/10.3390/ani14223323
Chicago/Turabian StyleHampshire, Sapphire, and Priscillia Miard. 2024. "Effective Survey Methods for the Elusive Data Deficient Black Flying Squirrel (Aeromys tephromelas) in Sabah, Malaysia Facilitate First Vocalisation Record" Animals 14, no. 22: 3323. https://doi.org/10.3390/ani14223323
APA StyleHampshire, S., & Miard, P. (2024). Effective Survey Methods for the Elusive Data Deficient Black Flying Squirrel (Aeromys tephromelas) in Sabah, Malaysia Facilitate First Vocalisation Record. Animals, 14(22), 3323. https://doi.org/10.3390/ani14223323