The Pharmacokinetics of Δ9-Tetrahydrocannabinol in Sheep
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Pilot Study
2.2. Oral Dose Study
2.2.1. Experimental Animals, Housing and Diets
2.2.2. Experimental Design
2.2.3. Sampling Protocol
2.2.4. Cannabinoids Analysis
Sample Preparation
LC-MS/MS Conditions
Method Validation—Plasma
2.2.5. Pharmacokinetic Analysis
3. Results
3.1. Pharmacokinetic Calculations
3.2. Subcutaneous Fat Cannabinoid Concentrations
4. Discussion
4.1. Pharmacokinetics
4.2. Subcutaneous Fat Cannabinoid Concentrations
4.3. Signifcance of Findings
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cremonesi, P.; Capra, E.; Turri, F.; Lazzari, B.; Chessa, S.; Battelli, G.; Colombini, S.; Rapetti, L.; Castiglioni, B. Effect of diet enriched with hemp seeds on goat milk fatty acids, transcriptome, and miRNAs. Front. Anim. Sci. 2022, 3, 909271. [Google Scholar] [CrossRef]
- Gibb, D.J.; Shah, M.A.; Mir, P.S.; McAllister, T.A. Effect of full-fat hemp seed on performance and tissue fatty acids of feedlot cattle. Can. J. Anim. Sci. 2005, 85, 223–230. [Google Scholar] [CrossRef]
- Mierliță, D. Effects of diets containing hemp seeds or hemp cake on fatty acid composition and oxidative stability of sheep milk. S. Afr. J. Anim. Sci. 2018, 48, 504–515. [Google Scholar] [CrossRef]
- Rapetti, L.; Colombini, S.; Battelli, G.; Castiglioni, B.; Turri, F.; Galassi, G.; Battelli, M.; Crovetto, G.M. Effect of linseeds and hemp seeds on milk production, energy and nitrogen balance, and methane emissions in the dairy goat. Animals 2021, 11, 2717. [Google Scholar] [CrossRef]
- Abrahamsen, F.W.; Gurung, N.K.; Abebe, W.; Reddy, G.P.; Mullenix, K.; Adhikari, S. Effects of feeding varying levels of hempseed meal on dry matter intake, rumen fermentation, in vitro digestibility, blood metabolites, and growth performance of growing meat goats. App. Anim. Sci. 2021, 37, 681–688. [Google Scholar] [CrossRef]
- Gurung, R.; Ale, K.B.; Abrahamsen, F.W.; Moyer, K.; Sawyer, J.T.; Gurung, N.K. Carcass traits of growing meat goats fed different levels of hempseed meal. Animals 2022, 12, 1986. [Google Scholar] [CrossRef] [PubMed]
- Hessle, A.; Eriksson, M.; Nadeau, E.; Turner, T.; Johansson, B. Cold-pressed hempseed cake as a protein feed for growing cattle. Acta. Agric. Scand. Sect. A Anim. Sci. 2008, 58, 136–145. [Google Scholar] [CrossRef]
- Karlsson, L.; Finell, M.; Martinsson, K. Effects of increasing amounts of hempseed cake in the diet of dairy cows on the production and composition of milk. Animal 2010, 4, 1854–1860. [Google Scholar] [CrossRef]
- Ncogo Nchama, C.N.; Fabro, C.; Baldini, M.; Saccà, E.; Foletto, V.; Piasentier, E.; Sepulcri, A.; Corazzin, M. Hempseed by-product in diets of Italian simmental cull dairy cows and its effects on animal performance and meat quality. Animals 2022, 12, 1014. [Google Scholar] [CrossRef]
- Winders, T.; Holman, D.; Schmidt, K.; Luecke, S.; Smith, D.; Neville, B.; Dahlen, C.; Swanson, K.; Amat, S. Feeding hempseed cake alters the bovine gut, respiratory and reproductive microbiota. Sci. Rep. 2023, 13, 8121. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Scientific opinion on the safety of hemp (Cannabis genus) for use as animal feed. EFSA J. 2011, 9, 2011. [Google Scholar] [CrossRef]
- Krebs, G.L.; De Rosa, D.W.; White, D.M.; Blake, B.L.; Dods, K.C.; May, C.D.; Tai, Z.X.; Clayton, E.H.; Lynch, E.E. Intake, nutrient digestibility, rumen parameters, growth rate, carcase characteristics and cannabinoid residues of sheep fed pelleted rations containing hemp (Cannabis sativa L.) stubble. Transl. Anim. Sci. 2021, 5, txab213. [Google Scholar] [CrossRef] [PubMed]
- Stevens, S.A.; Krebs, G.L.; Scrivener, C.J.; Noble, G.K.; Blake, B.L.; Dods, K.C.; May, C.D.; Tai, Z.X.; Clayton, E.H.; Lynch, E.E.; et al. Nutrient digestibility, rumen parameters and (cannabinoid) residues in sheep fed a pelleted diet containing green hemp (Cannabis sativa L.) biomass. Transl. Anim. Sci. 2022, 6, txac141. [Google Scholar] [CrossRef]
- Torrens, A.; Vozella, V.; Huff, H.; McNeil, B.; Ahmed, F.; Ghidini, A.; Mahler, S.V.; Huestis, M.A.; Das, A.; Piomelli, D. Comparative pharmacokinetics of Δ9-tetrahydrocannabinol in adolescent and adult male mice. J. Pharmacol. Exp. Ther. 2020, 374, 151–160. [Google Scholar] [CrossRef]
- Ruiz, C.M.; Torrens, A.; Castillo, E.; Perrone, C.R.; Cevallos, J.; Inshishian, V.C.; Harder, E.V.; Justeson, D.N.; Huestis, M.A.; Swarup, V.; et al. Pharmacokinetic, behavioral, and brain activity effects of Δ9-tetrahydrocannabinol in adolescent male and female rats. Neuropsychopharmacol. 2021, 46, 959–969. [Google Scholar] [CrossRef]
- Leuschner, J.; Harvey, D.; Bullingham, R.; Paton, W. Pharmacokinetics of Δ9-tetrahydrocannabinol in rabbits following single or multiple intravenous doses. Drug Metab. Dispos. 1986, 14, 230–238. [Google Scholar]
- Brunet, B.; Doucet, C.; Venisse, N.; Hauet, T.; Hébrard, W.; Papet, Y.; Mauco, G.; Mura, P. Validation of large white pig as an animal model for the study of cannabinoids metabolism: Application to the study of THC distribution in tissues. Forensic Sci. Int. 2006, 161, 169–174. [Google Scholar] [CrossRef]
- Sosa-Higareda, M.; Guzman, D.S.M.; Knych, H.; Lyubimov, A.; Zakharov, A.; Gomez, B.; Beaufrère, H. Twice-daily oral administration of a cannabidiol and cannabidiolic acid–rich hemp extract was well tolerated in orange-winged Amazon parrots (Amazona amazonica) and has a favorable pharmacokinetic profile. Am. J. Vet. Res. 2023, 84, 197. [Google Scholar] [CrossRef]
- Garrett, E.R.; Hunt, C.A. Pharmacokinetics of Δ9-tetrahydrocannabinol in dogs. J. Pharm. Sci. 1977, 66, 395–407. [Google Scholar] [CrossRef]
- Janeczek, A.; Zawadzki, M.; Szpot, P.; Niedzwiedz, A. Marijuana intoxication in a cat. Acta Vet. Scand. 2018, 60, 1–4. [Google Scholar] [CrossRef]
- Thompson, G.R.; Fleischman, R.W.; Rosenkrantz, H.; Braude, M.C. Oral and intravenous toxicity of Δ9-tetrahydrocannabinol in rhesus monkeys. Toxicol. Appl. Pharmacol. 1974, 27, 648. [Google Scholar] [CrossRef] [PubMed]
- Perlin, E.; Smith, C.G.; Nichols, A.I.; Almirez, R.; Flora, K.P.; Cradock, J.; Peck, C.C. Disposition and bioavailability of various formulations of tetrahydrocannabinol in the rhesus monkey. J. Pharm. Sci. 1985, 74, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Ohlsson, A.; Lindgren, J.E.; Wahlen, A.; Agurell, S.; Hollister, L.E.; Gillespie, H.K. Plasma Δ9-tetrahydrocannabinol concentrations and clinical effects after oral and intravenous administration and smoking. Clin. Pharm. Therap. 1980, 28, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Jakubovič, A.; Tait, R.M.; McGeer, P.L. Excretion of THC and its metabolites in ewes’ milk. Toxicol. App. Pharmacol. 1974, 28, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Cotterill, R.; Penney, L.; Vaughn, D.; Reimann, B.; Rauls, D. Acute cardiovascular effects of Δ9-tetrahydrocannabinol in pregnant anesthetized sheep. Biol. Res. Preg. Perinatol. 1984, 5, 1–5. [Google Scholar]
- Kleinhenz, M.D.; Magnin, G.; Lin, Z.; Griffin, J.; Kleinhenz, K.E.; Montgomery, S.; Curtis, A.; Martin, M.; Coetzee, J.F. Plasma concentrations of eleven cannabinoids in cattle following oral administration of industrial hemp (Cannabis sativa). Sci. Rep. 2020, 10, 12753. [Google Scholar] [CrossRef]
- Kleinhenz, M.D.; Weeder, M.; Montgomery, S.; Martin, M.; Curtis, A.; Magnin, G.; Lin, Z.; Griffin, J.; Coetzee, J.F. Short term feeding of industrial hemp with a high cannabidiolic acid (CBDA) content increases lying behavior and reduces biomarkers of stress and inflammation in Holstein steers. Sci. Rep. 2022, 12, 3683. [Google Scholar] [CrossRef]
- Meyer, K.; Hayman, K.; Baumgartner, J.; Gorden, P.J. Plasma pharmacokinetics of cannabidiol following oral administration of cannabidiol oil to dairy calves. Front. Vet. Sci. 2022, 9, 2. [Google Scholar] [CrossRef]
- Wagner, B.; Gerletti, P.; Fürst, P.; Keuth, O.; Bernsmann, T.; Martin, A.; Schäfer, B.; Numata, J.; Lorenzen, M.C.; Pieper, R. Transfer of cannabinoids into the milk of dairy cows fed with industrial hemp could lead to Δ9-THC exposure that exceeds acute reference dose. Nat. Food 2022, 3, 921–932. [Google Scholar] [CrossRef]
- Cornette, H. Pharmacokinetics of Single Feeding of Cannabidiol in Cattle: A Pilot Study. Honors. College Thesis, Murray State University, Murray, KY, USA, 2023. [Google Scholar]
- Ran, T.; Xu, Z.; Yang, W.; Liu, D.; Wu, D. Partially substituting alfalfa hay with hemp forage in the diet of goats improved feed efficiency, ruminal fermentation pattern and microbial profiles. Anim. Nutr. 2024, 17, 49–60. [Google Scholar] [CrossRef]
- Food Standards Australia and New Zealand (FSANZ). Approval Report—Proposal P1042. Low THC Hemp Seeds as Food. 2017. Available online: https://www.foodstandards.gov.au/food-standards-code/proposals/P1042LowTHChemp (accessed on 25 September 2024).
- Food Standards Australia and New Zealand (FSANZ). Schedule 19—Maximum Levels of Contaminants and Natural Toxicants (Amendment No. 225). 2024. Available online: https://www.legislation.gov.au/F2015L00454/latest/text (accessed on 25 September 2024).
- VICH. VICH GL43 Target Animal Safety for Veterinary Pharmaceutical Products. 2008. Available online: https://www.ema.europa.eu/en/vich-gl43-target-animal-safety-pharmaceuticals-scientific-guideline (accessed on 25 September 2024).
- ISO 17034:2016; General Requirements for the Competence of Reference Material Producers. ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/29357.html (accessed on 14 November 2024).
- Magnusson, B.; Örnemark, U. (Eds.) Eurachem Guide: The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics, 2nd ed.; Eurachem: Bucharest, Romania, 2014; Available online: www.eurachem.org (accessed on 25 September 2024)ISBN 978-91-87461-59-0.
- National Association of Testing Authorities (NATA). Technical Note 17; NATA: Rhodes, NSW, Australia, 1998; Available online: www.nata.asn.au (accessed on 25 September 2024).
- Karschner, E.L.; Schwope, D.M.; Schwilke, E.W.; Goodwin, R.S.; Kelly, D.L.; Gorelick, D.A.; Huestis, M.A. Predictive model accuracy in estimating last Δ9-tetrahydrocannabinol (THC) intake from plasma and whole blood cannabinoid concentrations in chronic, daily cannabis smokers administered subchronic oral THC. Drug Alcohol Depend. 2012, 125, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Wolowich, W.R.; Greif, R.; Kleine-Brueggeney, M.; Bernhard, W.; Theiler, L. Minimal physiologically based pharmacokinetic model of intravenously and orally administered Δ9-tetrahydrocannabinol in healthy volunteers. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 691–711. [Google Scholar] [CrossRef] [PubMed]
- Wall, M.E.; Sadler, B.M.; Brine, D.; Taylor, H.; Perez-Reyes, M. Metabolism, disposition, and kinetics of Δ9-tetrahydrocannabinol in men and women. Clin. Pharm. Therap. 1983, 34, 352–363. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, L.; Cao, Y.; Yang, L.; Zhang, H.; Li, Y. Chemical and physical characterization of donkey abdominal fat in comparison with cow, pig and sheep fats. J. Am. Oil Chem. Soc. 2013, 90, 1371–1376. [Google Scholar] [CrossRef]
- Ohlsson, A.; Lindgren, J.E.; Wahlén, A.; Agurell, S.; Hollister, L.E.; Gillespie, H.K. Single dose kinetics of deuterium labelled Δ1-tetrahydrocannabinol in heavy and light cannabis users. Biomed. Mass Spectrom. 1982, 9, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Hunt, C.A.; Jones, R.T. Tolerance and disposition of tetrahydrocannabinol in man. J. Pharma. Exp. Ther. 1980, 215, 35–44. [Google Scholar]
- Rawitch, A.B.; Rohrer, R.; Vardaris, R.M. Δ9-tetrahydrocannabinol uptake by adipose tissue: Preferential accumulation in gonadal fat organs. Gen. Pharmacol. Vasc. Syst. 1979, 10, 525–529. [Google Scholar] [CrossRef]
- Lemberger, L.; Tamarkin, N.R.; Axelrod, J.; Kopin, I.J. Δ9-tetrahydrocannabinol: Metabolism and disposition in long-term marihuana smokers. Science 1971, 173, 72–74. [Google Scholar] [CrossRef]
- Johansson, E.; Agurell, S.; Hollister, L.E.; Halldin, M.M. Prolonged apparent half-life of Δ1-tetrahydrocannabinol in plasma of chronic marijuana users. J. Pharm. Pharmacol. 1988, 40, 374–375. [Google Scholar] [CrossRef]
Compound | Abbreviation | Quantifier | Qualifier 1 | Qualifier 2 |
---|---|---|---|---|
Cannabidiol | CBD | 315.2 → 123.2 | 315.2 → 193.2 | |
Δ9-tetrahydrocannabinol | Δ9-THC | 315.2 → 123.1 | 315.2 → 193.2 | 315.2 → 259.1 |
11-nor-9-carboxy-Δ9-THC | THC-COOH | 345.2 → 193.1 | 345.2 → 299.1 | 345.2 → 327.1 |
11-hydroxy-Δ9-THC | 11-OH-THC | 331.2 → 193.1 | 331.2 → 201.0 | 331.2 → 313.1 |
Analyte | SD (µg/L) | LOD (µg/L) | LOQ (µg/L) | LOR (µg/L) |
---|---|---|---|---|
CBD | 0.015 | 0.05 | 0.15 | 5 |
Δ9-THC | 0.001 | 0.003 | 0.0.01 | 5 |
THC-COOH | 0.017 | 0.05 | 0.17 | 5 |
11-OH-THC | 0.009 | 0.03 | 0.09 | 5 |
Analyte | Spiking Level (µg/L) | Number of Replicates (n) | Accuracy | Precision |
---|---|---|---|---|
% Recovery | % RSD | |||
CBD | 10 | 9 | 99.3 | 6.33 |
100 | 7 | 93.8 | 8.86 | |
Δ9-THC | 10 | 10 | 88.4 | 4.52 |
100 | 7 | 92.2 | 6.16 | |
THC-COOH | 10 | 10 | 89.7 | 6.91 |
100 | 10 | 89.2 | 6.42 | |
11-OH-THC | 10 | 10 | 80.3 | 6.10 |
100 | 10 | 77.5 | 5.86 |
Parameter | Mean ± SD | Median (Range) |
---|---|---|
Cmax (µg/L) | 132.88 ± 47.99 | 126.50 (91.50–222.00) |
Tmax (h) | 97.50 ± 65.55 | 132.00 (12.00–168.00) |
λz (1/h) | 0.03 ± 0.01 | 0.02 (0.01–0.03) |
Terminal elimination half-life (h) | 31.40 ± 13.87 | 28.24 (20.54–60.24) |
AUC0–t (µg•h/L) | 15,723.36 ± 4116.32 | 15,606.66 (10,991.34–22,951.02) |
AUC0–∞ (µg•h/L) | 16,525.32 ± 4356.18 | 15,952.74 (11,226.33–23,122.90) |
AUC extrapolated (%) | 4.61 ± 4.65 | 2.58 (0.74–14.97) |
MRT0–∞ (h) | 123.22 ± 22.72 | 123.43 (95.53–165.14) |
Cl/F (L/h/kg) | 0.23 ± 0.06 | 0.22 (0.15–0.32) |
Vd/F (L/kg) | 10.17 ± 4.39 | 9.56 (4.58–17.17) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stevens, S.A.; Edwards, S.H.; Noble, G.K.; Scrivener, C.J.; Krebs, G.L.; Petzel, C.E.; May, C.D.; Tai, Z.X.; Blake, B.L.; Dods, K.C.; et al. The Pharmacokinetics of Δ9-Tetrahydrocannabinol in Sheep. Animals 2024, 14, 3328. https://doi.org/10.3390/ani14223328
Stevens SA, Edwards SH, Noble GK, Scrivener CJ, Krebs GL, Petzel CE, May CD, Tai ZX, Blake BL, Dods KC, et al. The Pharmacokinetics of Δ9-Tetrahydrocannabinol in Sheep. Animals. 2024; 14(22):3328. https://doi.org/10.3390/ani14223328
Chicago/Turabian StyleStevens, Sarah A., Scott H. Edwards, Glenys K. Noble, Colin J. Scrivener, Gaye L. Krebs, Christopher E. Petzel, Christopher D. May, Zi Xuan Tai, Bronwyn L. Blake, Kenneth C. Dods, and et al. 2024. "The Pharmacokinetics of Δ9-Tetrahydrocannabinol in Sheep" Animals 14, no. 22: 3328. https://doi.org/10.3390/ani14223328
APA StyleStevens, S. A., Edwards, S. H., Noble, G. K., Scrivener, C. J., Krebs, G. L., Petzel, C. E., May, C. D., Tai, Z. X., Blake, B. L., Dods, K. C., & Warne, L. N. (2024). The Pharmacokinetics of Δ9-Tetrahydrocannabinol in Sheep. Animals, 14(22), 3328. https://doi.org/10.3390/ani14223328