Effect of Different Dietary Doses of Black Soldier Fly Meal on Performance and Egg Quality in Free-Range Reared Laying Hens
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Hen Performance Recording
2.3. Egg Collection and Egg Quality Assessment
2.4. Chemical Analyses
2.5. Statistical Analysis
3. Results
3.1. Laying Hen Performance
3.2. Egg Quality
3.3. Egg Nutritional Composition
4. Discussion
4.1. Nutrient Composition of the Black Soldier Fly Meal
4.2. Hen Performance
4.3. Egg Quality
4.4. Egg Nutritional Composition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nau, F.; Yamakawa, Y.N.Y.; Réhault-Godbert, S. Intérêt nutritionnel de l’œuf en alimentation humaine. Prod. Anim. 2010, 23, 225–236. [Google Scholar] [CrossRef]
- Réhault-Godbert, S.; Guyot, N.; Nys, Y. The golden egg: Nutritional value, bioactivities, and emerging benefits for human health. Nutrients 2019, 11, 684. [Google Scholar] [CrossRef] [PubMed]
- Rafed, R.; Abedi, M.H.; Etmadi, M.H. Nutritional value of eggs in human diet. J. Res. Appl. Sci. Biotechnol. 2024, 3, 172–176. [Google Scholar] [CrossRef]
- Mann, K.; Mann, M. The chicken egg yolk plasma and granule proteomes. Proteomics 2008, 8, 178–191. [Google Scholar] [CrossRef] [PubMed]
- Cherian, G.; Quezada, N. Egg quality, fatty acid composition and immunoglobulin Y content in eggs from laying hens fed full fat camelina or flax seed. J. Anim. Sci. Biotechnol. 2016, 7, 15. [Google Scholar] [CrossRef]
- Lordelo, M.; Fernandes, E.; Bessa, R.J.B.; Alves, S.P. Quality of eggs from different laying hen production systems, from indigenous breeds and specialty eggs. Poult. Sci. 2017, 96, 1485–1491. [Google Scholar] [CrossRef]
- Romero, C.; Yustos, J.L.; Sánchez-Román, I.; López-Torres, M.; Chamorro, S. Assessment of performance and egg quality in laying hens of Spanish indigenous breed Black Castellana as compared with a selected White egg-layer strain. Poult. Sci. 2024, 103, 104096. [Google Scholar] [CrossRef]
- Antony, B.; Benny, M.; Jose, S.; Jacob, S.; Nedumpilly, V.; Ajimol, M.S.; Abraham, G. Development of omega-3 enriched egg using fish-oil based fowl feed supplement. J. Appl. Poult. Res. 2024, 33, 100429. [Google Scholar] [CrossRef]
- FAO: Food and Agriculture Organization of the United Nations. The Future of Food and Agriculture-Alternative Pathways to 2050; FAO: Rome, Italy, 2017. [Google Scholar]
- Ruxton, C. Value of eggs during pregnancy and early childhood. Nurs. Stand. 2013, 27, 41–50. [Google Scholar] [CrossRef]
- FAO: Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/ (accessed on 25 September 2024).
- Boerema, A.; Peeters, A.; Swolfs, S.; Vandevenne, F.; Jacobs, S.; Staes, J.; Meire, P. Soybean trade: Balancing environmental and socio-economic impacts of an intercontinental market. PLoS ONE 2016, 11, e0155222. [Google Scholar] [CrossRef]
- Escobar, N.; Tizado, E.J.; zu Ermgassen, E.K.H.J.; Löfgren, P.; Börner, J.; Godar, J. Spatially-explicit footprints of agricultural commodities: Mapping carbon emissions embodied in Brazil’s soy exports. Glob. Environ. Chang. 2020, 62, 102067. [Google Scholar] [CrossRef]
- European Commission. Available online: https://ec.europa.eu/eurostat (accessed on 25 September 2024).
- Commission Regulation (EU) 2021/1372 of 17 August 2021 amending Annex IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council as regards the prohibition to feed non-ruminant farmed animals, other than fur animals, with protein derived from animals (Text with EEA relevance). Off. J. Eur. Union 2021, L295, 1–17.
- Collias, N.; Saichuae, P. Ecology of the red jungle fowl in Thailand and Malaya with reference to the origin of domestication. Nat. Hist. Bull. Siam Soc. 1967, 22, 189–209. [Google Scholar]
- Shumo, M.; Osuga, I.M.; Khamis, F.M.; Tanga, C.M.; Fiaboe, K.K.M.; Subramanian, S.; Ekesi, S.; van Huis, A.; Borgemeister, C. The nutritive value of black soldier fly larvae reared on common organic waste streams in Kenya. Sci. Rep. 2019, 9, 10110. [Google Scholar] [CrossRef] [PubMed]
- Chia, S.Y.; Tanga, C.M.; Osuga, I.M.; Cheseto, X.; Ekesi, S.; Dicke, M.; van Loon, J.J.A. Nutritional composition of black soldier fly larvae feeding on agro-industrial by-products. Entomol. Exp. Appl. 2020, 168, 472–481. [Google Scholar] [CrossRef]
- Matin, N.; Utterback, P.; Parsons, C.M. True metabolizable energy and amino acid digestibility in black soldier fly larvae meals, cricket meal, and mealworms using a precision-fed rooster assay. Poult. Sci. 2021, 100, 101146. [Google Scholar] [CrossRef]
- Cheng, V.; Shoveller, A.K.; Huber, L.A.; Kiarie, E.G. Comparative protein quality in black soldier fly larvae meal vs. soybean meal and fish meal using classical protein efficiency ratio (PER) chick growth assay model. Poult. Sci. 2023, 102, 102255. [Google Scholar] [CrossRef]
- Mwaniki, Z.N.; Kiarie, E. Standardized ileal digestible amino acids and apparent metabolizable energy content in defatted black soldier fly larvae meal fed to broiler chickens. Can. J. Anim. Sci. 2019, 99, 211–217. [Google Scholar] [CrossRef]
- Hosseindoust, A.; Ha, S.H.; Mun, J.Y.; Kim, J.S. A metanalysis to evaluate the effects of substrate sources on the nutritional performance of black soldier fly larvae: Implications for sustainable poultry feed. Poult. Sci. 2024, 103, 103299. [Google Scholar] [CrossRef]
- United Nations. Available online: https://sdgs.un.org/goals (accessed on 27 September 2024).
- Mwaniki, Z.; Neijat, M.; Kiarie, E. Egg production and quality responses of adding up to 7.5% defatted black soldier fly larvae meal in a corn-soybean meal diet fed to Shaver White Leghorns from wk 19 to 27 of age. Poult. Sci. 2018, 97, 2829–2835. [Google Scholar] [CrossRef]
- Secci, G.; Bovera, F.; Nizza, S.; Baronti, N.; Gasco, L.; Conte, G.; Serra, A.; Bonelli, A.; Parisi, G. Quality of eggs from Lohmann Brown Classic laying hens fed black soldier fly meal as substitute for soya bean. Animal 2018, 12, 2191–2197. [Google Scholar] [CrossRef] [PubMed]
- Mwaniki, Z.; Shoveller, A.K.; Huber, L.A.; Kiarie, E.G. Complete replacement of soybean meal with defatted black soldier fly larvae meal in Shaver White hens feeding program (28–43 wks of age): Impact on egg production, egg quality, organ weight, and apparent retention of components. Poult. Sci. 2020, 99, 959–965. [Google Scholar] [CrossRef] [PubMed]
- Tahamtani, F.M.; Ivarsson, E.; Wiklicky, V.; Lalander, C.; Wall, H.; Rodenburg, T.B.; Tuyttens, F.A.M.; Hernandez, C.E. Feeding live Black Soldier Fly larvae (Hermetia illucens) to laying hens: Effects on feed consumption, hen health, hen behaviour, and egg quality. Poult. Sci. 2021, 100, 101400. [Google Scholar] [CrossRef] [PubMed]
- Star, L.; Arsiwalla, T.; Molist, F.; Leushuis, R.; Dalim, M.; Paul, A. Gradual provision of live black soldier fly (Hermetia illucens) larvae to older laying hens: Effect on production performance, egg quality, feather condition and behavior. Animals 2020, 10, 216. [Google Scholar] [CrossRef]
- Bejaei, M.; Cheng, K.M. Inclusion of dried black soldier fly larvae in free-range laying hen diets: Effects on production efficiency, feed safety, blood metabolites, and hen health. Agriculture 2024, 14, 31. [Google Scholar] [CrossRef]
- Eisen, E.J.; Bohren, B.B.; Mckean, H.E. The Haugh unit as a measure of egg albumen quality. Poult. Sci. 1962, 41, 1461–1468. [Google Scholar] [CrossRef]
- AOAC: Association of Official Analytical Chemists. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2006. [Google Scholar]
- Boletín Oficial del Estado. Real Decreto 2257/1994, de 25 de noviembre, por el que se aprueba los métodos oficiales de análisis de piensos o alimentos para animales y sus materias primas. Boletín Of. Estado 1995, 52, 7161–7237. [Google Scholar]
- Romero, C.; Arija, I.; Viveros, A.; Chamorro, S. Productive performance, egg quality and yolk lipid oxidation in laying hens fed diets including grape pomace or grape extract. Animals 2022, 12, 1076. [Google Scholar] [CrossRef]
- Hirakawa, Y.; Fujita, K.; Katayama, M.; Yokozeki, T.; Takahashi, Y.; Yoshida, I.; Nakagawa, K. Optimisation of acid hydrolysis conditions of choline esters and mass spectrometric determination of total choline in various foods. Sci. Rep. 2024, 14, 17960. [Google Scholar] [CrossRef]
- Tekin, Z.; Erarpat, S.; Şahin, A.; Chormey, D.S.; Bakırdere, S. Determination of vitamin B12 and cobalt in egg yolk using vortex assisted switchable solvent based liquid phase microextraction prior to slotted quartz tube flame atomic absorption spectrometry. Food Chem. 2019, 286, 500–505. [Google Scholar] [CrossRef]
- Hebert, K.; House, J.D.; Guenter, W. Effect of dietary folic acid supplementation on egg folate content and the performance and folate status of two strains of laying hens. Poult. Sci. 2005, 84, 1533–1538. [Google Scholar] [CrossRef] [PubMed]
- Herranz, B.; Romero, C.; Sánchez-Román, I.; López-Torres, M.; Viveros, A.; Arija, I.; Álvarez, M.D.; de Pascual-Teresa, S.; Chamorro, S. Enriching eggs with bioactive compounds through the inclusion of grape pomace in laying hens diet: Effect on internal and external egg quality parameters. Foods 2024, 13, 1553. [Google Scholar] [CrossRef] [PubMed]
- Facey, H.; Kithama, M.; Mohammadigheisar, M.; Huber, L.A.; Shoveller, A.K.; Kiarie, E.G. Complete replacement of soybean meal with black soldier fly larvae meal in feeding program for broiler chickens from placement through to 49 days of age reduced growth performance and altered organs morphology. Poult. Sci. 2023, 102, 102293. [Google Scholar] [CrossRef] [PubMed]
- Patterson, P.H.; Acar, N.; Ferguson, A.D.; Trimble, L.D.; Sciubba, H.B.; Koutsos, E.A. The impact of dietary Black Soldier Fly larvae oil and meal on laying hen performance and egg quality. Poult. Sci. 2021, 100, 101272. [Google Scholar] [CrossRef] [PubMed]
- Heuel, M.; Sandrock, C.; Leiber, F.; Mathys, A.; Gold, M.; Zurbrügg, C.; Gangnat, I.D.M.; Kreuzer, M.; Terranova, M. Black soldier fly larvae meal and fat can completely replace soybean cake and oil in diets for laying hens. Poult. Sci. 2021, 100, 101034. [Google Scholar] [CrossRef]
- Liland, N.S.; Biancarosa, I.; Araujo, P.; Biemans, D.; Bruckner, C.G.; Waagbø, R.; Torstensen, B.E.; Lock, E.J. Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PLoS ONE 2017, 12, e0183188. [Google Scholar] [CrossRef]
- St-Hilaire, S.; Cranfill, K.; McGuire, M.A.; Mosley, E.E.; Tomberlin, J.K.; Newton, L.; Sealey, W.; Sheppard, C.; Irving, S. Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids. J. World Aquac. Soc. 2007, 38, 309–313. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; van Broekhoven, S.; van Huis, A.; van Loon, J.J.A. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef]
- Li, X.; Dong, Y.; Sun, Q.; Tan, X.; You, C.; Huang, Y.; Zhou, M. Growth and fatty acid composition of black soldier fly Hermetia illucens (Diptera: Stratiomyidae) larvae are influenced by dietary fat sources and levels. Animals 2022, 12, 486. [Google Scholar] [CrossRef]
- Khan, S.; Shi, X.; Cai, R.; Zhao, S.; Li, X.; Khan, I.M.; Yin, Z.; Lu, H.; Hilal, M.G.; Yi, R.; et al. Assessing the performance, egg quality, serum analysis, heavy metals and essential trace metals accumulation in laying hen eggs and tissues fed black soldier fly (Hermetia illucens) larvae meal. Poult. Sci. 2024, 103, 104315. [Google Scholar] [CrossRef]
- Whitehead, C.C. The response of egg weight to the inclusion of different amounts of vegetable oil and linoleic acid in the diet of laying hens. Br. Poult. Sci. 1981, 22, 525–532. [Google Scholar] [CrossRef]
- March, B.E.; MacMillan, C. Linoleic acid as a mediator of egg size. Poult. Sci. 1990, 69, 634–639. [Google Scholar] [CrossRef]
- Leeson, S.; Summers, J.D. Commercial Poultry Nutrition, 3rd ed.; Nottingham University Press: Nottingham, UK, 2005. [Google Scholar]
- Scragg, R.H.; Logan, N.B.; Geddes, N. Response of egg weight to the inclusion of various fats in layer diets. Br. Poult. Sci. 1987, 28, 15–21. [Google Scholar] [CrossRef]
- Grobas, S.; Mateos, G.G.; Mendez, J. Influence of dietary linoleic acid on production and weight of eggs and egg components in young brown hens. J. Appl. Poult. Res. 1999, 8, 177–184. [Google Scholar] [CrossRef]
- Longvah, T.; Mangthya, K.; Ramulu, P. Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food Chem. 2011, 128, 400–403. [Google Scholar] [CrossRef]
- Hendrix Genetics. Bovans Brown Product Guide Alternative Housing. 2024. Available online: https://www.bovans.com/documents/564/Bovans_Brown_CS_product_guide_alternative_EN_L1211-1.pdf (accessed on 22 October 2024).
- Zhao, J.; Kawasaki, K.; Miyawaki, H.; Hirayasu, H.; Izumo, A.; Iwase, S.; Kasai, K. Egg quality and laying performance of Julia laying hens fed with black soldier fly (Hermetia illucens) larvae meal as a long-term substitute for fish meal. Poult. Sci. 2022, 101, 101986. [Google Scholar] [CrossRef]
- Dörper, A.; Gort, G.; van Harn, J.; Oonincx, D.G.A.B.; Dicke, M.; Veldkamp, T. Performance, egg quality and organ traits of laying hens fed black soldier fly larvae products. Poult. Sci. 2024, 103, 104229. [Google Scholar] [CrossRef]
- Ruhnke, I.; Akter, Y.; Sibanda, T.Z.; Cowieson, A.J.; Wilkinson, S.; Maldonado, S.; Singh, M.; Hughes, P.; Caporale, D.; Bucker, S.; et al. The response of layer hen productivity and egg quality to an additional limestone source when offered diets differing in calcium concentrations and the inclusion of phytase. Animals 2021, 11, 2991. [Google Scholar] [CrossRef]
- Santos-Bocanegra, E.; Ospina-Osorio, X.; Oviedo-Rondon, E.O. Evaluation of xanthophylls extracted from Tagetes erectus (Marigold flower) and Capsicum Sp. (Red pepper paprika) as a pigment for egg-yolks compare with synthetic pigments. Int. J. Poult. Sci. 2004, 3, 685–689. [Google Scholar]
- Dansou, D.M.; Zhang, H.; Yu, Y.; Wang, H.; Tang, C.; Zhao, Q.; Qin, Y.; Zhang, J. Carotenoid enrichment in eggs: From biochemistry perspective. Anim. Nutr. 2023, 14, 315–333. [Google Scholar] [CrossRef]
- Bovšková, H.; Míková, K.; Panovská, Z. Evaluation of egg yolk colour. Czech J. Food Sci. 2014, 32, 213–217. [Google Scholar] [CrossRef]
- Kljak, K.; Carović-Stanko, K.; Kos, I.; Janječić, Z.; Kiš, G.; Duvnjak, M.; Safner, T.; Bedeković, D. Plant carotenoids as pigment sources in laying hen diets: Effect on yolk color, carotenoid content, oxidative stability and sensory properties of eggs. Foods 2021, 10, 721. [Google Scholar] [CrossRef] [PubMed]
- Kojima, S.; Koizumi, S.; Kawami, Y.; Shigeta, Y.; Osawa, A. Effect of dietary carotenoid on egg yolk color and singlet oxygen quenching activity of laying hens. J. Poult. Sci. 2022, 59, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Lokaewmanee, K.; Suttibak, S.; Sukthanapirat, R.; Sriyoha, R.; Chanasakhatana, N.; Baotong, S.; Trithalen, U. Laying hen performance, feed economy, egg quality and yolk fatty acid profiles from laying hens fed live black soldier fly larvae. Czech J. Anim. Sci. 2023, 68, 169–177. [Google Scholar] [CrossRef]
- Grashorn, M. Feed additives for influencing chicken meat and egg yolk color. In Handbook on Natural Pigments in Food and Beverages; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2016; pp. 283–302. [Google Scholar]
- Williams, K.C. Some factors affecting albumen quality with particular reference to Haugh unit score. World Poult. Sci. J. 1992, 48, 5–16. [Google Scholar] [CrossRef]
- Dabbou, S.; Lauwaerts, A.; Ferrocino, I.; Biasato, I.; Sirri, F.; Zampiga, M.; Bergagna, S.; Pagliasso, G.; Gariglio, M.; Colombino, E.; et al. Modified black soldier fly larva fat in broiler diet: Effects on performance, carcass traits, blood parameters, histomorphological features and gut microbiota. Animals 2021, 11, 1837. [Google Scholar] [CrossRef]
- Thao, L.D.; Quan, N.H.; Ngoan, L.D. Response to egg production, egg quality and fatty acid profile of yolk when feeding ISA Brown laying hen by diets containing full-fat black soldier fly larvae meal. Livest. Res. Rural Dev. 2023, 35, 2. [Google Scholar]
- Naber, E.C. The effect of nutrition on the composition of eggs. Poult. Sci. 1979, 58, 518–528. [Google Scholar] [CrossRef]
- Han, C.K.; Lee, N.H. Yolk cholesterol content in eggs from the major domestic strains of breeding hen. Asian-Australas. J. Anim. Sci. 1992, 5, 461–464. [Google Scholar] [CrossRef]
- Sun, H.; Lee, E.J.; Samaraweera, H.; Persia, M.; Ahn, D.U. Effects of increasing concentrations of corn distillers dried grains with solubles on chemical composition and nutrient content of egg. Poult. Sci. 2013, 92, 233–242. [Google Scholar] [CrossRef]
- Mikulski, D.; Jankowski, J.; Naczmanski, J.; Mikulska, M.; Demey, V. Effects of dietary probiotic (Pediococcus acidilactici) supplementation on performance, nutrient digestibility, egg traits, egg yolk cholesterol, and fatty acid profile in laying hens. Poult. Sci. 2012, 91, 2691–2700. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.J.; Davidson, J.A.; Bauer, D.; Butts, H.A. The biotin content of fresh and stored shell eggs. Poult. Sci. 1953, 32, 680–683. [Google Scholar] [CrossRef]
- Yu, A.C.; Deng, Y.H.; Long, C.; Sheng, X.H.; Wang, X.G.; Xiao, L.F.; Lv, X.Z.; Chen, X.N.; Chen, L.; Qi, X.L. High dietary folic acid supplementation reduced the composition of fatty acids and amino acids in fortified eggs. Foods 2024, 13, 1048. [Google Scholar] [CrossRef] [PubMed]
- Squires, M.W.; Naber, E.C. Vitamin profiles of eggs as indicators of nutritional status in the laying hen: Vitamin B12 study. Poult. Sci. 1992, 71, 2075–2082. [Google Scholar] [CrossRef] [PubMed]
- INRA. Tables de Composition et de Valeur Nutritive des Matières Premières Destinées aux Animaux d’Élèvage, 2nd ed.; INRA Éditions: Paris, France, 2004. [Google Scholar]
- Finke, M.D. Complete nutrient content of four species of feeder insects. Zoo Biol. 2013, 32, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.M.; Khalil, M.; Manner, K.; Raila, J.; Rawel, H.; Zentek, J.; Schweigert, F.J. Effect of dietary alpha-tocopherol on the bioavailability of lutein in laying hen. J. Anim. Physiol. Anim. Nutr. 2016, 100, 868–875. [Google Scholar] [CrossRef]
- Seddon, J.M.; Ajani, U.A.; Sperduto, R.D.; Hiller, R.; Blair, N.; Burton, T.C.; Farber, M.D.; Gragoudas, E.S.; Haller, J.; Miller, D.T.; et al. Dietary carotenoids, vitamin A, C, and E, and advanced age-related macular degeneration. J. Am. Med. Assoc. 1994, 272, 1413–1420. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.M.; Akhtar, H.; Zaheer, K.; Ali, R. Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients 2013, 5, 1169–1185. [Google Scholar] [CrossRef]
Nutrient | Soybean Meal | Black Soldier Fly Meal |
---|---|---|
Crude protein | 421 | 559 |
Fat | 13.1 | 70.0 |
Crude fibre | 39.0 | 103 |
Calcium | 3.80 | 26.5 |
Phosphorus | 7.70 | 13.4 |
Sodium | 0.10 | 1.30 |
Total carotenoids (mg/kg) | 1.80 | 5.30 |
Lutein (mg/kg) | 1.16 | 1.01 |
Zeaxanthin (mg/kg) | 0.089 | 1.21 |
β-carotene (mg/kg) | 0.374 | 0.867 |
α-,β-cryptoxanthin (mg/kg) | ND 1 | 0.597 |
Amino acids | ||
Alanine | 19.8 | 34.3 |
Arginine | 32.1 | 28.8 |
Aspartic acid | 51.7 | 55.5 |
Cysteine | 3.60 | 7.00 |
Glutamic acid | 80.2 | 65.9 |
Glycine | 18.2 | 31.2 |
Histidine | 10.7 | 17.9 |
Isoleucine | 14.5 | 18.0 |
Leucine | 34.0 | 39.3 |
Lysine | 27.2 | 33.7 |
Methionine | 5.10 | 7.00 |
Phenylalanine | 21.6 | 23.8 |
Proline | 23.2 | 31.4 |
Serine | 23.2 | 23.8 |
Threonine | 17.6 | 21.6 |
Tryptophan | 6.00 | 9.40 |
Tyrosine | 19.7 | 33.0 |
Valine | 19.8 | 32.6 |
Fatty acid profile (%) | ||
Lauric acid (C12:0) | ND | 30.9 |
Myristic acid (C14:0) | 0.20 | 6.73 |
Palmitic acid (C16:0) | 13.6 | 17.5 |
Stearic acid (C18:0) | 4.08 | 5.00 |
Oleic acid (C18:1 ω-9) | 9.38 | 18.7 |
Linoleic acid (C18:2 ω-6) | 55.2 | 13.7 |
Linolenic acid (C18:3 ω-3) | 3.78 | 0.98 |
Saturated fatty acids | 18.3 | 61.4 |
Monounsaturated fatty acids | 20.7 | 23.4 |
Polyunsaturated fatty acids | 61.0 | 15.2 |
ω-6 fatty acids | 57.2 | 13.7 |
ω-3 fatty acids | 3.78 | 1.48 |
Ingredients | Experimental Diets | ||
---|---|---|---|
Control | 80 g/kg BSF meal | 160 g/kg BSF meal | |
Barley | 316 | 330 | 356 |
Wheat | 200 | 200 | 200 |
Soybean meal | 210 | 105 | 0.0 |
Black soldier fly (BSF) meal | 0.0 | 80.0 | 160 |
Sunflower meal (30% crude protein) | 100 | 100 | 100 |
Soybean oil | 60.0 | 60.0 | 60.0 |
Calcium carbonate | 96.3 | 104 | 102 |
Monocalcium phosphate | 7.30 | 8.60 | 10.9 |
Salt | 3.40 | 4.20 | 3.70 |
L-Lysine | 0.40 | 0.90 | 0.80 |
DL-Methionine | 1.60 | 2.30 | 1.60 |
Vitamin-mineral premix 1 | 5.00 | 5.00 | 5.00 |
Analysed composition | |||
Starch | 284 | 297 | 316 |
Fat | 73.2 | 77.7 | 82.4 |
Crude fibre | 51.1 | 55.9 | 61.3 |
Crude protein | 176 | 179 | 182 |
Lysine | 8.90 | 9.10 | 8.90 |
Methionine | 3.90 | 4.50 | 4.00 |
Ash | 134 | 147 | 148 |
Calcium | 40.0 | 45.1 | 46.1 |
Phosphorus | 6.00 | 6.60 | 7.50 |
Sodium | 1.50 | 1.90 | 1.80 |
Total carotenoids (mg/kg) | 15.4 | 19.0 | 19.0 |
Lutein (mg/kg) | 5.01 | 6.05 | 6.18 |
Zeaxanthin (mg/kg) | 5.10 | 6.71 | 7.03 |
β-carotene (mg/kg) | 1.74 | 1.86 | 1.55 |
α-,β-cryptoxanthin (mg/kg) | 2.05 | 2.68 | 2.23 |
Fatty acid profile (%) | |||
Oleic acid (C18:1 ω-9) | 30.1 | 47.0 | 45.4 |
Linoleic acid (C18:2 ω-6) | 51.7 | 30.8 | 30.3 |
Linolenic acid (C18:3 ω-3) | 2.18 | 2.90 | 2.86 |
Saturated fatty acids | 14.2 | 17.2 | 19.1 |
Monounsaturated fatty acids | 31.4 | 48.5 | 47.1 |
Polyunsaturated fatty acids | 54.4 | 34.3 | 33.8 |
ω-6 fatty acids | 52.2 | 31.3 | 30.7 |
ω-3 fatty acids | 2.18 | 3.03 | 3.08 |
Calculated composition | |||
AME 2 (MJ/kg) | 11.3 | 11.3 | 11.6 |
Experimental Diets | SEM 1 | p-Value | Linear Effect | Quadratic Effect | |||
---|---|---|---|---|---|---|---|
Control | 80 g/kg BSF meal | 160 g/kg BSF meal | |||||
Daily egg production (%) | 94.4 | 93.9 | 91.9 | 1.08 | 0.23 | 0.10 | 0.57 |
Average egg weight (g) | 62.5 | 60.9 | 61.9 | 0.644 | 0.52 | 0.39 | 0.84 |
Daily egg mass (g/d) | 58.9 | 57.1 | 56.9 | 0.777 | 0.13 | 0.10 | 0.43 |
Feed intake (g/d) | 126.1 | 126.3 | 126.4 | 0.336 | 0.89 | 0.62 | 0.97 |
Feed conversion ratio (g feed/g egg mass) | 2.15 | 2.22 | 2.24 | 0.074 | 0.68 | 0.40 | 0.78 |
Experimental Diets | SEM 1 | p-Value | Linear Effect | Quadratic Effect | |||
---|---|---|---|---|---|---|---|
Control | 80 g/kg BSF meal | 160 g/kg BSF meal | |||||
Egg weight (g) | 62.4 | 60.8 | 62.0 | 0.784 | 0.33 | 0.68 | 0.15 |
Shell thickness (μm) | 357 | 360 | 358 | 5.42 | 0.92 | 0.81 | 0.75 |
Shell (%) | 11.6 | 11.7 | 11.6 | 0.151 | 0.83 | 0.99 | 0.54 |
Yolk colour score | 8.19 a | 3.89 b | 4.11 b | 0.198 | <0.001 | <0.001 | <0.001 |
Haugh units at 0 days of storage 2 | 96.7 a | 84.4 b | 85.7 b | 1.64 | <0.001 | <0.001 | 0.0011 |
Haugh units at 14 days of storage | 83.6 | 77.6 | 82.1 | 2.40 | 0.20 | 0.66 | 0.082 |
Haugh units at 30 days of storage | 83.6 | 79.7 | 81.5 | 1.64 | 0.25 | 0.38 | 0.16 |
Experimental Diets | SEM 1 | p-Value | Linear Effect | Quadratic Effect | |||
---|---|---|---|---|---|---|---|
Control | 80 g/kg BSF meal | 160 g/kg BSF meal | |||||
Fat (% DM) | 62.6 | 63.2 | 62.8 | 0.378 | 0.56 | 0.79 | 0.31 |
Crude protein (% DM) | 31.5 | 32.0 | 32.1 | 0.205 | 0.12 | 0.17 | 0.37 |
Cholesterol (mg/100 g DM) | 1995 | 1982 | 1987 | 10.3 | 0.70 | 0.61 | 0.51 |
Choline (mg/100 g DM) | 590 | 587 | 600 | 20.4 | 0.89 | 0.72 | 0.75 |
Vitamins | |||||||
Biotin (μg/g DM) | 1.23 | 1.57 | 1.37 | 0.120 | 0.22 | 0.52 | 0.12 |
Folate (μg/100 g DM) | 27.9 | 28.3 | 28.6 | 0.522 | 0.67 | 0.36 | 0.88 |
Cobalamin (μg/100 g DM) | 5.68 | 5.64 | 5.49 | 0.184 | 0.74 | 0.44 | 0.82 |
Retinol (μg/g DM) | 10.8 a | 9.82 b | 9.60 b | 0.234 | 0.011 | 0.045 | 0.21 |
Cholecalciferol (μg/g DM) | 7.72 | 7.05 | 7.05 | 0.425 | 0.46 | 0.27 | 0.53 |
α-tocopherol (μg/g DM) | 116 b | 107 b | 148 a | 7.51 | 0.0086 | 0.11 | 0.023 |
γ-tocopherol (μg/g DM) | 7.75 b | 9.75 a | 9.75 a | 0.479 | 0.024 | 0.022 | 0.12 |
Total carotenoids (mg/kg) | 16.0 b | 20.5 ab | 25.7 a | 1.68 | 0.018 | 0.0031 | 0.86 |
Lutein (mg/kg) | 9.84 b | 10.8 ab | 12.1 a | 0.484 | 0.042 | 0.0091 | 0.77 |
Zeaxanthin (mg/kg) | 5.97 b | 8.77 a | 10.6 a | 0.640 | 0.0061 | 0.0010 | 0.57 |
α-,β-cryptoxanthin (mg/kg) | ND 2 | 1.39 | 1.83 | 0.158 | 0.12 | -- | -- |
Minerals | |||||||
Iron (mg/kg DM) | 110 | 111 | 112 | 2.39 | 0.76 | 0.45 | 0.93 |
Zinc (mg/kg DM) | 79.0 a | 73.2 b | 70.7 c | 0.773 | <0.001 | <0.001 | 0.12 |
Phosphorus (% DM) | 1.06 | 1.10 | 1.10 | 0.030 | 0.56 | 0.36 | 0.56 |
Experimental Diets | SEM 1 | p-Value | Linear Effect | Quadratic Effect | |||
---|---|---|---|---|---|---|---|
Control | 80 g/kg BSF meal | 160 g/kg BSF meal | |||||
C14:0 | 0.267 c | 0.610 b | 0.750 a | 0.0059 | <0.001 | <0.001 | <0.001 |
C14:1 | ND 2 | 0.127 b | 0.198 a | 0.0038 | <0.001 | <0.001 | - |
C15:0 | ND | 0.087 | 0.082 | 0.0048 | 0.49 | 0.49 | - |
C16:0 | 23.4 b | 24.2 a | 24.6 a | 0.207 | 0.023 | 0.22 | 0.70 |
C16:1 | 2.81 b | 3.91 a | 4.26 a | 0.123 | <0.001 | 0.12 | 0.36 |
C17:0 | 0.340 a | 0.220 b | 0.237 b | 0.010 | <0.001 | 0.49 | 0.19 |
C17:1 | 0.122 a | 0.110 b | 0.127 a | 0.0031 | 0.0089 | 0.48 | 0.16 |
C18:0 | 8.55 a | 6.97 b | 7.09 b | 0.062 | <0.001 | 0.55 | 0.30 |
C18:1 | 37.8 c | 42.6 b | 43.7 a | 0.252 | <0.001 | <0.001 | <0.001 |
C18:2 ω-6 | 21.9 a | 16.8 b | 15.0 c | 0.444 | <0.001 | <0.001 | 0.011 |
C18:3 ω-3 | 0.607 b | 0.680 a | 0.610 b | 0.015 | 0.0013 | 0.27 | 0.61 |
C18:3 ω-6 | 0.198 a | 0.117 b | 0.102 c | 0.0042 | <0.001 | <0.001 | <0.001 |
C20:1 | 0.207 b | 0.260 a | 0.263 a | 0.0051 | <0.001 | 0.079 | 0.35 |
C20:2 ω-6 | 0.230 a | 0.210 a | 0.160 b | 0.011 | 0.0049 | 0.87 | 0.31 |
C20:3 ω-3 | 2.17 a | 1.76 b | 1.61 c | 0.037 | <0.001 | <0.001 | 0.019 |
C22:6 ω-3 | 0.792 a | 0.772 a | 0.627 b | 0.017 | <0.001 | 0.37 | 0.17 |
C24:0 | 0.220 a | 0.177 b | 0.182 b | 0.0039 | <0.001 | 0.76 | 0.49 |
C24:1 | 0.387 | 0.390 | 0.402 | 0.011 | 0.59 | 0.93 | 0.71 |
Saturated fatty acids (%) | 32.8 | 32.3 | 33.0 | 0.192 | 0.089 | 0.51 | 0.23 |
Monounsaturated fatty acids (%) | 41.3 c | 47.4 b | 48.9 a | 0.363 | <0.001 | <0.001 | <0.001 |
Polyunsaturated fatty acids (%) | 25.9 a | 20.3 b | 18.1 c | 0.513 | <0.001 | <0.001 | 0.023 |
ω-6 fatty acids (%) | 22.3 a | 17.1 b | 15.3 c | 0.458 | <0.001 | <0.001 | 0.013 |
ω-3 fatty acids (%) | 3.57 a | 3.21 b | 2.80 c | 0.062 | <0.001 | <0.001 | 0.73 |
Ratio ω-6/ω-3 | 6.26 a | 5.31 b | 5.47 b | 0.070 | <0.001 | 0.31 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero, C.; Cenalmor, J.C.; Chamorro, S.; Redondo, C. Effect of Different Dietary Doses of Black Soldier Fly Meal on Performance and Egg Quality in Free-Range Reared Laying Hens. Animals 2024, 14, 3340. https://doi.org/10.3390/ani14223340
Romero C, Cenalmor JC, Chamorro S, Redondo C. Effect of Different Dietary Doses of Black Soldier Fly Meal on Performance and Egg Quality in Free-Range Reared Laying Hens. Animals. 2024; 14(22):3340. https://doi.org/10.3390/ani14223340
Chicago/Turabian StyleRomero, Carlos, Juan Carlos Cenalmor, Susana Chamorro, and César Redondo. 2024. "Effect of Different Dietary Doses of Black Soldier Fly Meal on Performance and Egg Quality in Free-Range Reared Laying Hens" Animals 14, no. 22: 3340. https://doi.org/10.3390/ani14223340
APA StyleRomero, C., Cenalmor, J. C., Chamorro, S., & Redondo, C. (2024). Effect of Different Dietary Doses of Black Soldier Fly Meal on Performance and Egg Quality in Free-Range Reared Laying Hens. Animals, 14(22), 3340. https://doi.org/10.3390/ani14223340