Dietary Protein Affects the Growth Response and Tissue Composition of Juvenile Slipper Lobster (Thenus australiensis)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Feed Manufacture
2.2. Experimental Animals
2.3. Experimental Design
2.4. Apparent Feed Intake
2.5. Apparent Digestibility
2.6. Chemical Composition Analyses
2.7. Statistical Analyses
3. Results
3.1. Apparent Digestibility
3.2. Growth Performance
3.3. Chemical Body Composition
4. Discussion
4.1. Apparent Digestibility
4.2. Growth Performance
4.3. Chemical Body Composition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vijayakumaran, M.; Radhakrishnan, E.V. Slipper Lobsters. In Recent Advances and New Species in Aquaculture, 1st ed.; Fotedar, R.K., Phillips, B.F., Eds.; Wiley-Blackwell: Oxford, UK, 2011; pp. 85–114. [Google Scholar] [CrossRef]
- Wirtz, A.; Carter, C.G.; Codabaccus, M.B.; Fitzgibbon, Q.P.; Townsend, A.T.; Smith, G.G. Protein sources influence both apparent digestibility and gastrointestinal evacuation rate in juvenile slipper lobster (Thenus australiensis). Comp. Biochem. Physiol. Part A 2022, 265, 111121. [Google Scholar] [CrossRef] [PubMed]
- Codabaccus, B.M.; Carter, C.G.; Fitzgibbon, Q.P.; Trotter, A.J.; Smith, G.G. Growth and biochemical composition of hatchery reared Scyllaridae lobster (Thenus australiensis) larval stages, nisto and juvenile first stage. Aquaculture 2020, 524, 735262. [Google Scholar] [CrossRef]
- Carter, C.G.; Codabaccus, M.B. Assessing the value of single-cell ingredients in aquafeeds. Curr. Opin. Biotechnol. 2022, 76, 102734. [Google Scholar] [CrossRef] [PubMed]
- Wirtz, A.; Mazumder, D.; Carter, C.G.; Codabaccus, M.B.; Fitzgibbon, Q.P.; Smith, G.G. Application of stable isotope analysis to evaluate the assimilation of protein sources in juvenile slipper lobsters (Thenus australiensis). Aquaculture 2022, 560, 738570. [Google Scholar] [CrossRef]
- Kaushik, S.J.; Seiliez, I. Protein and amino acid nutrition and metabolism in fish: Current knowledge and future needs. Aquacult. Res. 2010, 41, 322–332. [Google Scholar] [CrossRef]
- Cuzon, G.; Guillaume, J. Protein and energy: Energy ratio. In Crustacean Nutrition: Advances in World Aquaculture; D’Abramo, L.R., Conklin, D.E., Akiyama, D.M., Eds.; World Aquaculture Society: Baton Rouge, LA, USA, 1997; Volume 6, pp. 51–70. [Google Scholar]
- Wang, S.; Carter, C.G.; Fitzgibbon, Q.P.; Codabaccus, B.M.; Smith, G.G. Effect of dietary protein on energy metabolism including protein synthesis in the spiny lobster Sagmariasus verreauxi. Sci. Rep. 2021, 11, 11814. [Google Scholar] [CrossRef]
- Ward, L.R.; Carter, C.G.; Crear, B.J.; Smith, D.M. Optimal dietary protein level for juvenile southern rock lobster, Jasus edwardsii, at two lipid levels. Aquaculture 2003, 217, 483–500. [Google Scholar] [CrossRef]
- Bureau, D.P.; Kaushik, S.J.; Cho, C.Y. Bioenergetics. In Fish Nutrition, 3rd ed.; Halver, J.E., Hardy, R.W., Eds.; Academic Press: San Diego, CA, USA, 2003; pp. 1–59. [Google Scholar] [CrossRef]
- Carter, C.G.; Houlihan, D.F. Protein synthesis. In Nitrogen Excretion; Wright, P., Anderson, P., Eds.; Academic Press: New York, NY, USA, 2001; Volume 20, pp. 31–75. [Google Scholar] [CrossRef]
- Wilson, R.P. Amino acids and proteins. In Fish Nutrition, 2nd ed.; Halver, J.E., Ed.; Academic Press: London, UK, 1989; pp. 112–151. [Google Scholar]
- Nelson, M.M.; Bruce, M.P.; Nichols, P.D.; Jeffs, A.G.; Phleger, C.F. Nutrition of Wild and Cultured Lobsters. In Lobsters: Biology, Management, Aquaculture and Fisheries; Phillips, B.F., Ed.; Blackwell Publishing: Oxford, UK, 2006; pp. 205–230. [Google Scholar]
- Zhou, J.-B.; Zhou, Q.-C.; Chi, S.-Y.; Yang, Q.-H.; Liu, C.-W. Optimal dietary protein requirement for juvenile ivory shell, Babylonia areolate. Aquaculture 2007, 270, 186–192. [Google Scholar] [CrossRef]
- Sedgwick, R.W. Influence of dietary protein and energy on growth, food consumption and food conversion efficiency in Penaeus merguiensis de Man. Aquaculture 1979, 16, 7–30. [Google Scholar] [CrossRef]
- Johnston, D.J.; Calvert, K.A.; Crear, B.J.; Carter, C.G. Dietary carbohydrate/lipid ratios and nutritional condition in juvenile southern rock lobster, Jasus edwardsii. Aquaculture 2003, 220, 667–682. [Google Scholar] [CrossRef]
- Wang, S.; Carter, C.G.; Fitzgibbon, Q.P.; Smith, G.G. Respiratory quotient and the stoichiometric approach to investigating metabolic energy substrate use in aquatic ectotherms. Rev. Aquac. 2021, 13, 1255–1284. [Google Scholar] [CrossRef]
- Mente, E. Protein nutrition in crustaceans. CAB Rev. 2006, 1, 7–13. [Google Scholar] [CrossRef]
- Glencross, B.; Smith, M.; Curnow, J.; Smith, D.; Williams, K. The dietary protein and lipid requirements of post-puerulus western rock lobster, Panulirus cygnus. Aquaculture 2001, 199, 119–129. [Google Scholar] [CrossRef]
- Smith, D.M.; Williams, K.C.; Irvin, S.; Barclay, M.; Tabrett, S. Development of a pelleted feed for juvenile tropical spiny lobster (Panulirus ornatus): Response to dietary protein and lipid. Aquacult. Nutr. 2003, 9, 231–237. [Google Scholar] [CrossRef]
- Smith, D.M.; Williams, K.C.; Irvin, S.J. Response of the tropical spiny lobster Panulirus ornatus to protein content of pelleted feed and to a diet of mussel flesh. Aquacult. Nutr. 2005, 11, 209–217. [Google Scholar] [CrossRef]
- Landman, M.J.; Codabaccus, M.B.; Fitzgibbon, Q.P.; Smith, G.G.; Carter, C.G. Fresh or formulated: A preliminary evaluation of fresh blue mussel (Mytilus galloprovincialis) and formulated experimental feeds with inclusion of fresh blue mussel on the growth performance of hatchery-reared juvenile slipper lobster (Thenus australiensis). Aquaculture 2021, 531, 735924. [Google Scholar] [CrossRef]
- Jauralde, I.; Velazco-Vargas, J.; Tomás-Vidal, A.; Jover Cerdá, M.; Martínez-Llorens, S. Protein and Energy Requirements for Maintenance and Growth in Juvenile Meagre Argyrosomus regius (Asso, 1801) (Sciaenidae). Animals 2021, 11, 77. [Google Scholar] [CrossRef]
- Fitzgibbon, Q.P.; Battaglene, S.C. Effect of photoperiod on the culture of early-stage phyllosoma and metamorphosis of spiny lobster (Sagmariasus verreauxi). Aquaculture 2012, 368–369, 48–54. [Google Scholar] [CrossRef]
- Jensen, M.A.; Carter, C.G.; Adams, L.R.; Fitzgibbon, Q.P. Growth and biochemistry of the spiny lobster Sagmariasus verreauxi cultured at low and high density from hatch to puerulus. Aquaculture 2013, 376–379, 162–170. [Google Scholar] [CrossRef]
- Crear, B.J.; Forteath, G.N.R. Feeding has the largest effect on the ammonia excretion rate of the southern rock lobster, Jasus edwardsii, and the western rock lobster, Panulirus cygnus. Aquac. Eng. 2002, 26, 239–250. [Google Scholar] [CrossRef]
- Fitzgibbon, Q.P.; Simon, C.J.; Smith, G.G.; Carter, C.G.; Battaglene, S.C. Temperature dependent growth, feeding, nutritional condition and aerobic metabolism of juvenile spiny lobster, Sagmariasus verreauxi. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2017, 207, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Johnston, D. Feeding Morphology and Digestive System of Slipper Lobsters. In The Biology and Fisheries of the Slipper Lobster, 1st ed.; Lavalli, K.L., Spanier, E., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 111–132. [Google Scholar] [CrossRef]
- Marchese, G.; Fitzgibbon, Q.P.; Trotter, A.J.; Carter, C.G.; Jones, C.M.; Smith, G.G. The influence of flesh ingredients format and krill meal on growth and feeding behaviour of juvenile tropical spiny lobster Panulirus ornatus. Aquaculture 2019, 499, 128–139. [Google Scholar] [CrossRef]
- AOAC International. AOAC Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Rockville, MD, USA, 1999. [Google Scholar]
- Landman, M.J.; Codabaccus, M.B.; Carter, C.G.; Fitzgibbon, Q.P.; Smith, G.G. Is dietary phosphatidylcholine essential for juvenile slipper lobster (Thenus australiensis)? Aquaculture 2021, 542, 736889. [Google Scholar] [CrossRef]
- Maynard, L.A.; Loosli, J.K. Animal Nutrition, 6th ed.; McGraw-Hill: New York, NY, USA, 1969. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Yagiz, Y.; Kristinsson, H.G.; Balaban, M.O.; Welt, B.A.; Ralat, M.; Marshall, M.R. Effect of high pressure processing and cooking treatment on the quality of Atlantic salmon. Food Chem. 2009, 116, 828–835. [Google Scholar] [CrossRef]
- Cequier-Sánchez, E.; Rodríguez, C.; Ravelo, Á.G.; Zárate, R. Dichloromethane as a solvent for lipid extraction and assessment of lipid classes and fatty acids from samples of different natures. J. Agric. Food Chem. 2008, 56, 4297–4303. [Google Scholar] [CrossRef]
- AOAC International. AOAC Official Methods of Analysis of AOAC International, 16th ed.; AOAC International: Arlington, VA, USA, 1995. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed.; McGraw-Hill: New York, NY, USA, 1981. [Google Scholar]
- Cho, C.Y.; Bureau, D.P. A review of diet formulation strategies and feeding systems to reduce excretory and feed wastes in aquaculture. Aquacult. Res. 2001, 32, 349–360. [Google Scholar] [CrossRef]
- Fox, C.; Brown, J.H.; Briggs, M. The nutrition of prawns and shrimp in aquaculture—A review of recent research. In Recent Advances in Aquaculture; Muir, J.F., Roberts, R.J., Eds.; Blackwell Science Ltd.: Oxford, UK, 1994; Volume 5, pp. 131–206. [Google Scholar]
- Simon, C.J. The effect of carbohydrate source, inclusion level of gelatinised starch, feed binder and fishmeal particle size on the apparent digestibility of formulated diets for spiny lobster juveniles, Jasus edwardsii. Aquaculture 2009, 296, 329–336. [Google Scholar] [CrossRef]
- Stone, D.A.J. Dietary Carbohydrate Utilization by Fish. Rev. Fish. Sci. 2003, 11, 337–369. [Google Scholar] [CrossRef]
- Couto, A.; Enes, P.; Peres, H.; Oliva-Teles, A. Temperature and dietary starch level affected protein but not starch digestibility in gilthead sea bream juveniles. Fish Physiol. Biochem. 2012, 38, 595–601. [Google Scholar] [CrossRef]
- Johnston, D.J.; Yellowlees, D. Relationship between Dietary Preferences and Digestive Enzyme Complement of the Slipper Lobster Thenus Orientalis (Decapoda: Scyllaridae). J. Crust. Biol. 1998, 18, 656–665. [Google Scholar] [CrossRef]
- Spanier, E.; Lavalli, K.L. Scyllarides Species. In Lobsters: Biology, Management, Aquaculture and Fisheries; Phillips, B.F., Ed.; Blackwell Publishing: Oxford, UK, 2013; pp. 414–466. [Google Scholar]
- Cox, C.; Hunt, J.H.; Lyons, W.G.; Davis, G.E. Nocturnal foraging of the Caribbean spiny lobster (Panulirus argus) on offshore reefs of Florida, USA. Mar. Freshw. Res. 1997, 48, 671. [Google Scholar] [CrossRef]
- Jernakoff, P.; Phillips, B.F.; Fitzpatrick, J.J. The diet of post-puerulus western rock lobster, Panulirus cygnus George, at Seven Mile Beach, Western Australia. Aust. J. Mar. Freshw. Res. 1993, 44, 649–655. [Google Scholar] [CrossRef]
- Barkai, A.; Davis, C.L.; Tugwell, S. Prey Selection by the South African Cape Rock Lobster Jasus lalandii: Ecological and Physiological Approaches. Bull. Mar. Sci. 1996, 58, 1–8. [Google Scholar]
- Johnston, D.J. Ontogenetic changes in digestive enzyme activity of the spiny lobster, Jasus edwardsii (Decapoda; Palinuridae). Mar. Biol. 2003, 143, 1071–1082. [Google Scholar] [CrossRef]
- Ghiasvand, Z.; Matinfar, A.; Valipour, A.; Soltani, M.; Kamali, A. Evaluation of different dietary protein and energy levels on growth performance and body composition of narrow clawed crayfish (Astacus leptodactylus). Iran. J. Fish. Sci. 2012, 11, 63–77. [Google Scholar]
- Wang, W.; Li, L.; Huang, X.; Zhu, Y.; Kuang, X.; Yi, G. Effects of dietary protein levels on the growth, digestive enzyme activity and fecundity in the oriental river prawn, Macrobrachium nippon. Aquacult. Res. 2022, 53, 2886–2894. [Google Scholar] [CrossRef]
- Rodríguez-González, H.; García-Ulloa, M.; Hernández-Llamas, A.; Villarreal, H. Effect of dietary protein level on spawning and egg quality of redclaw crayfish Cherax quadricarinatus. Aquaculture 2006, 257, 412–419. [Google Scholar] [CrossRef]
- Crear, B.J.; Thomas, C.W.; Hart, P.R.; Carter, C.G. Growth of juvenile southern rock lobsters, Jasus edwardsii, is influenced by diet and temperature, whilst survival is influenced by diet and tank environment. Aquaculture 2000, 190, 169–182. [Google Scholar] [CrossRef]
- Capuzzo, J.M.; Lancaster, B.A. The effects of dietary carbohydrate levels on protein utilization in the American lobster (Homarus americanus). J. World Maric. Soc. 1979, 10, 689–700. [Google Scholar] [CrossRef]
- Bautista, M.N. The response of Penaeus monodon juveniles to varying protein/energy ratios in test diets. Aquaculture 1986, 53, 229–242. [Google Scholar] [CrossRef]
- Garza De Yta, A.; Davis, D.A.; Rouse, D.B.; Ghanawi, J.; Saoud, I.P. Evaluation of practical diets containing various terrestrial protein sources on survival and growth parameters of redclaw crayfish Cherax quadricarinatus. Aquacult. Res. 2012, 43, 84–90. [Google Scholar] [CrossRef]
- De Silva, S.S.; Gunasekera, R.M.; Atapattu, D. The dietary protein requirements of young tilapia and an evaluation of the least cost dietary protein levels. Aquaculture 1989, 80, 271–284. [Google Scholar] [CrossRef]
Ingredient | Experimental Feeds | ||
---|---|---|---|
P45 | P50 | P55 | |
Ingredients (g kg−1 as-is) | |||
Basal mix 1 | 701 | 766 | 831 |
Corn starch | 244 | 164 | 83 |
Diatomaceous earth | 44 | 59 | 75 |
Spirulina 2 | 10 | 10 | 10 |
Yttrium oxide | 1 | 1 | 1 |
Total | 1000 | 1000 | 1000 |
Chemical composition (g kg−1 DM) | |||
Dry matter | 951 | 949 | 951 |
Crude protein | 445 | 490 | 551 |
Total lipid | 75 | 65 | 70 |
Ash | 107 | 122 | 143 |
Carbohydrate 3 | 373 | 323 | 236 |
Gross energy (MJ Kg−1) 4 | 20 | 20 | 20 |
CP:GE (g CP MJ GE) 5 | 22 | 25 | 28 |
Digestible composition (g kg−1 DM) | |||
Dry matter | 720 | 734 | 757 |
Protein | 375 | 458 | 518 |
Lipid | 49 | 38 | 42 |
Energy (MJ Kg−1) | 16 | 17 | 17 |
DP:DE (g DP MJ DE−1) 6 | 24 | 28 | 30 |
Experimental Feeds | Statistics | ||||
---|---|---|---|---|---|
P45 | P50 | P55 | F | p | |
ADCDM | 75.7 ± 0.4 a | 77.4 ± 0.7 a | 79.6 ± 0.3 b | 16.65 | 0.001 |
ADCCP | 84.2 ± 2.3 a | 93.5 ± 0.6 b | 94.1 ± 1.6 b | 10.03 | 0.009 |
ADCTL | 63.8 ± 2.0 | 57.8 ± 1.4 | 59.3 ± 1.8 | 2.98 | 0.108 |
ADCGE | 79.2 ± 0.5 a | 83.0 ± 0.3 b | 86.2 ± 0.5 c | 62.37 | <0.001 |
Experimental Feeds | Statistics | |||||
---|---|---|---|---|---|---|
P45 | P50 | P55 | Test | F or χ2 | p | |
Initial weight (g DM) | 1.35 ± 0.13 | 1.35 ± 0.12 | 1.27 ± 0.11 | ANOVA | 0.58 | 0.582 |
Final weight (g DM) | 4.57 ± 0.37 a | 5.27 ± 0.35 b | 5.89 ± 0.33 c | ANOVA | 19.89 | <0.001 |
Daily WG (g DM d−1) | 0.04 ± 0.00 a | 0.05 ± 0.00 b | 0.06 ± 0.00 c | ANOVA | 20.12 | <0.001 |
SGR (% dry BW d−1) | 1.63 ± 0.09 a | 1.84 ± 0.04 ab | 2.07 ± 0.08 b | ANOVA | 9.44 | 0.007 |
CL increment (mm) | 10.76 ± 0.33 a | 12.98 ± 0.76 ab | 13.87 ± 0.77 b | ANOVA | 6.1 | 0.021 |
CW increment (mm) | 15.10 ± 0.46 a | 17.67 ± 1.07 ab | 18.92 ± 0.89 b | ANOVA | 5.26 | 0.031 |
Survival (%) | 71.88 ± 10.67 | 59.38 ± 7.86 | 71.88 ± 7.86 | ANOVA | 0.69 | 0.525 |
Molt frequency (molts lobster−1) | 2.02 ± 0.03 a | 2.11 ± 0.17 ab | 2.71 ± 0.10 b | KWt | 6.73 | 0.035 |
AFI (g DM lobster−1 d−1) | 0.10 ± 0.00 a | 0.15 ± 0.00 b | 0.19 ± 0.01 c | ANOVA | 74.83 | <0.001 |
FERd (g DM g DM−1) | 0.45 ± 0.03 b | 0.37 ± 0.01 ab | 0.34 ± 0.03 a | ANOVA | 6.41 | 0.019 |
Protein intake (g) 1 | 3.10 ± 0.08 a | 5.23 ± 0.12 b | 7.54 ± 0.33 c | ANOVA | 113.1 | <0.001 |
Protein gain (g) 2 | 1.40 ± 0.10 a | 1.50 ± 0.08 a | 2.21 ± 0.12 b | ANOVA | 19.94 | <0.001 |
PER | 1.02 ± 0.06 b | 0.75 ± 0.03 a | 0.62 ± 0.05 a | ANOVA | 18.38 | <0.001 |
PPV (%) | 45.18 ± 3.75 b | 28.72 ± 1.41 a | 30.07 ± 1.51 a | ANOVA | 13.79 | 0.002 |
Energy intake (MJ) 1 | 0.14 ± 0.00 a | 0.21 ± 0.00 b | 0.27 ± 0.01 c | ANOVA | 73.91 | <0.001 |
Energy gain (MJ) 2 | 0.05 ± 0.00 a | 0.06 ± 0.00 a | 0.08 ± 0.00 b | ANOVA | 25.57 | <0.001 |
EPV (%) | 33 ± 3 | 26 ± 1 | 28 ± 1 | ANOVA | 2.89 | 0.107 |
Experimental Feeds | Statistics | ||||
---|---|---|---|---|---|
P45 | P50 | P55 | F | p | |
Whole-body | |||||
Dry matter (% WW) | 22.3 ± 1.1 | 21.9 ± 1.2 | 23.4 ± 0.8 | 0.866 | 0.453 |
Crude protein (% DM) | 42.5 ± 1.2 ab | 38.4 ± 1.3 a | 46.0 ± 2.1 b | 5.606 | 0.026 |
Total lipid (% DM) | 2.8 ± 0.4 a | 2.8 ± 0.4 a | 6.1 ± 1.0 b | 7.453 | 0.012 |
Ash (% DM) | 40.1 ± 1.7 | 38.5 ± 1.3 | 36.1 ± 0.8 | 2.341 | 0.152 |
Gross energy (MJ kg−1 DM) | 13.8 ± 0.4 a | 13.9 ± 0.3 a | 15.5 ± 0.5 b | 5.557 | 0.027 |
Tail muscle | |||||
Dry matter (% WW) | 18.3 ± 0.8 | 19.0 ± 0.9 | 19.7 ± 0.5 | 0.915 | 0.435 |
Crude protein (% DM) | 90.4 ± 1.8 | 87.6 ± 2.1 | 89.8 ± 2.3 | 0.467 | 0.641 |
Total lipid (% DM) | 4.3 ± 1.5 | 7.6 ± 0.4 | 7.3 ± 0.6 | 3.521 | 0.074 |
Ash (% DM) | 15.0 ± 1.4 | 13.6 ± 1.2 | 11.8 ± 0.7 | 1.948 | 0.198 |
Gross energy (MJ kg−1 DM) | 23.3 ± 0.7 | 23.9 ± 0.5 | 24.4 ± 0.5 | 0.732 | 0.508 |
Hepatopancreas | |||||
Dry matter (% WW) | 21.3 ± 2.1 | 23.0 ± 3.6 | 25.6 ± 1.2 | 1.478 | 0.279 |
Crude protein (% DM) | 46.7 ± 3.4 | 37.7 ± 4.6 | 41.0 ± 0.9 | 1.819 | 0.217 |
Total lipid (% DM) | 44.0 ± 2.0 | 50.1 ± 7.7 | 49.6 ± 2.7 | 0.533 | 0.604 |
Ash (% DM) | 7.5 ± 0.9 | 9.3 ± 1.7 | 9.9 ± 0.0 | 1.249 | 0.332 |
Gross energy (MJ kg−1 DM) | 28.7 ± 1.1 | 29.0 ± 2.0 | 29.5 ± 0.9 | 0.096 | 0.909 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williamson, A.; Carter, C.G.; Codabaccus, M.B.; Fitzgibbon, Q.P.; Smith, G.G. Dietary Protein Affects the Growth Response and Tissue Composition of Juvenile Slipper Lobster (Thenus australiensis). Animals 2024, 14, 3363. https://doi.org/10.3390/ani14233363
Williamson A, Carter CG, Codabaccus MB, Fitzgibbon QP, Smith GG. Dietary Protein Affects the Growth Response and Tissue Composition of Juvenile Slipper Lobster (Thenus australiensis). Animals. 2024; 14(23):3363. https://doi.org/10.3390/ani14233363
Chicago/Turabian StyleWilliamson, Andrea, Chris G. Carter, M. Basseer Codabaccus, Quinn P. Fitzgibbon, and Gregory G. Smith. 2024. "Dietary Protein Affects the Growth Response and Tissue Composition of Juvenile Slipper Lobster (Thenus australiensis)" Animals 14, no. 23: 3363. https://doi.org/10.3390/ani14233363
APA StyleWilliamson, A., Carter, C. G., Codabaccus, M. B., Fitzgibbon, Q. P., & Smith, G. G. (2024). Dietary Protein Affects the Growth Response and Tissue Composition of Juvenile Slipper Lobster (Thenus australiensis). Animals, 14(23), 3363. https://doi.org/10.3390/ani14233363