Wistar Male Rats (Rattus norvegicus domestica) Are Aware of Their Dimensions
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.1.1. Experimental Sample Size
2.1.2. Animal Keeping Conditions
2.1.3. Food Deprivation
2.2. Experimental Setup
2.3. General Procedure
2.4. Training
2.5. Experiment 1
2.5.1. Experimental Procedure
2.5.2. Recorded Variables and Statistical Analysis
- The first approach to a certain opening in each trial. We considered a situation to be a “first approach” when the animal’s muzzle came close to a certain opening so that the distance between the tip of the nose and the partition was no more than 15 mm while the vibrissae did not touch the partition.
- The first attempt to penetrate a certain hole in each trial. We considered a situation to be “an attempt” to penetrate when a part of the animal’s muzzle penetrated the hole and looked out from the other side of the partition.
- Penetration into a certain hole carried out in each trial. A situation was considered to be “penetration” when the animal’s whole body passed through one of the holes (but for the tip of the tail). It may be added here that after this, the rat rushed to the bait in 100% of the trials.
2.6. Experiment 2
2.6.1. Experimental Procedure
- A horizontal rectangle with a width of 150 mm and a height of 20 mm (Figure 3, a3);
- A vertical rectangle with a width of 20 mm and a height of 150 mm (Figure 3, a4).
2.6.2. Recorded Variables and Statistical Analysis
3. Results
3.1. Experiment 1
3.2. Experiment 2
4. Discussion
4.1. Experiment 1
4.2. Experiment 2
4.3. General
4.4. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dale, R.; Plotnik, J.M. Elephants know when their bodies are obstacles to success in a novel transfer task. Sci. Rep. 2017, 7, 46309. [Google Scholar] [CrossRef] [PubMed]
- Khvatov, I.A.; Sokolov, A.Y.; Kharitonov, A.N. Ferrets (Mustela furo) Are Aware of Their Dimensions. Animals 2023, 13, 444. [Google Scholar] [CrossRef] [PubMed]
- Cenami, S.E.; Aureli, F.; Verbeek, P.; de Waal, F.B.M. The self as reference point: Can animals do without it? In The Self in Infancy: Theory and Research; Rochat, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1995; pp. 193–215. [Google Scholar]
- De Waal, F.B.M. Fish, mirrors, and a gradualist perspective on self-awareness. PLoS Biol. 2019, 17, e3000112. [Google Scholar] [CrossRef] [PubMed]
- Lenkei, R.; Faragó, T.; Kovács, D.; Zsilák, B.; Pongrácz, P. That dog won’t fit: Body size awareness in dogs. Anim. Cogn. 2020, 23, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Brownell, C.; Zerwas, S.; Ramani, G.B. “So Big”: The Development of Body Self-awareness in Toddlers. Child. Dev. 2007, 78, 1426–1440. [Google Scholar] [CrossRef]
- Lenkei, R.; Faragó, T.; Zsilák, B.; Pongrácz, P. Dogs (Canis familiaris) recognize their own body as a physical obstacle. Sci. Rep. 2021, 11, 2761. [Google Scholar] [CrossRef]
- Khvatov, I.A.; Kharitonov, A.N.; Sokolov, A.Y. Brown Rats May Learn Awareness of Their Body Weight When Interacting with Environmental Objects. In Advances in Cognitive Research, Artificial Intelligence and Neuroinformatics, Proceedings of the 9th International Conference on Cognitive Sciences, Intercognsci-2020, Moscow, Russia, 10–16 October 2020; Velichkovsky, B.M., Balaban, P.M., Ushakov, V.L., Eds.; Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2021; Volume 1358, p. 1358. [Google Scholar] [CrossRef]
- Pongrácz, P.; Dobos, P.; Faragó, T.; Kubinyi, E.; Lenkei, R. Body size awareness matters when dogs decide whether to detour an obstacle or opt for a shortcut. Sci. Rep. 2023, 13, 17899. [Google Scholar] [CrossRef]
- Pongrácz, P. Cats are (almost) liquid!—Cats selectively rely on body size awareness when negotiating short openings. iScience 2024, 27, 110799. [Google Scholar] [CrossRef]
- Schiffner, I.; Vo, H.D.; Bhagavatula, P.S.; Srinivasan, M.V. Minding the gap: In-flight body awareness in birds. Front. Zool. 2014, 11, 64. [Google Scholar] [CrossRef]
- Khvatov, I.A.; Smirnova, A.A.; Samuleeva, M.V.; Ershov, E.V.; Buinitskaya, S.D.; Kharitonov, A.N. Hooded Crows (Corvus cornix) May Be Aware of Their Own Body Size. Front. Psychol. 2021, 12, 769397. [Google Scholar] [CrossRef]
- Khvatov, I.A.; Sokolov, A.Y.; Kharitonov, A.N. Snakes Elaphe Radiata May Acquire Awareness of Their Body Limits When Trying to Hide in a Shelter. Behav. Sci. 2019, 9, 67. [Google Scholar] [CrossRef] [PubMed]
- Sonoda, K.; Moriyama, T.; Asakura, A.; Furuyama, N.; Gunji, Y.P. Can Hermit Crabs Perceive Affordance for Aperture Crossing? In Proceedings of the European Conference on Complex Systems 2012, Brussels, Belgium, 3–7 September 2012; Springer: Cham, Switzerland, 2013; pp. 553–557. [Google Scholar]
- Krieger, J.; Hörnig, M.K.; Laidre, M.E. Shells as ‘extended architecture’: To escape isolation, social hermit crabs choose shells with the right external architecture. Anim. Cogn. 2020, 23, 1177–1187. [Google Scholar] [CrossRef] [PubMed]
- Barnett, S.A. The Rat A Study in Behavior; Routledge: New York, NY, USA, 1963. [Google Scholar] [CrossRef]
- Barnett, S.A. The Story of Rats: Their Impact on Us, and Our Impact on Them; Allen & Unwin: Crows Nest, NSW, Australia, 2001. [Google Scholar]
- Prusky, G.T.; Harker, K.T.; Douglas, R.M.; Whishaw, I.Q. Variation in visual acuity within pigmented, and between pigmented and albino rat strains. Behav. Brain Res. 2002, 136, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Łopuch, S.; Popik, P. Cooperative behavior of laboratory rats (Rattus norvegicus) in an instrumental task. J. Comp. Psychol. 2011, 125, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Tsoory, M.M.; Youdim, M.B.; Schuster, R. Social-cooperation differs from individual behavior in hypothalamic and striatal monoamine function: Evidence from a laboratory rat model. Behav. Brain Res. 2012, 232, 252–263. [Google Scholar] [CrossRef]
- Reichelt, A.C.; Kramar, C.P.; Ghosh-Swaby, O.R.; Sheppard, P.A.; Kent, B.A.; Bekinschtein, P.; Saksida, L.M.; Bussey, T.J. The spontaneous location recognition task for assessing spatial pattern separation and memory across a delay in rats and mice. Nat. Protoc. 2021, 16, 5616–5633. [Google Scholar] [CrossRef]
- Hughes, R.N. Rats’ responsiveness to tactile changes encountered in the dark, and the role of mystacial vibrissae. Behav. Brain Res. 2007, 179, 273–280. [Google Scholar] [CrossRef]
- Hobbs, J.A.; Towal, R.B.; Hartmann, J.Z. Evidence for Functional Groupings of Vibrissae across the Rodent Mystacial Pad. PLoS Comput. Biol. 2016, 12, e1004109. [Google Scholar] [CrossRef]
- Schiffman, H.R.; Lore, R.; Passafiume, J.; Neeb, R. Role of vibrissae for depth perception in rat (Rattus norvegicus). Anim. Behav. 1970, 18, 290–292. [Google Scholar] [CrossRef]
- Thé, L.; Wallace, M.L.; Chen, C.H.; Chorev, E.; Brecht, M. Structure, function, and cortical representation of the rat submandibular whisker trident. J. Neurosci. 2013, 33, 4815–4824. [Google Scholar] [CrossRef]
- Grigoryan, G.; Hodges, H.; Gray, J. Effects of vibrissae removal on search accuracy in the water maze. Neurosci. Behav. Physiol. 2005, 35, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Wineski, L.E. Movements of the cranial vibrissae in the golden hamster (Mesocricetus auratus). J. Zool. 1983, 200, 261–280. [Google Scholar] [CrossRef]
- Ahl, A. The role of vibrissae in behavior: A status review. Vet. Res. Commun. 1986, 10, 245–268. [Google Scholar] [CrossRef] [PubMed]
- Krupa, D.J.; Matell, M.S.; Brisben, A.J.; Oliveira, L.M.; Nicolelis, M.A. Behavioral Properties of the Trigeminal Somatosensory System in Rats Performing Whisker-Dependent Tactile Discriminations. J. Neurosci. 2001, 21, 5752–5763. [Google Scholar] [CrossRef] [PubMed]
- Yokose, J.; Marks, W.D.; Kitamura, T. Visuotactile integration facilitates mirror-induced self-directed behavior through activation of hippocampal neuronal ensembles in mice. Neuron 2024, 112, 306–318.e8. [Google Scholar] [CrossRef] [PubMed]
- European Union Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. 2010. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF (accessed on 12 November 2024).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: Milton Park, UK, 1988. [Google Scholar]
- Norbury, G.L.; Norbury, D.C.; Heyward, R.P. Space use and denning behaviour of wild ferrets (Mustela furo) and cats (Felis catus). N. Z. J. Ecol. 1998, 22, 149–159. [Google Scholar]
- Fisher, P.G. Ferret Behavior. In Exotic Pet Behavior: Birds, Reptiles, and Small Mammals; Bays, T.B., Lightfoot, T., Mayer, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 163–205. [Google Scholar]
- Beery, A.K. Inclusion of females does not increase variability in rodent research studies. Curr. Opin. Behav. Sci. 2018, 23, 143–149. [Google Scholar] [CrossRef]
- Becker, J.B.; Prendergast, B.J.; Liang, J.W. Female rats are not more variable than male rats: A meta-analysis of neuroscience studies. Biol. Sex. Differ. 2016, 7, 34. [Google Scholar] [CrossRef]
- Monfort, P.; Gomez-Gimenez, B.; Llansola, M.; Felipo, V. Gender differences in spatial learning, synaptic activity, and long-term potentiation in the hippocampus in rats: Molecular mechanisms. ACS Chem. Neurosci. 2015, 6, 1420–1427. [Google Scholar] [CrossRef] [PubMed]
- Colettis, N.C.; Habif, M.; Oberholzer, M.V.; Filippin, F.; Jerusalinsky, D.A. Differences in learning and memory between middle-aged female and male rats. Learn. Mem. 2022, 29, 120–125. [Google Scholar] [CrossRef]
- van den Bos, R.; Jolles, J.; van der Knaap, L.; Baars, A.; de Visser, L. Male and female Wistar rats differ in decision-making performance in a rodent version of the Iowa Gambling Task. Behav. Brain Res. 2012, 234, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Gallup, G.G., Jr.; Anderson, J.R. Self-recognition in animals: Where do we stand 50 years later? Lessons from cleaner wrasse and other species. Psychol. Conscious. 2020, 7, 46–58. [Google Scholar] [CrossRef]
Predictor | SS | df | MS | F | p |
---|---|---|---|---|---|
Experiment 1 * | |||||
Hole position | 219.0000 | 2 | 109.5000 | 44.2590 | 0.0001 |
Experiment 2 ** Number of first attempts in a trial to penetrate through holes | |||||
Hole penetrability | 117.3611 | 1 | 117.3611 | 1345.741 | 0.0001 |
Experiment 2 ** Number of first approaches to holes | |||||
Hole penetrability | 17.3611 | 1 | 17.3611 | 51.4518 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khvatov, I.A.; Ganza, P.N.; Kharitonov, A.N.; Samuleeva, M.V. Wistar Male Rats (Rattus norvegicus domestica) Are Aware of Their Dimensions. Animals 2024, 14, 3384. https://doi.org/10.3390/ani14233384
Khvatov IA, Ganza PN, Kharitonov AN, Samuleeva MV. Wistar Male Rats (Rattus norvegicus domestica) Are Aware of Their Dimensions. Animals. 2024; 14(23):3384. https://doi.org/10.3390/ani14233384
Chicago/Turabian StyleKhvatov, Ivan A., Polina N. Ganza, Alexander N. Kharitonov, and Maria V. Samuleeva. 2024. "Wistar Male Rats (Rattus norvegicus domestica) Are Aware of Their Dimensions" Animals 14, no. 23: 3384. https://doi.org/10.3390/ani14233384
APA StyleKhvatov, I. A., Ganza, P. N., Kharitonov, A. N., & Samuleeva, M. V. (2024). Wistar Male Rats (Rattus norvegicus domestica) Are Aware of Their Dimensions. Animals, 14(23), 3384. https://doi.org/10.3390/ani14233384