Thermal Manipulation During the Embryonic Stage and the Post-Hatch Characteristics of Broiler Chickens
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Location
2.2. Incubation
2.3. Performance and Carcass Characteristics
2.4. Blood Parameters
2.5. Gene Expression of Heat Shock Protein (HSP70)
2.6. Morphometry of the Intestinal Mucosa
2.7. Thermal Challenge
2.8. Metabolizability of Nutrients
2.9. Statistical Analysis
3. Results
3.1. Hatching Characteristics
3.2. Performance
3.3. Blood Parameters, Organ Weight, Carcass Characteristics, and Gene Expression in the Liver
3.4. Thermal Challenge
3.5. Metabolizability of Nutrients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clímaco, W.L.d.S.; Araújo, I.C.S.; Soares, K.R.; Caldas, E.O.L.; Castro, F.L.d.S.; Lobato, H.C.; Vieira, M.C.; Lara, L.J.C. Effects of embryo thermal manipulation on thermotolerance of broiler chicks between 28–40 days of rearing. Rev. Bras. Zootec. 2024, 53, e20230167. [Google Scholar] [CrossRef]
- Yahav, S. Alleviating heat stress in domestic fowl: Different strategies. World Poult. Sci. J. 2009, 65, 719–732. [Google Scholar] [CrossRef]
- Leksrisompong, N.; Romero-Sanchez, H.; Plumstead, P.W.; Brannan, K.E.; Yahav, S.; Brake, J. Broiler incubation. 2. Interaction of incubation and brooding temperatures on broiler chick feed consumption and growth. Poult. Sci. 2009, 88, 1321–1329. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.I.M.; Santos, T.C.; Kaneko, I.N.; Horn, D.; Leyter, J.R.; Pasa, C.L.B. Effect of thermal embryonic manipulation on the quality of male and female broiler meat submitted to thermal stress pre-slaughter. Rev. Bras. Cienc. Avic. 2016, 18, 343–350. [Google Scholar] [CrossRef]
- Takahashi, L.S.; Biller, J.D.; Takahashi, K.M. Bioclimatologia Zootécnica; Unesp: Jaboticabal, Brazil, 2009. [Google Scholar]
- Al Amaz, S.; Chaudhary, A.; Mahato, P.L.; Jha, R.; Mishra, B. Pre-hatch thermal manipulation of embryos and post-hatch baicalein supplementation mitigated heat stress in broiler chickens. J. Anim. Sci. Biotechnol. 2024, 15, 8. [Google Scholar] [CrossRef]
- Goel, A.; Ncho, C.M.; Gupta, V.; Choi, Y.H. Embryonic modulation through thermal manipulation and in ovo feeding to develop heat tolerance in chickens. Anim. Nutr. 2023, 13, 150–159. [Google Scholar] [CrossRef]
- Cobb. Hatchery Management Guide; Cobb-Vantress: Colchester, UK, 2013; 40p. [Google Scholar]
- Aviagen. How to Measure Eggshell Temperature; Aviagen: Visbek, Germany, 2017; 6p. [Google Scholar]
- Iraqi, E.; Hady, A.A.; Elsayed, N.; Khalil, H.; El-Saadany, A.; El-Sabrout, K. Effect of thermal manipulation on embryonic development, hatching process, and chick quality under heat-stress conditions. Poult. Sci. 2024, 103, 103257. [Google Scholar] [CrossRef]
- Goel, A. Heat stress management in poultry. J. Anim. Physiol. Anim. Nutr. 2021, 105, 1136–1145. [Google Scholar] [CrossRef]
- Amjadian, T.; Shahir, M.H. Effects of repeated thermal manipulation of broiler embryos on hatchability, chick quality, and post-hatch performance. Int. J. Biometeorol. 2020, 64, 2177–2183. [Google Scholar] [CrossRef]
- Piestun, Y.; Shinder, D.; Ruzal, M.; Halevy, O.; Yahav, S. The effect of thermal manipulations during the development of the thyroid and adrenal axes on in-hatch and post-hatch thermoregulation. J. Therm. Biol. 2008, 33, 413–418. [Google Scholar] [CrossRef]
- Morita, V.S.; Almeida, V.R.; Matos Junior, J.B.; Vicentini, T.I.; Van den Brand, H.; Boleli, I.C. Incubation temperature alters thermal preference and response to heat stress of broiler chickens along the rearing phase. Poult. Sci. 2016, 95, 1795–1804. [Google Scholar] [CrossRef]
- Al-Zghoul, M.-B.; Dalab, A.E.S.; Ababneh, M.M.; Jawasreh, K.I.; Al Busadah, K.A.; Ismail, Z.B. Thermal manipulation during chicken embryogenesis results in enhanced hsp70 gene expression and the acquisition of thermotolerance. Res. Vet. Sci. 2013, 95, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Dalab, A.S.; Ali, A.M. Morphological investigations of the effect of thermal manipulation during embryogenesis on body performance and structure of pectoral and thigh muscle of ross broiler chicken. Braz. J. Poult. Sci. 2019, 21, 1–6. [Google Scholar] [CrossRef]
- Saleh, K.M.M.; Al-Zghoul, M.B. Effect of acute heat stress on the mRNA levels of cytokines in broiler chickens subjected to embryonic thermal manipulation. Animals 2019, 9, 499. [Google Scholar] [CrossRef] [PubMed]
- Dela Cruz, M.R.; Faylon, W.S.; Joy Lagliva, A.A.; Magarro, A.B.; Parungao, A.R.; Magpantay, V.A. Effects of lowering incubation temperature on hatch of fertile and post-hatch performance and correlation between egg and chick weights of banabang Kalabaw Philippine native chicken. Philipp. J. Vet. Anim. Sci. 2020, 46, 69–75. [Google Scholar]
- Meteyake, H.T.; Bilalissi, A.; Oke, O.E.; Voemesse, K.; Tona, K. Effect of thermal manipulation during incubation and heat challenge during the early juvenile stage on production parameters of broilers reared under a tropical climate. Eur. Poult. Sci. 2020, 84, 1–16. [Google Scholar] [CrossRef]
- Avşar, K.O.; Uçar, A.; Özlü, S.; Elibol, O. Effect of high eggshell temperature during the early period of incubation on hatchability, hatch time, residual yolk, and first-week broiler performance. J. Appl. Poult. Res. 2022, 31, 100197. [Google Scholar] [CrossRef]
- Rajkumar, U.; Vinoth, A.; Shanmugam, M.; Rajaravindra, K.S.; Rama Rao, S.V. Effect of embryonic thermal exposure on heat shock proteins (HSPs) gene expression and serum T3 concentration in two broiler populations. Anim. Biotechnol. 2015, 26, 260–267. [Google Scholar] [CrossRef]
- Aviagen. Ross Broiler Pocket Guide; Aviagen: Visbek, Germany, 2018; p. 62. [Google Scholar]
- Rostagno, H.S.; Albino, L.F.T.; Donzele, J.L.; Gomes, P.C.; Oliveira, R.F.; Lopes, D.C.; Ferreira, A.S.; Barreto, S.L.T.; Euclides, R.F. Brazilian Tables for Poultry and Swine: Composition of Feedstuffs and Nutritional Requirements; UFV: Viçosa-MG, Brazil, 2017; p. 488. [Google Scholar]
- Ferreira, M.S.; Tomaz, L.A.; Niehues, M.B.; Ladeira, M.M.; Curi, R.A.; Chardulo, L.A.; Baldassini, W.A.; Martins, C.L.; Arrigoni, M.B.; Machado Neto, O.R. The inclusion of de-oiled wet distillers grains in feedlot diets reduces the expression of lipogenic genes and fat content in longissimus muscle from f1 angus-nellore cattle. PeerJ 2019, 7, e7699. [Google Scholar] [CrossRef]
- Ferreira, T.; Rasband, W. ImageJ User Guide: IJ 1.42 r; National Institute of Health: Bethesda, MD, USA, 2012. [Google Scholar]
- Walstra, I.; Napel, J.T.; Kemp, B.; Van den Brand, H. Temperature manipulation during layer chick embryogenesis. Poult. Sci. 2010, 89, 1502–1508. [Google Scholar] [CrossRef]
- Schiassi, L.; Yanagi, T., Jr.; Ferraz, P.F.P.; Campos, A.T.; Silva, G.R.; Abreu, L.H.P. Broiler behavior under different thermal environments. J. Braz. Ass. Agric. Eng. 2015, 35, 390–396. [Google Scholar] [CrossRef]
- Rodrigues, P.B.; Rostagno, H.S.; Albino, L.F.T.; Gomes, P.C.; Nunes, R.V.; Toledo, R.S. Energy values of soybean and soybean byproducts, determined with broilers and adult cockerels. Braz. J. Anim. Sci. 2002, 31, 1771–1782. [Google Scholar] [CrossRef]
- Neves, D.G.; Retes, P.L.; Alves, V.V.; Pereira, R.S.G.; Bueno, Y.D.C.; Alvarenga, R.R.; Zangeronimo, M.G. In Ovo injection with glycerol and insulin-like growth factor (IGF-I): Hatchability, intestinal morphometry, performance, and carcass characteristics of broilers. Arch. Anim. Nutr. 2020, 74, 325–342. [Google Scholar] [CrossRef]
- Silva, D.J.; Queiroz, A.C. Análise de Alimentos: Métodos Químicos e Biológicos, 3rd ed.; UFV: Viçosa, Brazil, 2002; p. 235. [Google Scholar]
- Matias, C.F.Q.; Rocha, J.S.R.; Pompeu, M.A.; Baião, R.C.; Baião, N.C.; Lara, L.J.C.; Clímaco, W.L.S.; Pereira, L.F.P.; Caldas, E.O.; Teixeira, M.P.F.; et al. Effect of protease on the metabolization coefficient of nutrients in broilers. Arq. Bras. Med. Vet. Zootec. 2015, 67, 492–498. [Google Scholar] [CrossRef]
- Lourens, A.; Van den Brand, H.; Meijerhof, R.; Kemp, B. Effect of eggshell temperature during incubation on embryo development, hatchability, and posthatch development. Poult. Sci. 2005, 84, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Tarkhan, A.H.; Saleh, K.M.M.; Al-Zghoul, M.B. HSF3 and HSP70 Expression during post-hatch cold stress in broiler chickens subjected to embryonic thermal manipulation. Vet. Sci. 2020, 7, 49. [Google Scholar] [CrossRef]
- Brannan, K.E.; Livingston, K.A.; Jansen van Rensburg, C. Embryonic thermal manipulation and dietary fat source during acute heat stress: 1. Effect on hatchability and broiler performance. J. Appl. Poult. Res. 2021, 30, 100143. [Google Scholar] [CrossRef]
- Curtis, S.E. Environmental Management in Animal Agriculture; Iowa State University Press: Ames, IA, USA, 1983. [Google Scholar]
- Khaleel, K.E.; Al-Zghoul, M.B.; Saleh, K.M.M. Molecular and morphometric changes in the small intestine during hot and cold exposure in thermally manipulated broiler chickens. Vet. World 2021, 14, 1511–1528. [Google Scholar] [CrossRef] [PubMed]
- Zaboli, G.; Dong, A. The impact of embryonic thermal manipulation on the intestinal microbiota, morphology, and long bone characteristics of male broiler chickens. J. Life Cycle Syst. Anal. Agric. 2022, 2, 145–150. [Google Scholar] [CrossRef]
- Quinteiro-Filho, W.M.; Ribeiro, A.; Ferraz-de-Paula, V.; Pinheiro, M.L.; Sakai, M.; Sá, L.R.M.; Ferreira, A.J.P.; Palermo-Neto, J. Heat Stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult. Sci. 2010, 89, 1905–1914. [Google Scholar] [CrossRef]
- Yalcin, S.; Özkan, S.; Shah, T. Incubation temperature and lighting: Effect on embryonic development, post-hatch growth, and adaptive response. Front. Physiol. 2022, 13, 899977. [Google Scholar] [CrossRef] [PubMed]
- Varasteh, S.; Braber, S.; Akbari, P.; Garssen, J.; Fink-Gremmels, J. Differences in susceptibility to heat stress along the chicken intestine and the protective effects of galacto- oligosaccharides. PLoS ONE 2015, 10, e0138975. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.F.; Chen, Y.P.; Chen, R.; Su, Y.; Zhang, R.Q.; He, Q.F.; Wang, K.; Wen, C.; Zhou, Y.M. Dietary mannan oligosaccharide ameliorates cyclic heat stress-induced damages on intestinal oxidative status and barrier integrity of broilers. Poult. Sci. 2019, 98, 4767–4776. [Google Scholar] [CrossRef] [PubMed]
- Abuoghaba, A.A. Impact of spraying incubated eggs submitted to high temperature with ascorbic acid on embryonic development, hatchability, and some physiological responses of hatched chicks. Can. J. Anim. Sci. 2017, 97, 172–182. [Google Scholar] [CrossRef]
- Saleh, K.M.M.; Tarkhan, A.H.; Al-Zghoul, M.B. Embryonic thermal manipulation affects the antioxidant response to post-hatch thermal exposure in broiler chickens. Animals 2020, 10, 126. [Google Scholar] [CrossRef]
- Swann, G.S.; Brake, J. Effect of dry-bulb temperature, relative humidity, and eggshell conductance during days 17 to 21 of incubation on egg weight loss and chick weight. Poult. Sci. 1990, 69, 545–553. [Google Scholar] [CrossRef]
- Piestun, Y.; Yahav, S.; Halevy, O. Thermal manipulation during embryogenesis affects myoblast proliferation and skeletal muscle growth in meat-type chickens. Poult. Sci. 2015, 94, 2528–2536. [Google Scholar] [CrossRef] [PubMed]
- Al-Zghoul, M.B.; El-Bahr, S.M. Thermal manipulation of the broilers embryos: Expression of muscle markers genes and weights of body and internal organs during embryonic and post-hatch days. BMC Vet. Res. 2019, 15, 166. [Google Scholar] [CrossRef]
- Piestun, Y.; Harel, M.; Barak, M.; Yahav, S.; Halevy, O. Thermal manipulations in late-term chick embryos have immediate and longer term effects on myoblast proliferation and skeletal muscle hypertrophy. J. Appl. Physiol. 2009, 106, 233–240. [Google Scholar] [CrossRef]
- Cândido, M.G.L.; Tinôco, I.F.F.; Albino, L.F.T.; Freitas, L.C.S.R.; Santos, T.C.; Cecon, P.R.; Gates, R.S. Effects of heat stress on pullet cloacal and body temperature. Poult. Sci. 2020, 99, 2469–2477. [Google Scholar] [CrossRef]
- Ruuskanen, S.; Hsu, B.Y.; Nord, A. Endocrinology of thermoregulation in birds in a changing climate. Mol. Cell. Endocrinol. 2021, 519, 111088. [Google Scholar] [CrossRef]
- Vinoth, A.; Thirunalasundari, T.; Shanmugam, M.; Uthrakumar, A.; Suji, S.; Rajkumar, U. Evaluation of DNA methylation and mRNA expression of heat shock proteins in thermal manipulated chicken. Cell Stress Chaperones 2018, 23, 235–252. [Google Scholar] [CrossRef] [PubMed]
- Borges, S.A.; Silva, A.V.F.; Majorka, A.; Hooge, D.M.; Cummings, K.R. Physiological responses of broiler chickens to heat stress and dietary electrolyte balance (sodium plus potassium minus chloride, milliequivalents per kilogram). Poult. Sci. 2004, 83, 1551–1558. [Google Scholar] [CrossRef] [PubMed]
- Darre, M.J.; Harrison, P.C. Heart rate, blood pressure, cardiac output, and total peripheral resistance of single comb White Leghorn hens during an acute exposure to 35 C ambient temperature. Poult. Sci. 1987, 66, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, S.T.; Silva, I.J.O.; Maia, A.S.C.; Castro, A.C.; Vieira, F.M.C. Mean Surface temperature prediction models for broiler chickens-a study of sensible heat flow. Int. J. Biometeorol. 2014, 58, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Petrolli, T.G.; Sutille, M.A.; Petrolli, O.J.; Stefani, L.M.; Simionatto, A.T.; Tavernari, F.d.C.; Zotti, C.A.; Girardini, L.K. Eucalyptus oil to mitigate heat stress in broilers. Rev. Bras. Zootec. 2019, 48, e20160306. [Google Scholar] [CrossRef]
- Altan, O.; Altan, A.; Çabuk, M.; Bayraktar, H. Effects of heat stress on some blood parameters in broilers. Turk. J. Vet. Anim. Sci. 2000, 24, 145–148. [Google Scholar]
- Rocha, A.C.G.; Cristina-Silva, C.; Taxini, C.L.; da Costa Silva, K.S.; Lima, V.T.M.; Macari, M.; Bícego, K.C.; Szawka, R.E.; Gargaglioni, L.H. Embryonic thermal manipulation affects ventilation, metabolism, thermal control and central dopamine in newly hatched and juvenile chicks. Front. Physiol. 2021, 12, 699142. [Google Scholar] [CrossRef] [PubMed]
- Joseph, N.S.; Lourens, A.; Moran, E.T. The Effects of suboptimal eggshell temperature during incubation on broiler chick quality, live performance, and further processing yield. Poult. Sci. 2006, 85, 932–938. [Google Scholar] [CrossRef]
- Baarendse, P.J.J.; Debonne, M.; Decuypere, E.; Kemp, B.; Van Den Brand, H. Ontogeny of avian thermoregulation from a neural point of view. World’s Poult. Sci. J. 2007, 63, 267–276. [Google Scholar] [CrossRef]
- Matos Júnior, J.B.; Vicentini, T.I.; Almeida, A.R.; Morita, V.d.S.; Sgavioli, S.; Boleli, I.C. Hatching phase influences thermal preference of broilers throughout rearing. PLoS ONE 2020, 15, e0235600. [Google Scholar] [CrossRef] [PubMed]
- Leksrisompong, N.; Romero-Sanchez, H.; Plumstead, P.W.; Brannan, K.E.; Brake, J. Broiler Incubation. 1. Effect of elevated temperature during late incubation on body weight and organs of chicks. Poult. Sci. 2007, 86, 2685–2691. [Google Scholar] [CrossRef] [PubMed]
Bird Age (Days) | Mean Temperature (°C) | Maximum Temperature (°C) | Minimum Temperature (°C) | Relative Humidity (°C) |
---|---|---|---|---|
1 to 7 | 28.8 ± 2.4 | 32.6 ± 1.2 | 23.5 ± 2.8 | 41.6 ± 7.4 |
7 to 14 | 25.5 ± 3.2 | 29.4 ± 2.1 | 22.2 ± 2.9 | 66.1 ± 20.3 |
14 to 21 | 24.5 ± 2.5 | 27.9 ± 1.7 | 21.2 ± 2.1 | 60.8 ± 17.8 |
21 to 28 | 23.9 ± 2.4 | 27.5 ± 2.1 | 20.0 ± 1.4 | 64.9 ± 12.7 |
28 to 35 | 25.5 ± 1.7 | 29.7 ± 1.6 | 20.5 ± 1.3 | 56.3 ± 8.7 |
35 to 42 | 23.9 ± 2.1 | 28.8 ± 1.8 | 20.4 ± 1.3 | 71.6 ± 10.2 |
Ingredient (%) | Bird Age (Days) | |||
---|---|---|---|---|
1 to 7 | 8 to 21 | 22 to 33 | 34 to 42 | |
Corn | 46.941 | 48.379 | 53.608 | 62.570 |
Soybean meal, 46% CP | 45.754 | 43.489 | 37.988 | 30.334 |
Soybean oil | 3.115 | 4.350 | 5.019 | 4.322 |
Dicalcium phosphate | 1.997 | 1.724 | 1.417 | 1.075 |
Limestone | 0.962 | 0.861 | 0.793 | 0.668 |
Salt (NaCl) | 0.509 | 0.496 | 0.472 | 0.447 |
DL-Methionine, 99% | 0.334 | 0.318 | 0.292 | 0.237 |
L-Lysine HCl, 78.8% | 0.099 | 0.090 | 0.132 | 0.162 |
L-Threonine, 98% | 0.034 | 0.033 | 0.039 | 0.026 |
Vitamin premix 1 | 0.100 | 0.100 | 0.080 | 0.060 |
Mineral premix 2 | 0.100 | 0.100 | 0.100 | 0.100 |
Coccidiostat 3 | 0.060 | 0.060 | 0.060 | 0.000 |
Total | 100.00 | 100.00 | 100.00 | 100.00 |
Nutrient | Calculated composition | |||
Metabolizable energy (kcal/kg) | 3000 | 3100 | 3200 | 3250 |
Calcium % | 1.020 | 0.909 | 0.790 | 0.634 |
Available phosphorus % | 0.486 | 0.434 | 0.369 | 0.296 |
Sodium % | 0.221 | 0.215 | 0.206 | 0.196 |
Digestible protein % | 22.560 | 21.700 | 19.730 | 17.105 |
Digestible methionine % | 0.658 | 0.633 | 0.583 | 0.499 |
Digestible lysine % | 1.355 | 1.293 | 1.192 | 1.033 |
Digestible threonine % | 0.885 | 0.858 | 0.786 | 0.681 |
Digestible tryptophan % | 0.296 | 0.283 | 0.253 | 0.212 |
Variable | Treatment 1 | SEM | p-Value | |||
---|---|---|---|---|---|---|
Ctrl | T3h | T12h | T24h | |||
Incubator temperature (°C) 2 | 37.5 ± 0.1 | 39.0 ± 0.1 | 39.0 ± 0.2 | 39.0 ± 0.2 | - | - |
Shell temperature (°C) 3 | 40.2 ± 0.3 | 41.9 ± 0.2 | 42.1 ± 0.3 | 42.0 ± 0.1 | - | - |
Incubation time (h) | 476.25 | 469.12 | 473.37 | 476.75 | 1.93 | 0.058 |
Hatching window (h) | 43.50 | 50.75 | 46.37 | 43.00 | 4.75 | 0.652 |
Hatchability (%) 4 | 93.1 ± 1.7 a | 93.1 ± 1.7 a | 88.0 ± 2.2 b | 89.4 ± 2.1 b | - | 0.048 |
Hatching weight (g) | 43.6 | 43.5 | 43.5 | 43.5 | 1.17 | 0.960 |
Glucose (mg/dL) | 292.4 | 284.0 | 289.5 | 272.4 | 8.20 | 0.849 |
Hematocrit (%) | 36.07 | 30.13 | 36.90 | 32.91 | 7.78 | 0.531 |
Corticosterone (ng/mL) | 3.04 | 3.44 | 2.92 | 2.93 | 0.16 | 0.544 |
Triiodothyronine (ng/mL) | 1.50 | 1.84 | 1.49 | 1.80 | 0.09 | 0.072 |
Thymus (%) | 0.49 | 0.42 | 0.47 | 0.42 | 0.03 | 0.752 |
Bursa (%) | 0.15 | 0.17 | 0.14 | 0.13 | 0.01 | 0.270 |
Spleen * (%) | 0.05 | 0.03 | 0.04 | 0.04 | 0.00 | 0.737 |
Liver (%) | 2.67 | 2.43 | 2.58 | 2.55 | 0.05 | 0.258 |
Heart * (%) | 0.86 | 0.76 | 0.79 | 0.74 | 0.02 | 0.115 |
Small intestine (%) | 4.83 | 3.90 | 4.64 | 4.57 | 0.19 | 0.408 |
Variable | Treatment 1 | SEM | p-Value | |||
---|---|---|---|---|---|---|
Ctrl | T3h | T12h | T24h | |||
Feed intake (g) | ||||||
1 to 21 days | 1081 a | 1067 a | 1069 a | 1036 b | 10.7 | 0.048 |
1 to 33 days | 2923 a | 2895 a | 2874 a | 2800 b | 27.2 | 0.029 |
1 to 42 days | 4782 a | 4813 a | 4728 a | 4593 b | 53.6 | 0.049 |
Weight gain (g) | ||||||
1 to 21 days | 876 | 875 | 878 | 835 | 14.5 | 0.142 |
1 to 33 days | 2069 | 2065 | 2012 | 1979 | 33.3 | 0.211 |
1 to 42 days | 2941 a | 2950 a | 2919 a | 2849 b | 26.8 | 0.047 |
Feed conversion | ||||||
1 to 21 days | 1.24 | 1.22 | 1.22 | 1.25 | 0.05 | 0.458 |
1 to 33 days | 1.42 | 1.41 | 1.43 | 1.42 | 0.03 | 0.844 |
1 to 42 days | 1.63 | 1.63 | 1.62 | 1.62 | 0.02 | 0.889 |
Body weight (g) | ||||||
At 42 days | 3030 | 3008 | 2973 | 2911 | 53.3 | 0.143 |
Variable | Treatment 1 | SEM | p-Value | |||
---|---|---|---|---|---|---|
Ctrl | T3h | T12h | T24h | |||
At 21 days of age | ||||||
Glucose (mg/dL) | 318.0 | 317.0 | 323.5 | 304.0 | 6.70 | 0.480 |
Hematocrit (%) | 33.92 | 27.63 | 30.99 | 26.88 | 1.41 | 0.232 |
Total plasma protein (g/dL) | 1.343 | 1.343 | 1.343 | 1.343 | 0.01 | 0.724 |
Corticosterone (ng/mL) | 2.07 | 2.15 | 2.12 | 2.16 | 0.12 | 0.994 |
Triiodothyronine (ng/mL) | 1.45 | 1.59 | 1.66 | 1.52 | 0.11 | 0.957 |
Thymus (%) | 0.52 | 0.49 | 0.51 | 0.62 | 0.03 | 0.542 |
Bursa (%) | 0.22 | 0.21 | 0.26 | 0.23 | 0.01 | 0.507 |
Spleen * (%) | 0.08 | 0.09 | 0.09 | 0.09 | 0.01 | 0.636 |
Liver (%) | 2.39 | 2.48 | 2.64 | 2.50 | 0.04 | 0.213 |
Heart * (%) | 0.64 | 0.63 | 0.62 | 0.71 | 0.02 | 0.194 |
Intestine (%) | 4.91 | 4.97 | 5.10 | 5.14 | 0.10 | 0.731 |
Villus height (µm) | 1211 | 1120 | 1149 | 1203 | 48.9 | 0.805 |
Crypt depth µm) | 215.85 | 216.93 | 207.37 | 196.7 | 6.69 | 0.487 |
Villus/crypt (µm/µm) | 5.81 | 5.20 | 5.65 | 6.19 | 0.24 | 0.493 |
At 42 days of age | ||||||
Glucose * (mg/dL) | 302.5 | 303.5 | 285.3 | 296.9 | 6.51 | 0.719 |
Hematocrit (%) | 28.06 a | 24.27 b | 30.42 a | 25.91 b | 0.78 | 0.014 |
Total plasma protein (g/dL) | 1.343 | 1.344 | 1.343 | 1.343 | 0.01 | 0.282 |
Corticosterone (ng/mL) | 3.11 | 3.44 | 3.21 | 3.07 | 0.18 | 0.862 |
Triiodothyronine (ng/mL) | 1.68 | 1.93 | 1.55 | 1.64 | 0.09 | 0.428 |
Thymus (%) | 0.49 | 0.54 | 0.54 | 0.49 | 0.02 | 0.799 |
Bursa (%) | 0.17 | 0.14 | 0.16 | 0.15 | 0.01 | 0.679 |
Spleen * (%) | 0.11 | 0.10 | 0.10 | 0.10 | 0.01 | 0.610 |
Liver (%) | 1.98 | 1.95 | 1.91 | 1.91 | 0.03 | 0.850 |
Heart * (%) | 0.47 | 0.47 | 0.50 | 0.47 | 0.01 | 0.521 |
Intestine (%) | 3.90 | 3.59 | 3.71 | 3.43 | 0.07 | 0.101 |
HSP70 in the liver | 1.00 a | 1.64 b | 1.04 a | 0.92 a | 0.17 | 0.041 |
Heterophil (%) | 30.5 | 38.87 | 32.25 | 30.2 | 7.83 | 0.988 |
Lymphocyte (%) | 63.83 | 60.37 | 61.58 | 64.7 | 7.29 | 0.951 |
Heterophil/lymphocyte | 0.51 | 0.54 | 0.52 | 0.50 | 0.19 | 0.998 |
Slaughter weight (g) | 2.94 | 2.93 | 2.86 | 2.83 | 53.2 | 0.226 |
Carcass yield (%) | 75.94 | 75.27 | 76.13 | 76.06 | 0.33 | 0.118 |
Breast yield (%) | 36.93 | 39.40 | 38.36 | 38.41 | 0.41 | 0.231 |
Thigh + drumstick yield (%) | 28.17 | 27.17 | 27.66 | 27.22 | 0.29 | 0.399 |
Bird Age (Days) | Evaluation Time (ET) | Temperature (°C) 1 | Relative Humidity (%) 2 | Treatment (T) 3 | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ctrl | T3h | T12h | T24h | T | ET | T * ET | |||||
10 | Before challenge | 26.4 ± 0.3 | 59.6 ± 1.6 | 60.5 | 64.5 | 60.5 | 57.5 | 3.41 | 0.761 | 0.471 | 0.753 |
Immediately after challenge | 31.3 ± 0.4 | 57.4 ± 1.4 | 61.5 | 64.0 | 58.0 | 63.5 | |||||
45 min after challenge | 26.7 ± 0.3 | 59.9 ± 0.8 | 57.0 | 55.5 | 58.0 | 55.0 | |||||
17 | Before challenge | 25.2 ± 0.4 | 59.8 ± 0.9 | 63.0 a | 63.5 a | 63.5 a | 67.0 a | 3.22 | 0.635 | 0.002 | 0.849 |
Immediately after challenge | 29.9 ± 0.3 | 59.5 ± 0.8 | 67.5 a | 63.0 a | 61.0 a | 62.5 a | |||||
45 min after challenge | 25.2 ± 0.3 | 60.1 ± 0.8 | 56.5 b | 58.0 b | 53.5 b | 57.5 b | |||||
24 | Before challenge | 23.8 ± 0.3 | 60.0 ± 0.7 | 60.0 | 55.5 | 60.5 | 64.5 | 6.17 | 0.419 | 0.088 | 0.987 |
Immediately after challenge | 28.5 ± 0.3 | 59.6 ± 0.9 | 65.0 | 61.0 | 59.0 | 69.0 | |||||
45 min after challenge | 23.9 ± 0.4 | 59.9 ± 0.8 | 52.5 | 49.5 | 56.5 | 57.5 | |||||
31 | Before challenge | 24.8 ± 0.4 | 59.5 ± 1.6 | 55.0 Bb | 63.5 Ab | 58.5 Ab | 44.0 Bb | 8.14 | 0.013 | 0.001 | 0.938 |
Immediately after challenge | 29.5 ± 0.4 | 58.9 ± 1.3 | 79.5 Ba | 93.0 Aa | 94.0 Aa | 65.0 Ba | |||||
45 min after challenge | 24.8 ± 0.3 | 60.1 ± 0.7 | 50.5 Bb | 57.0 Ab | 59.5 Ab | 46.0 Bb |
Bird Age (Days) | Evaluation Time (ET) | Temperature (°C) 1 | Relative Humidity (%) 2 | Treatment (T) 3 | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ctrl | T3h | T12h | T24h | T | ET | T * ET | |||||
10 | Before challenge | 26.4 ± 0.3 | 59.6 ± 1.6 | 40.2 | 40.3 | 40.4 | 40.5 | 0.09 | 0.090 | 0.151 | 0.384 |
Right after challenge | 31.3 ± 0.4 | 57.4 ± 1.4 | 40.2 | 40.5 | 40.7 | 40.5 | |||||
45 min after challenge | 26.7 ± 0.3 | 59.9 ± 0.8 | 40.2 | 40.4 | 40.2 | 40.4 | |||||
17 | Before challenge | 25.2 ± 0.4 | 59.8 ± 0.9 | 40.8 a | 40.6 a | 40.5 a | 40.7 a | 0.08 | 0.791 | 0.001 | 0.952 |
Right after challenge | 29.9 ± 0.3 | 59.5 ± 0.8 | 40.9 a | 40.7 a | 40.7 a | 40.5 a | |||||
45 min after challenge | 25.2 ± 0.3 | 60.1 ± 0.8 | 40.4 b | 40.3 b | 40.3 b | 40.3 b | |||||
24 | Before challenge | 23.8 ± 0.3 | 60.0 ± 0.7 | 40.7 Aa | 40.6 Ba | 40.9 Aa | 40.8 A | 0.09 | 0.005 | 0.001 | 0.788 |
Right after challenge | 28.5 ± 0.3 | 59.6 ± 0.9 | 40.9 Aa | 40.8 Ba | 41.0 Aa | 40.9 A | |||||
45 min after challenge | 23.9 ± 0.4 | 59.9 ± 0.8 | 40.6 Ab | 40.4 Bb | 40.6 Ab | 40.8 A | |||||
31 | Before challenge | 24.8 ± 0.4 | 59.5 ± 1.6 | 41.0 a | 41.1 a | 41.2 a | 40.9 a | 0.07 | 0.088 | 0.001 | 0.967 |
Right after challenge | 29.5 ± 0.4 | 58.9 ± 1.3 | 41.1 a | 41.2 a | 41.4 a | 41.2 a | |||||
45 min after challenge | 24.8 ± 0.3 | 60.1 ± 0.7 | 40.8 b | 40.8 b | 40.9 b | 40.7 b |
Metabolizability Coefficient (%) | Treatment 1 | SEM | p-Value | |||
---|---|---|---|---|---|---|
Ctrl | T3h | T12h | T24h | |||
22–24 days of age * | ||||||
Dry matter | 72.16 | 72.33 | 72.03 | 71.39 | 0.18 | 0.329 |
Ash | 89.71 | 89.28 | 89.88 | 89.60 | 0.27 | 0.568 |
Lipids | 90.79 | 90.40 | 90.68 | 90.57 | 0.19 | 0.830 |
Crude protein | 65.15 | 66.19 | 65.03 | 66.07 | 0.46 | 0.724 |
35–37 days of age ** | ||||||
Dry matter | 74.04 | 74.86 | 74.22 | 74.20 | 0.52 | 0.898 |
Ash | 88.95 | 88.90 | 89.12 | 89.03 | 0.21 | 0.970 |
Lipids | 90.39 | 90.20 | 90.30 | 90.19 | 0.12 | 0.941 |
Protein | 67.82 | 69.64 | 70.19 | 68.96 | 0.55 | 0.412 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leão, A.P.A.; de Souza, A.V.; Barbosa, D.R.; da Silva, C.F.G.; Alvarenga, R.R.; de Araújo, I.C.S.; Geraldo, A.; Resende, C.O.; Zangeronimo, M.G. Thermal Manipulation During the Embryonic Stage and the Post-Hatch Characteristics of Broiler Chickens. Animals 2024, 14, 3436. https://doi.org/10.3390/ani14233436
Leão APA, de Souza AV, Barbosa DR, da Silva CFG, Alvarenga RR, de Araújo ICS, Geraldo A, Resende CO, Zangeronimo MG. Thermal Manipulation During the Embryonic Stage and the Post-Hatch Characteristics of Broiler Chickens. Animals. 2024; 14(23):3436. https://doi.org/10.3390/ani14233436
Chicago/Turabian StyleLeão, Ana Patrícia Alves, Alexandre Vinhas de Souza, Daniella Rabelo Barbosa, Carina Fernanda Gomes da Silva, Renata Ribeiro Alvarenga, Itallo Conrado Sousa de Araújo, Adriano Geraldo, Carla Oliveira Resende, and Márcio Gilberto Zangeronimo. 2024. "Thermal Manipulation During the Embryonic Stage and the Post-Hatch Characteristics of Broiler Chickens" Animals 14, no. 23: 3436. https://doi.org/10.3390/ani14233436
APA StyleLeão, A. P. A., de Souza, A. V., Barbosa, D. R., da Silva, C. F. G., Alvarenga, R. R., de Araújo, I. C. S., Geraldo, A., Resende, C. O., & Zangeronimo, M. G. (2024). Thermal Manipulation During the Embryonic Stage and the Post-Hatch Characteristics of Broiler Chickens. Animals, 14(23), 3436. https://doi.org/10.3390/ani14233436