Feline Adenovirus Isolate Shows Silent Nucleotide Alterations, Alternative Receptor/Coreceptor Binding, High Resistance to Disinfectants and Antiviral Drugs, as Well as Immunomodulation
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cells, Virus and Titration
2.2. Experimental Procedures
2.2.1. Genome Sequencing of the FeAdV Isolate
2.2.2. Analysis of Viral Replication in Prostate Cancer Cells
2.2.3. Analysis of Viral Attachment and Entry Receptors
2.2.4. Studies on the Physico-Chemical Effects on Viral Infectivity
2.2.5. Quantitation of Cytokines
2.3. Statistical Analysis
3. Results
3.1. Whole-Genome Sequencing
3.2. Replication of the FeAdV Isolate in Prostate Cancer Cells
3.3. Determination of Cell Receptors of the FeAdV Isolate
3.4. Effect of Physico-Chemical Agents on the Infectivity of the FeAdV Isolate
3.4.1. Heat Treatment
3.4.2. UV Light
3.4.3. Acid and Alkaline Treatment
3.4.4. Effect of Disinfectants
3.4.5. Antiviral Drugs
3.5. FeAdV Infection Modifies Cytokine Release
4. Discussion
4.1. Zoonosis
4.2. Sequencing
4.3. Receptors
4.4. Physico-Chemical Effects
4.4.1. Heat
4.4.2. UV
4.4.3. pH
4.4.4. Chemicals
4.4.5. Drugs
4.5. Cytokines
4.6. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atasheva, S.; Yao, J.; Shayakhmetov, D.M. Innate immunity to adenovirus: Lessons from mice. FEBS Lett. 2019, 593, 3461–3483. [Google Scholar] [CrossRef] [PubMed]
- Lion, T. Adenovirus infections in immunocompetent and immunocompromised patients. Clin. Microbiol. Rev. 2014, 17, 441–462. [Google Scholar] [CrossRef] [PubMed]
- Lauer, K.P.; Llorente, I.; Blair, E.; Seto, J.; Krasnov, V.; Purkayastra, A.; Ditty, S.E.; Hadfield, T.L.; Buck, C.; Tibbetts, C.; et al. Natural variation among human adenoviruses: Genome sequence and annotation of human adenovirus serotype 1. J. Gen. Virol. 2004, 85, 2615–2625. [Google Scholar] [CrossRef] [PubMed]
- Darayam, A.; Tsangaras, K.; Pavulraj, S.; Azab, W.; Groenke, N.; Wibbelt, G.; Sicks, F.; Osterrieder, N.; Greenwood, A.D. Novel divergent polar bear-associated Mastadenovirus recovered from a diseased juvenile polar bear. mSphere 2018, 3, e00171-18. [Google Scholar] [CrossRef]
- Gray, G.C.; Erdman, D.D. Adenovirus vaccines. In Plotkin’s Vaccines, 7th ed.; Plotkin, S.A., Orenstein, W.A., Offit, P.A., Edwards, K.M., Eds.; Elsevier: Philadelphia, PA, USA, 2018; pp. 121–133.e8. [Google Scholar] [CrossRef]
- Morfin, F.; Dupuis-Girod, S.; Mundweiler, S.; Falcon, D.; Carrington, D.; Sedlacek, P.; Bierings, M.; Cetkovsky, P.; Kroes, A.C.; van Tol, M.J.; et al. In vitro susceptibility of adenovirus to antiviral drugs is species-dependent. Antivir. Ther. 2005, 10, 225–229. [Google Scholar] [CrossRef]
- Gonzalez-Mariscal, L.; Garay, E.; Lechuga, S. Virus interaction with the apical junction complex. Front. Biosci. 2009, 14, 731–768. [Google Scholar] [CrossRef]
- MacNeil, K.M.; Dodge, M.J.; Evans, A.M.; Tanner, M.; Tessier, T.M.; Weinberg, J.B.; Mymryk, J.S. Adenoviruses in medicine: Innocuous pathogen, predator, or partner. Trends Mol. Med. 2023, 29, 4–19. [Google Scholar] [CrossRef]
- Ongrádi, J.; Chatlynne, L.G.; Tarcsai, K.; Stercz, B.; Lakatos, B.; Pring-Akerblom, P.; Gooss, D.; Nagy, K.; Ablashi, D.V. Adenovirus isolated from a cat is related to human adenovirus 1. Front. Microbiol. 2019, 10, 1430. [Google Scholar] [CrossRef]
- Harrach, B.; Tarján, Z.L.; Benkő, M. Adenoviruses across the animal kingdom: A walk in the zoo. FEBS Lett. 2019, 593, 3660–3673. [Google Scholar] [CrossRef]
- Borkenhagen, L.K.; Fieldhouse, J.K.; Seto, D.; Gray, G.C. Are adenoviruses zoonotic? A systematic review of the evidence. Emerg. Microbes Infect. 2019, 8, 1679–1687. [Google Scholar] [CrossRef]
- Seto, D.; Chodosh, J.; Brister, J.R.; Jones, M.S. Using the whole-genome sequence to characterize and name human adenoviruses. J. Virol. 2011, 85, 5701–5702. [Google Scholar] [CrossRef] [PubMed]
- Tamanini, A.; Nicolis, E.; Bonizzato, A.; Bezzerri, V.; Melotti, P.; Assael, B.M.; Cabrini, G. Interaction of adenovirus type 5 fiber with the Coxsackievirus and adenovirus receptor activates inflammatory response in human respiratory cells. J. Virol. 2006, 80, 11241–11254. [Google Scholar] [CrossRef] [PubMed]
- Kliewer, S.J.; Garcia, L.; Pearson, E.; Soultanakis, E.; Dasgupta, A.; Gaynor, R. Multiple transcriptional regulatory domains in the human immunodeficiency virus type 1 long terminal repeat are involved in basal and E1A/E1B-induced promoter activity. J. Virol. 1989, 63, 4616–4625. [Google Scholar] [CrossRef] [PubMed]
- Hierholzer, J.C. Adenovirus in the immunocompromised host. Clin. Microbiol. Rev. 1992, 5, 262–274. [Google Scholar] [CrossRef] [PubMed]
- Fiolet, T.; Kherabi, Y.; MacDonald, C.-J.; Ghosn, J.; Peiffer-Smajda, N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: A narratic review. Clin. Microbiol. Infect. 2022, 28, 202. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Y.; Liu, S.; Lin, Y.; Hu, C. Virotherapy for prostate cancer: Lighting a fire in winter. Int. J. Mol. Sci. 2022, 23, 126437. [Google Scholar] [CrossRef]
- Wu, C.; Wei, F.K.; Xu, Z.Y.; Wen, R.M.; Chen, J.C.; Wang, J.Q.; Mao, L.J. Tropism and transduction of oncolytic adenovirus vectors in prostate cancer therapy. Front. Biosci. 2021, 26, 866–872. [Google Scholar] [CrossRef]
- Cai, Z.; Lv, H.; Cao, W.; Zhou, C.; Liu, Q.; Li, H.; Zhou, F. Targeting strategies of adenovirus-mediated gene therapy and virotherapy for prostate cancer (Review). Mol. Med. Rep. 2017, 14, 6443–6458. [Google Scholar] [CrossRef]
- Pedersen, N.C.; Ho, E.W.; Braun, M.L.; Yamamoto, J.K. Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science 1987, 235, 790–793. [Google Scholar] [CrossRef]
- Miller, C.; Abdo, Z.; Ericsson, A.; Elder, J.; vandeWoude, S. Applications of the FIV model to study HIV pathogenesis. Viruses 2018, 10, 206. [Google Scholar] [CrossRef]
- Gupta, P. Inclusion body hepatitis in a black panther (Panthera pardus pardus). Zentralbl. Veterinarmed. B 1978, 25, 858–860. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, F.A.; Mullaney, T.P. Disseminated adenovirus infection in a cat. J. Vet. Diagn. Investig. 1993, 5, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Lakatos, B.; Farkas, J.; Ádám, É.; Dobay, O.; Jeney, C.; Nász, I.; Ongrádi, J. Serological evidence of adenovirus infection in cats. Arch. Virol. 2000, 145, 1029–1033. [Google Scholar] [CrossRef] [PubMed]
- Lakatos, B.; Knotek, Z.; Farkas, J.; Ádám, É.; Dobay, O.; Nász, I. Adenovirus infection in cats: An epidemiological survey in the Czech Republic. Acta Vet. Brno 1999, 68, 275–280. [Google Scholar] [CrossRef]
- Lakatos, B.; Farkas, J.; Egberink, H.F.; Vennema, H.; Horzinek, M.C.; Benkő, M. Detection of adenovirus hexon sequence in a cat by polymerase chain reaction. Acta Vet. Hung. 1999, 47, 493–497. [Google Scholar] [CrossRef]
- Ongrádi, J. Identification of a feline adenovirus isolate that replicates in monkey and human cells in vitro. Am. J. Vet. Res. 1999, 60, 1463. [Google Scholar]
- Adrian, T.; Sassinek, J.; Wigand, R. Genome type analysis of 480 isolates of adenovirus types 1, 2, and 5. Arch. Virol. 1990, 112, 235–248. [Google Scholar] [CrossRef]
- Phan, T.G.; Shimizu, H.; Nishimura, S.; Okitsu, S.; Maneekarn, N.; Ushijama, H. Human adenovirus type 1 related to feline adenovirus: Evidence of interspecies transmission. Clin. Lab. 2006, 52, 515–518. [Google Scholar]
- Luiz, L.N.; Leite, J.P.; Yokosawa, J.; Carneiro, B.M.; Pereira Filho, E.; Oliveira, T.F.; Freitas, G.R.; Costa, L.F.; Paula, N.T.; Silveira, H.L.; et al. Molecular characterization of adenoviruses from children presenting with acute respiratory diseases in Uberlandia, Minas Gerais, Brazil and detection of an isolate genetically related to feline adenovirus. Mem. Inst. Oswaldo Cruz. 2010, 105, 712–716. [Google Scholar] [CrossRef]
- Lakatos, B.; Hornyák, Á.; Demeter, Z.; Forgách, P.; Kennedy, F.; Rusvai, M. Detection of putative novel adenovirus by PCR amplification, sequencing and phylogenetic characterisation of two gene fragment from formalin-fixed paraffin-embedded tissues of a cat diagnosed with disseminated adenovirus disease. Acta Vet. Hung. 2017, 65, 574–584. [Google Scholar] [CrossRef]
- Lial, H.C.; Navas-Suárez, P.E.; Ewbank, A.C.; Exposto Novoselecki, H.; Ferreira-Machado, E.; Dos Santos Cirqueira, C.; de Azevedo Fernandes, N.C.C.; Esperón, F.; Catão-Dias, J.L.; Sacristán, C. Adenovirus surveillance in wild carnivores from Brazil. Infect. Genet. Evol. 2022, 99, 105246. [Google Scholar] [CrossRef] [PubMed]
- Tarcsai, K.R.; Corolciuc, O.; Kapran, I.; Kövesdi, V.; Szercz, B.; Ongrádi, J. The first feline adenovirus isolate is related to human adenovirus 1. In Proceedings of the FEMS Online Conference on Microbiology, Belgrade, Serbia, 28–30 December 2020. [Google Scholar]
- Tarcsai, K.R.; Hidvégi, M.; Corolciuc, O.; Nagy, K.; Abbas, A.A.; Ablashi, D.V.; Kövesdi, V.; Ongrádi, J. The effects of Avemar treatment on feline immunodeficiency virus infected cell cultures. Vet. Med. Sci. 2023, 9, 1446–1455. [Google Scholar] [CrossRef] [PubMed]
- Bali, K.; Bálint, Á.; Farsang, A.; Marton, S.; Nagy, B.; Kaszab, E.; Belák, S.; Palya, V.; Bányai, K. Recombination events shape genomic evolution of infectious bronchitis virus in Europe. Viruses 2021, 13, 535. [Google Scholar] [CrossRef] [PubMed]
- Béládi, I.; Mucsi, I.; Bakay, M.; Pusztai, R. Rescue of heat-inactivated adenovirus type 1 and 6 by unltraviolet-irradiated adenovirus type 8. J. Gen. Virol. 1970, 7, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Rafajko, R.; Young, J.C. Thermal and pH stability of adenovirus types 12, 14 and 18. Proc. Soc. Exp. Biol. Med. 1964, 116, 683–685. [Google Scholar] [CrossRef]
- Polombieri, A.; Di Profio, F.; Fruci, P.; Sarchese, V.; Martella, V.; Marsilio, F.; Di Martino, B. Emerging respiratory viruses in cats. Viruses 2022, 14, 663. [Google Scholar] [CrossRef]
- Bányai, K.; Máté, Z.; Ádám, É.; Uj, M.; Nász, I.; Szűcs, G. Screening adenoviruses in stool samples: Evaluation of a genus-specific monoclonal antibody based enzyme immunoassay. Acta Microbiol. Hung. 2003, 50, 23–32. [Google Scholar] [CrossRef]
- Monteiro, G.S.; Fleck, J.D.; Kluge, M.; Rech, N.K.; Soliman, M.C.; Staggermeier, R.; Rodrigues, M.T.; Barros, M.P.; Heinzelmann, L.S.; Spilki, F.R. Adenoviruses of canine and human origins in stool samples from free-living pampas foxes (Lycalopex gymnocercus) and crab-eating foxes (Cerdocyon thous) in Sao Francisco de Paula, Rio dos Sinos basin. Braz. J. Biol. 2015, 75, 11–16. [Google Scholar] [CrossRef]
- Chiapetta, C.M.; Cibulski, S.P.; Lima, F.E.S.; Varela, A.P.M.; Amorim, D.B.; Tavares, M.; Roehe, P.M. Molecular detection od circovirus and adenovirus in feces of fur seals (Arctocephalus spp.). Ecohealth 2017, 14, 69–77. [Google Scholar] [CrossRef]
- Kozak, R.A.; Ackford, J.G.; Slaine, P.; Li, A.; Carman, S.; Campbell, D.; Welch, M.K.; Kropinski, A.M.; Nagy, É. Characterization of a novel adenovirus isolated from a skunk. Virology 2015, 485, 16–24. [Google Scholar] [CrossRef]
- Robinson, C.M.; Zhou, X.; Rajaija, J.; Yousuf, M.; Singh, G.; DeSerres, J.J.; Walsh, M.P.; Wong, S.; Seto, D.; Dyer, D.W. Predicting the next eye pathogen: Analysis of a novel adenovirus. mBio 2013, 4, e00595-12. [Google Scholar] [CrossRef] [PubMed]
- Ongradi, J.; Stercz, B.; Kövesdi, V.; Nagy, K.; Pistello, M. Interaction of FIV with heterologous microbes in the feline AIDS model. In Current Perspectives in HIV Infection; InTech: London, UK, 2013. [Google Scholar] [CrossRef]
- Zubieta, C.; Schoen, G.; Chroboczek, J.; Cusack, S. The structure of the human adenovirus 2. Mol. Cell 2015, 17, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, J.; Pérez-Illana, M.; Martin-Gonzalez, N.; San Martin, C. Adenovirus structure: What is new? Int. J. Mol. Sci. 2021, 22, 5240. [Google Scholar] [CrossRef] [PubMed]
- Pedchenko, V.; Zent, R.; Hudson, B.G. αvβ3 and αvβ5 integrins bind both the proximal RGD site and non-RGD motifs within noncollagenous (NC1) domain of the α3 chain of type IV collagen: Implication for the mechanism of endothelia cell adhesion. J. Biol. Chem. 2004, 23, 2772–2780. [Google Scholar] [CrossRef] [PubMed]
- Majhen, D.; Richardson, J.; Vukelic, B.; Dodig, I.; Cincric, M.; Benihoud, K.; Ambriović-Ristov, A. The disulfide bond of an RGD4C motif inserted within the Hi loop of the adenovirus type 5 fiber protein is critical for retargeting to αv-integrins. J. Gene Med. 2012, 14, 788–797. [Google Scholar] [CrossRef]
- Ling, W.L.; Longley, R.L.; Brassard, D.L.; Armstrong, L.; Schaefer, E.J. Role of integrin αvβ3 in the production of recombinant adenoviruses in HEK-293 cells. Gene Ther. 2002, 9, 907–914. [Google Scholar] [CrossRef]
- Lyle, C.; McCormick, F. Integrin αvβ5 is a primary receptor for adenovirus in CAR negative cells. Virol. J. 2010, 7, 148. [Google Scholar] [CrossRef]
- Mattioli, M.; Gloria, A.; Mauro, A.; Gioia, L.; Barboni, B. Fusion as the result of sperm-somatic cell interaction. Reproduction 2009, 138, 679–687. [Google Scholar] [CrossRef]
- Pandha, H.S.; Stockwin, L.H.; Eaton, J.; Clarke, I.A.; Dalgleish, A.G.; Todryk, S.M.; Blair, G.E. Coxsackie B and adenovirus receptor, integrin and major histocompatibility complex class I expression in human prostate cancer cell lines: Implications for gene therapy strategies. Prostate Cancer Prostatic Dis. 2003, 6, 6–11. [Google Scholar] [CrossRef]
- Maheshwari, G.; Jannat, R.; McCormick, L.; Hsu, D. Thermal inactivation of adenovirus type 5. J. Virol. Methods 2004, 118, 141–146. [Google Scholar] [CrossRef]
- Estes, M.K.; Butel, J.S. Characterization of temperature-sensitive mutant of human adenovirus type 7. J. Virol. 1977, 21, 1159–1169. [Google Scholar] [CrossRef] [PubMed]
- Rusell, W.C.; Valentine, R.C.; Pereira, H.G. The effet of heat on the anatomy of the adenovirus. J. Gen. Virol. 1967, 1, 509–522. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, H.S. Characterization of the new respiratory viruses (Adenoviruses) II. Stability to temperature and pH alterations. Proc. Soc. Exp. Biol. Med. 1956, 93, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Rexroad, J.; Martin, T.T.; McNeilly, D.; Godwin, S.; Middaugh, C.R. Thermal stability of adenovirus type 2 as a function of pH. J. Pharm. Sci. 2006, 95, 1469–1479. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Illana, M.; Martín-Gonzalez, N.; Hernanado-Pérez, M.; Condezo, G.N.; Gallardo, J.; Menéndez, M.; San Martín, C.; de Pablo, P.J. Acidification induces condensation of the adenovirus core. Acta Biomater. 2021, 135, 534–542. [Google Scholar] [CrossRef]
- Gerba, C.P.; Gramos, D.M.; Nachuku, N. Comparative inactivation of enteroviruses and adenovirus 2 by UV light. Appl. Environ. Microbiol. 2002, 68, 5167–5169. [Google Scholar] [CrossRef]
- Eischeid, A.C.; Meyer, J.N.; Linden, K.G. UV disinfection of adenoviruses: Molecular indications of DNA damage efficiency. Appl. Environ. Microbiol. 2009, 75, 23–28. [Google Scholar] [CrossRef]
- Nwachuku, N.; Gerba, C.P.; Oswald, A.; Mashadi, F.D. Comparative inactivation of adenovirus serotypes by UV light disinfection. Appl. Environ. Microbiol. 2005, 71, 5533–5536. [Google Scholar] [CrossRef]
- Lee, J.K.; Shin, G.A. Inactivation of human adenovirus by sequential disinfection with an alternative UV technology and free chlorine. J. Water Health 2011, 9, 53–58. [Google Scholar] [CrossRef]
- Rattanakul, S.; Ogurna, K.; Takizawa, S. Sequential and simultaneous applications of UV and chlorine for adenovirus inactivation. Food Environ. Virol. 2015, 7, 295–304. [Google Scholar] [CrossRef]
- Schijven, J.; Teunis, P.; Suylen, T.; Ketelaars, H.; Hornstra, L.; Rutjes, S. QMRA of adenovirus in drinking water at a drinking water treatment plant using UV and chlorine dioxide disinfection. Water Res. 2019, 158, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Rexroad, J.; Wiethoff, C.M.; Green, A.P.; Kierstead, T.D.; Scott, O.M.; Middaugh, C.R. Structural stability of adenovirus type 5. J. Pharm. Sci. 2003, 92, 665–678. [Google Scholar] [CrossRef] [PubMed]
- Rexroad, J.; Evans, R.K.; Middaugh, C.R. Effect of pH and ionic strength on the physical stability of adenovirus type 5. J. Pharm. Sci. 2006, 5, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Magri, M.E.; Fidjeland, J.; Jönsson, H.; Albihn, A.; Vinneras, B. Inactivation of adenovirus and bacteriophages in fecal sludge by pH and ammonia. Sci. Total Environ. 2015, 520, 213–221. [Google Scholar] [CrossRef]
- Ongrádi, J.; Ceccherini-Nelli, L.; Pistello, M.; Specter, S.; Friedman, H. Acid sensitivity of cell-free and cell-associated HIV-1: Clinical implications. AIDS Res. Hum. Retrovir. 1999, 6, 1433–1436. [Google Scholar] [CrossRef]
- Fiebiger, E.; Meraner, P.; Weber, E.; Fang, I.F.; Stingl, G.; Ploegh, H.; Maurer, D. Cytokines regulate proteolysis in major histocompatibility complex class-II dependent antigen presentation by dendritic cells. J. Exp. Med. 2001, 193, 881–892. [Google Scholar] [CrossRef]
- Nascimento, M.A.; Magri, M.E.; Schissi, C.D.; Barardi, C.R. Recombinant adenovirus as a model to evaluate the efficacy of free chlorine disinfection in filtered water samples. Virol. J. 2015, 12, 30. [Google Scholar] [CrossRef]
- Clarke, N.A.; Kabler, P.W.; Stevenson, R.E. The inactivation of purifued type 3 adenovirus in water by chlorine. Am. J. Hyg. 1956, 64, 314–319. [Google Scholar] [CrossRef]
- Page, M.A.; Shisler, J.L.; Marinas, B.J. Kinetics of adenovirus type 2 inactivation with free chlorine. Water Res. 2009, 43, 2916–2926. [Google Scholar] [CrossRef]
- Girones, R.; Cattala, A.; Calgua, B.; Calvo, M.; Rodriguez-Manzano, J.; Emerson, S. Chlorine inactivation of hepatitis E virus and human adenovirus in water. J. Water Health 2014, 12, 436–442. [Google Scholar] [CrossRef]
- Cromeans, T.L.; Kahler, A.M.; Hill, V.R. Inactivation of adenoviruses, enteroviruses, and murine norovirus in water by free chlorine and monochloramine. Appl. Environ. Microbiol. 2010, 76, 1028–1033. [Google Scholar] [CrossRef] [PubMed]
- Thurston-Enriquez, A.; Haas, C.N. Chlorine inactivation of adenovirus type 40 and feline calicivirus. Appl. Environ. Microbiol. 2003, 69, 3979–3985. [Google Scholar] [CrossRef] [PubMed]
- Rutala, W.A.; Peacock, J.E.; Gergen, M.F.; Sobsey, M.D.; Weber, D.J. Efficacy of hospital germicides against adenovirus 8, a common cause of epidemic keratoconjunctivitis in health care facilities. Antimicrob. Agents Chemother. 2006, 50, 1419–1424. [Google Scholar] [CrossRef] [PubMed]
- Kampf, G. Efficacy of ethanol against viruses in hand disinfection. J. Hosp. Infect. 2018, 98, 331–338. [Google Scholar] [CrossRef]
- Stock, R.; Harste, G.; Madisch, I.; Heim, A. A rapid quantitative PCR-based assay for testing antiviral agents against human adenoviruses demonstrates type specific difference in ribavirin activity. Antivir. Res. 2006, 72, 34–41. [Google Scholar] [CrossRef]
- Morfin, F.; Dupuis-Girod, S.; Frobert, E.; Mundweiler, S.; Carrington, D.; Sedlacek, P.; Bierings, M.; Cetkovsky, P.; Kroes, A.C.; van Tol, M.J.; et al. Differential susceptibility of adenovirus clinical isolates to cidofovir and ribavirin is not related to species alone. Antivir. Ther. 2009, 14, 55–61. [Google Scholar] [CrossRef]
- Tollefson, A.E.; Spencer, F.; Ying, B.; Buller, R.M.; Wold, W.S.; Tóth, K. Cidofovir and brincidofovir reduce the pathology caused by systemic infection with human type 5 adenovirus in immunosuppressed Syrian hamsters, while ribavirin is largely ineffective in this model. Antivir. Res. 2014, 112, 38–46. [Google Scholar] [CrossRef]
- Tóth, K.; Tollefson, A.E.; Spencer, J.F.; Ying, B.; Wold, W.S.M. Combination therapy with brincidofovir and valganciclovir against species C adenovirus infection in the immunosuppressed Syrian hamster model allows for substantial reduction of dose for both compounds. Antivir. Res. 2017, 146, 121–129. [Google Scholar] [CrossRef]
- de Oliveira, C.B.; Stevenson, D.; LaBree, L.; McDonnell, P.J.; Tousdale, M.D. Evaluation of cidofovir (HPMPC, GS-504) against adenovirus type 5 infection in vitro and in a New Zealand rabbit ocular model. Antivir. Res. 1996, 31, 165–172. [Google Scholar] [CrossRef]
- Leanaerts, L.; Naesens, L. Antiviral therapy for adenovirus infections. Antivir. Res. 2006, 71, 172–180. [Google Scholar] [CrossRef]
- Hartline, C.B.; Gustin, K.M.; Wan, W.B.; Ciesla, S.L.; Beadle, J.R.; Hostetler, K.Y.; Kern, E.R. Ether lipid-ester prodrugs of acyclic nucleoside phosphates: Activity against adenovirus replication in vitro. J. Infect. Dis. 2005, 191, 396–399. [Google Scholar] [CrossRef] [PubMed]
- Uchio, E.; Fuchigami, A.; Kadonosono, K.; Hayashi, A.; Ishiko, H.; Aoki, K.; Ohno, S. Anti-adenoviral effect of anti-HIV agents in vitro in serotypes inducing keratoconjunctivitis. Graefes Arch. Clin. Exp. Ophthalmol. 2007, 245, 1314–1325. [Google Scholar] [CrossRef]
- Gianotti, R.; Ricarte, C.; Ebekian, B.; Videla, C.; Carballal, G.; Damonte, E.B.; Echavarría, M. Real time PCR for rapid determination of susceptibility of adenovirus to antiviral drugs. J. Virol. Methods 2010, 164, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Lee, W.-C.; Takayama, T.; Qian, S.; Gambotto, A.; Robbins, P.D.; Thomson, A.W. Genetic engineering of dendritic cells to express immunosuppressive molecules (viral IL-10, TGF-β, and CTLA4Ig). J. Leukoc. Biol. 1999, 66, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Huang, L.; Zhou, H.; Zhang, Y. Combining IL-10 and oncolytic adenovirus demonstrates enhanced antitumor efficacy through CD8+ T cells. Front. Immunol. 2021, 12, 615089. [Google Scholar] [CrossRef]
- Atasheva, S.; Shayakmetov, D.M. Cytokine response to adenovirus and adenovirus vectors. Viruses 2022, 14, 888. [Google Scholar] [CrossRef]
- Szalmás, A.; Bánáti, F.; Koroknai, A.; László, B.; Fehér, E.; Salamon, D.; Gergely, L.; Minárovits, J.; Kónya, J. Lineage-specific silencing of human IL-10 gene expression by promoter methylation in cervical cancer cells. Eur. J. Cancer 2008, 44, 1030–1038. [Google Scholar] [CrossRef]
- Morikawa, M.; Derynck, R.; Miyazono, K. TGF-b and the TGF-b family: Context-dependent roles in cell and tissue physiology. Cold Spring Harb. Perspect. Biol. 2016, 8, a021873. [Google Scholar] [CrossRef]
- Oh, S.; Kim, E.; Kang, D.; Kim, M.; Kim, J.-H.; Song, J.J. Transforming growth factor-β gene silencing using adenovirus expressing TGF-β1 or TGF-β2 shRNA. Cancer Gene Ther. 2013, 20, 94–100. [Google Scholar] [CrossRef]
- Datta, P.K.; Bagchi, S. Repression of transforming growth factor β 1 by the adenovirus oncogene E1A. Identification of a unique GC-rich sequence as a target fro E1A repression. J. Biol. Chem. 1994, 269, 25392–25399. [Google Scholar] [CrossRef]
- Xiao, L.; Zhu, H.; Shu, J.; Gong, D.; Zheng, D.; Gao, J. Overexpression of TGF-β1 and SDF-1 in cervical cancer-associated fibroblasts promotes cell growth, invasion and migration. Arch. Gynecol. 2022, 305, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.Z.; Gao, X.; Zhou, T.J.; Guo, Q.-X.; Zhang, Q.; Yang, C.-W. Effects of TGF-β1 on the proliferation and apoptosis of human cervical cancer HeLa cells in vitro. Biochem. Biophys. 2015, 73, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Munger, J.S.; Huang, X.; Kawakatsu, H.; Griffiths, M.J.; Dalton, S.L.; Wu, J.; Pittet, J.F.; Kaminski, N.; Garat, C.; Matthay, M.A.; et al. The integrin αvβ6 binds and activates latent TGF β1: A mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999, 96, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, E.; Freese, U.K.; Gissmann, L.; Mayer, W.; Roggenbuck, B.; Stremlau, A.; zur Hausen, H. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 1985, 314, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Howley, P.M.; Münger, K.; Werness, B.A.; Phelps, W.C.; Schlegel, R. Molecular mechanism of transformation by the human papillomaviruses. Princess Takamatsu Symp. 1989, 20, 199–206. [Google Scholar] [PubMed]
- Matteucci, D.; Mazzetti, P.; Baldinotti, F.; Zaccaro, L.; Bendinelli, M. The feline lymphoid cell line MBM and its use for feline immunodeficiency virus isolation and quantitation. Vet. Immunol. Immunopathol. 1995, 46, 71–82. [Google Scholar] [CrossRef]
- Tarcsai, K.R.; Kövesdi, V.; Pistello, M.; Corolciuc, O.; Ongrádi, J. Studies on MBM cells as a model for acute feline immunodeficiency virus infection. Acta Microbiol. Immunol. Hung. 2021, 68, S43. [Google Scholar]
- Araghi, A.; Nassiri, S.H.; Atyabi, N.; Rahbarghazi, R.; Mohammadi, E. Flow cytometric immunophenotyping of feline bone marrow cells and haematopoietic progenitor cells using anti-human antibodies. J. Feline Med. Surg. 2014, 16, 265–274. [Google Scholar] [CrossRef]
Sequence length (bp) | 36,001 | 35,990 | 2889 | 301 | Amino acid position | Location | AF534906 HAdV-C1 amino acid | PP259354 FeAdV amino acid | AY512566 FeAdV hexon amino acid | AF172246 FeAdV partial hexon amino acid | |
Base | AF534906 HAdV-C1 base | PP259354 FeAdV base | AY512566 FeAdV hexon base | AF172246 FeAdV partial hexon base | |||||||
8888 | deleted | A | nt | nt | 2963 | E2B | Lysine (+) | Lysine (+) | nt | nt | |
915 | T | C | nt | nt | 305 | Penton proteine | Glycine (special) | Glycine (special) | nt | nt | |
81 | G | G | G | N | 26 | Hexon gene | C1 5′-end | Glycine (special) | Glycine (special) | Glycine (special) | Glycine (special) |
300 | C | C | C | T | 99 | C1 5′-end | Tyrosine (polar) | Tyrosine (polar) | Tyrosine (polar) | Tyrosine (polar) | |
309 | T | T | T | C | 102 | C1 recombinant region | Isoleucine (non-polar) | Isoleucine (non-polar) | Isoleucine (non-polar) | Isoleucine (non-polar) | |
315 | C | C | C | T | 104 | C1 recombinant region | Glycine (special) | Glycine (special) | Glycine (special) | Glycine (special) | |
316 | G | G | G | A | 105 | C1 recombinant region | Valine (hydrophobic) | Valine (hydrophobic) | Methionine (hydrophobic) | Valine (hydrophobic) | |
2877 | T | T | C | nt | 958 | C1 recombinant region | Alanine (hydrophobic) | Alanine (hydrophobic) | Alanine (hydrophobic) | nt |
Sequence length (bp) | 36,001 | 35,990 | 1749 | Amino acid position | Location | AF534906 HAdV 1 amino acid | FeAdV amino acid | AY518270 FeAdV fiber amino acid | |
Base | AF534906 HAdV 1 base | FeAdV base | AY518270 Fiber base | ||||||
981 | G | G | A | 327 | Fiber gene | 17. pseudorepeat | Lysine (+) | Lysine (+) | Lysine (+) |
1659 | A | A | C | 553 | HI loop | Serine (uncharged) | Serine (uncharged) | Serine (uncharged) | |
1743 | A | A | G | 581 | C-terminal | Glutamine (uncharged) | Glutamine (uncharged) | Glutamine (uncharged) |
Pre-Treatment | Treatment of Infected Cells | ||
---|---|---|---|
2 h Post-Infection | 24 h Post-Infection | ||
Ribavirin | 0.625 mg/mL | 0.625 mg/mL | 25 mg/mL |
Cidofovir | 0.625 mg/mL | 0.625 mg/mL | 1.25 mg/mL |
Stavudine | 0.3125 mg/mL | 0.3125 mg/mL | 0.625 mg/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarcsai, K.R.; Bányai, K.; Bali, K.; Abbas, A.A.; Kövesdi, V.; Ongrádi, J. Feline Adenovirus Isolate Shows Silent Nucleotide Alterations, Alternative Receptor/Coreceptor Binding, High Resistance to Disinfectants and Antiviral Drugs, as Well as Immunomodulation. Animals 2024, 14, 3502. https://doi.org/10.3390/ani14233502
Tarcsai KR, Bányai K, Bali K, Abbas AA, Kövesdi V, Ongrádi J. Feline Adenovirus Isolate Shows Silent Nucleotide Alterations, Alternative Receptor/Coreceptor Binding, High Resistance to Disinfectants and Antiviral Drugs, as Well as Immunomodulation. Animals. 2024; 14(23):3502. https://doi.org/10.3390/ani14233502
Chicago/Turabian StyleTarcsai, Katalin Réka, Krisztián Bányai, Krisztina Bali, Anna Anoir Abbas, Valéria Kövesdi, and József Ongrádi. 2024. "Feline Adenovirus Isolate Shows Silent Nucleotide Alterations, Alternative Receptor/Coreceptor Binding, High Resistance to Disinfectants and Antiviral Drugs, as Well as Immunomodulation" Animals 14, no. 23: 3502. https://doi.org/10.3390/ani14233502
APA StyleTarcsai, K. R., Bányai, K., Bali, K., Abbas, A. A., Kövesdi, V., & Ongrádi, J. (2024). Feline Adenovirus Isolate Shows Silent Nucleotide Alterations, Alternative Receptor/Coreceptor Binding, High Resistance to Disinfectants and Antiviral Drugs, as Well as Immunomodulation. Animals, 14(23), 3502. https://doi.org/10.3390/ani14233502