FoxO1 Mediated by H3K27me3 Inhibits Porcine Follicular Development by Regulating the Transcription of CYP1A1
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Sample Preparation
2.2. Porcine Granulosa Cells Culture and Transfection
2.3. 5-Ethynyl-2′-Deoxyuridine (EdU) Assay
2.4. Flow Cytometry
2.5. Enzyme Linked Immunosorbent Assay (ELISA)
2.6. Plasmid Construction and Dual-Luciferase Reporter Assay
2.7. Real-Time PCR
2.8. Chromatin Immunoprecipitation Assay
2.9. Fe2+ Level Assay
2.10. Statistical Analysis
3. Results
3.1. FoxO1 Inhibits Follicular Development in Ovaries of Pigs
3.2. FoxO1 Promotes the Secretion of Progesterone and Inhibits the Growth of GCs
3.3. H3K27me3 Inhibits the Transcription of FoxO1
3.4. FoxO1 Regulates the Transcription of CYP1A1
3.5. CYP1A1 Inhibits GCs Proliferation
3.6. CYP1A1 Facilitates GCs’ Ferroptosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, X.; Toth, T.L. In vitro culture of ovarian follicles from Peromyscus. Semin. Cell Dev. Biol. 2017, 61, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Wu, W.J.; Zhou, X.L.; Xiao, P.; Wang, Y.; Liu, H.L. Expression and preliminary functional profiling of the let-7 family during porcine ovary follicle atresia. Mol. Cells 2015, 38, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, J.K.; Paliwal, A.; Saraf, P.; Sachdeva, S.N. Role of autophagy in follicular development and maintenance of primordial follicular pool in the ovary. J. Cell. Physiol. 2022, 237, 1157–1170. [Google Scholar] [CrossRef] [PubMed]
- Kumar, T.R.; Wang, Y.; Lu, N.; Matzuk, M.M. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat. Genet. 1997, 15, 201–204. [Google Scholar] [CrossRef]
- Matsuda, F.; Inoue, N.; Manabe, N.; Ohkura, S. Follicular growth and atresia in mammalian ovaries: Regulation by survival and death of granulosa cells. J. Reprod. Dev. 2012, 58, 44–50. [Google Scholar] [CrossRef]
- Evans, A.C. Characteristics of ovarian follicle development in domestic animals. Reprod. Domest. Anim. 2003, 38, 240–246. [Google Scholar] [CrossRef]
- Jiang, J.Y.; Cheung, C.K.; Wang, Y.; Tsang, B.K. Regulation of cell death and cell survival gene expression during ovarian follicular development and atresia. Front. Biosci. 2003, 8, d222–d237. [Google Scholar]
- Wang, H.; Jiang, J.Y.; Zhu, C.; Peng, C.; Tsang, B.K. Role and regulation of nodal/activin receptor-like kinase 7 signaling pathway in the control of ovarian follicular atresia. Mol. Endocrinol. 2006, 20, 2469–2482. [Google Scholar] [CrossRef]
- Zhou, X.; He, Y.; Li, N.; Bai, G.; Pan, X.; Zhang, Z.; Zhang, H.; Li, J.; Yuan, X. DNA methylation mediated RSPO2 to promote follicular development in mammals. Cell Death Dis. 2021, 12, 653. [Google Scholar] [CrossRef]
- Accili, D.; Arden, K.C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 2004, 117, 421–426. [Google Scholar] [CrossRef]
- Cunningham, M.A.; Zhu, Q.; Unterman, T.G.; Hammond, J.M. Follicle-stimulating hormone promotes nuclear exclusion of the forkhead transcription factor FoxO1a via phosphatidylinositol 3-kinase in porcine granulosa cells. Endocrinology 2003, 144, 5585–5594. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, Y.; Lu, X.; Song, B.; Fong, K.W.; Cao, Q.; Licht, J.D.; Zhao, J.C.; Yu, J. Polycomb- and Methylation-Independent Roles of EZH2 as a Transcription Activator. Cell Rep. 2018, 25, 2808–2820.E4. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, J.B.; Colon-Diaz, M.; Garcia, M.; Gutierrez, S.; Colon, M.; Seto, E.; Laboy, J.; Flores, I. Endometriosis is characterized by a distinct pattern of histone 3 and histone 4 lysine modifications. Reprod. Sci. 2014, 21, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.R.; Reske, J.J.; Koeman, J.; Adams, M.; Joshi, N.R.; Fazleabas, A.T.; Chandler, R.L. SWI/SNF Antagonism of PRC2 Mediates Estrogen-Induced Progesterone Receptor Expression. Cells 2022, 11, 1000. [Google Scholar] [CrossRef]
- Lien, Y.C.; Lu, X.M.; Won, K.J.; Wang, P.Z.; Osei-Bonsu, W.; Simmons, R.A. The Transcriptome and Epigenome Reveal Novel Changes in Transcription Regulation During Pancreatic Rat Islet Maturation. Endocrinology 2021, 162, bqab181. [Google Scholar] [CrossRef]
- Okada, M.; Lee, L.; Maekawa, R.; Sato, S.; Kajimura, T.; Shinagawa, M.; Tamura, I.; Taketani, T.; Asada, H.; Tamura, H.; et al. Epigenetic Changes of the Cyp11a1 Promoter Region in Granulosa Cells Undergoing Luteinization During Ovulation in Female Rats. Endocrinology 2016, 157, 3344–3354. [Google Scholar] [CrossRef]
- Leighton, J.K.; Canning, S.; Guthrie, H.D.; Hammond, J.M. Expression of cytochrome P450 1A1, an estrogen hydroxylase, in ovarian granulosa cells is developmentally regulated. J. Steroid Biochem. Mol. Biol. 1995, 52, 351–356. [Google Scholar] [CrossRef]
- Matys, V.; Fricke, E.; Geffers, R.; Gossling, E.; Haubrock, M.; Hehl, R.; Hornischer, K.; Karas, D.; Kel, A.E.; Kel-Margoulis, O.V.; et al. TRANSFAC: Transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 2003, 31, 374–378. [Google Scholar] [CrossRef]
- Sandelin, A.; Alkema, W.; Engstrom, P.; Wasserman, W.W.; Lenhard, B. JASPAR: An open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 2004, 32, D91–D94. [Google Scholar] [CrossRef]
- Park, Y.; Maizels, E.T.; Feiger, Z.J.; Alam, H.; Peters, C.A.; Woodruff, T.K.; Unterman, T.G.; Lee, E.J.; Jameson, J.L.; Hunzicker-Dunn, M. Induction of cyclin D2 in rat granulosa cells requires FSH-dependent relief from FOXO1 repression coupled with positive signals from Smad. J. Biol. Chem. 2005, 280, 9135–9148. [Google Scholar] [CrossRef]
- Ting, A.Y.; Zelinski, M.B. Characterization of FOXO1, 3 and 4 transcription factors in ovaries of fetal, prepubertal and adult rhesus macaques. Biol. Reprod. 2017, 96, 1052–1059. [Google Scholar] [CrossRef] [PubMed]
- Marchal, R.; Vigneron, C.; Perreau, C.; Bali-Papp, A.; Mermillod, P. Effect of follicular size on meiotic and developmental competence of porcine oocytes. Theriogenology 2002, 57, 1523–1532. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Rudd, M.D.; Hernandez-Gonzalez, I.; Gonzalez-Robayna, I.; Fan, H.Y.; Zeleznik, A.J.; Richards, J.S. FSH and FOXO1 regulate genes in the sterol/steroid and lipid biosynthetic pathways in granulosa cells. Mol. Endocrinol. 2009, 23, 649–661. [Google Scholar] [CrossRef]
- Terranova, P.F. Steroidogenesis in experimentally induced atretic follicles of the hamster: A shift from estradiol to progesterone synthesis. Endocrinology 1981, 108, 1885–1890. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, M.; Prasad, S.; Tripathi, A.; Pandey, A.N.; Ali, I.; Singh, A.K.; Shrivastav, T.G.; Chaube, S.K. Apoptosis in mammalian oocytes: A review. Apoptosis 2015, 20, 1019–1025. [Google Scholar] [CrossRef]
- Chung, C.Y.; Park, Y.L.; Song, Y.A.; Myung, E.; Kim, K.Y.; Lee, G.H.; Ki, H.S.; Park, K.J.; Cho, S.B.; Lee, W.S.; et al. Knockdown of RON inhibits AP-1 activity and induces apoptosis and cell cycle arrest through the modulation of Akt/FoxO signaling in human colorectal cancer cells. Dig. Dis. Sci. 2012, 57, 371–380. [Google Scholar] [CrossRef]
- Xing, Y.Q.; Li, A.; Yang, Y.; Li, X.X.; Zhang, L.N.; Guo, H.C. The regulation of FOXO1 and its role in disease progression. Life Sci. 2018, 193, 124–131. [Google Scholar] [CrossRef]
- Shen, M.; Lin, F.; Zhang, J.; Tang, Y.; Chen, W.K.; Liu, H. Involvement of the up-regulated FoxO1 expression in follicular granulosa cell apoptosis induced by oxidative stress. J. Biol. Chem. 2012, 287, 25727–25740. [Google Scholar] [CrossRef]
- Kong, C.; Liu, K.; Wang, Q.; Fu, R.; Si, H.; Sui, S. Periplaneta americana peptide decreases apoptosis of pig-ovary granulosa cells induced by H2O2 through FoxO1. Reprod. Domest. Anim. 2021, 56, 1413–1424. [Google Scholar] [CrossRef]
- Zhong, Y.; Li, L.; He, Y.; He, B.; Li, Z.; Zhang, Z.; Zhang, H.; Yuan, X.; Li, J. Activation of Steroidogenesis, Anti-Apoptotic Activity, and Proliferation in Porcine Granulosa Cells by RUNX1 Is Negatively Regulated by H3K27me3 Transcriptional Repression. Genes 2020, 11, 495. [Google Scholar] [CrossRef]
- Su, X.; Zhang, H.; Lei, F.; Wang, R.; Lin, T.; Liao, L. Epigenetic therapy attenuates oxidative stress in BMSCs during ageing. J. Cell. Mol. Med. 2022, 26, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Navik, U.; Rawat, K.; Tikoo, K. L-Methionine prevents beta-cell damage by modulating the expression of Arx, MafA and regulation of FOXO1 in type 1 diabetic rats. Acta Histochem. 2022, 124, 151820. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Zhang, J.; Zhang, H.; Li, Q.; Qiu, H.; Hong, K.; Wang, W.; Xiao, Y.; Yu, B. Fusobacterium nucleatum promotes proliferation in oesophageal squamous cell carcinoma via AHR/CYP1A1 signalling. FEBS J. 2023, 290, 837–854. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, M.P.; Singh, A.K.; Kumar, V.; Tripathi, V.K.; Srivastava, R.K.; Agrawal, M.; Khanna, V.K.; Yadav, S.; Jain, S.K.; Pant, A.B. Monocrotophos induced apoptosis in PC12 cells: Role of xenobiotic metabolizing cytochrome P450s. PLoS ONE 2011, 6, e17757. [Google Scholar] [CrossRef]
- Yin, X.F.; Chen, J.; Mao, W.; Wang, Y.H.; Chen, M.H. A selective aryl hydrocarbon receptor modulator 3,3’-Diindolylmethane inhibits gastric cancer cell growth. J. Exp. Clin. Cancer Res. 2012, 31, 46. [Google Scholar] [CrossRef]
Gene | Sequence (5′-3′) | Product |
---|---|---|
FoxO1 | F: GACAGACTGGGCAGAGTAGAA R: AGCAACGATGACTTTGATAAC | 182 bp |
CYP1A1 | F: TATCCTCCGTTACCTGCCCA R: TGCGCCCCTTCTCAAAGATT | 119 bp |
STARD1 | F: GCTTTTCCACTCTAGGGCGA R: AAGCTCCTGGCTGGATGAAC | 184 bp |
CYP11A1 | F: CGCTCAGTCCTGGTCAAAGG R: TTCCAAGTTGCCGAGCTTCT | 267 bp |
CYP17A1 | F: AAGCCAAGACGAACGCAGAAAG R: TAGATGGGGCACGATTGAAACC | 228 bp |
CYP19A1 | F: TTCCTTGGCTGTACAGAAAGTATGA R: GGTGTCTGGTGCTGCAATTAG | 221 bp |
HSD3B1 | F: ATCGTCCACTTGTTGCTGGA R: TGCTCTGGAGCTTAGAAAATTCC | 103 bp |
HSD17B4 | F: GAACTTCTACGGGCGTGT R: CCCTCAGAATTCCAGCATTGTT | 299 bp |
HSD17B7 | F: TGGACTTCACCTGTGCTTGG R: TGCTGACATCCACTTGCACA | 116 bp |
ESR1 | F: ATGGCCATGGAATCTGCCAA R: CCCCTTTCATCATGCCCACT | 241 bp |
ESR2 | F: GCCGACAAGGAACTGGTACA R: GAGCAAAGATGAGCTTGCCG | 169 bp |
LHR | F: ACATAACCACCGTACCAGCA R: GGAAGGCGTCATTGTGCATC | 177 bp |
GAPDH | F: TCGGAGTGAACGGATTTG R: TCACCCCATTTGATGTTGG | 250 bp |
Gene | Sequence (5′-3′) | Product |
---|---|---|
ChIP-1 | F: CTCCCTCCCTCAAGGACCACT | 466 bp |
R: CTGATGGCCCAGGTCAGAAAA | ||
ChIP-2 | F: GTTGGGGACACGTTGAGCTA | 150 bp |
R: ATGCCTATAGCTGGACACGC | ||
ChIP-3 | F: GCGTGTCCAGCTATAGGCAT | 230 bp |
R: CTCGGTCCGATACAGTCACG | ||
ChIP-4 | F: ACTGTATCGGACCGAGCCT | 477 bp |
R: TAGCAGAAGTCTGTGCTCCC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Lv, Y.; Li, L.; Yuan, X.; Zhou, X.; Li, J. FoxO1 Mediated by H3K27me3 Inhibits Porcine Follicular Development by Regulating the Transcription of CYP1A1. Animals 2024, 14, 3514. https://doi.org/10.3390/ani14233514
Zhou Z, Lv Y, Li L, Yuan X, Zhou X, Li J. FoxO1 Mediated by H3K27me3 Inhibits Porcine Follicular Development by Regulating the Transcription of CYP1A1. Animals. 2024; 14(23):3514. https://doi.org/10.3390/ani14233514
Chicago/Turabian StyleZhou, Zhi, Yuanyuan Lv, Liying Li, Xiaolong Yuan, Xiaofeng Zhou, and Jiaqi Li. 2024. "FoxO1 Mediated by H3K27me3 Inhibits Porcine Follicular Development by Regulating the Transcription of CYP1A1" Animals 14, no. 23: 3514. https://doi.org/10.3390/ani14233514
APA StyleZhou, Z., Lv, Y., Li, L., Yuan, X., Zhou, X., & Li, J. (2024). FoxO1 Mediated by H3K27me3 Inhibits Porcine Follicular Development by Regulating the Transcription of CYP1A1. Animals, 14(23), 3514. https://doi.org/10.3390/ani14233514