Simultaneous Effects of Single-Nucleotide Polymorphisms on the Estimated Breeding Value of Milk, Fat, and Protein Yield of Holstein Friesian Cows in Hungary
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. SNPs Associated with Two EBVs and Their Surrounding Genes
3.2. SNPs Associated with EBVmilk, EBVfat, and EBVprot and Their Surrounding Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elischer, M. History of Dairy Cow Breeds: Holstein; Michigan State University Extension: Howell, MI, USA, 2014. [Google Scholar]
- World Holstein Friesian Federation. Available online: https://whff.info/conferences/ (accessed on 21 July 2024).
- Association of Hungarian Holstein Breeders. Available online: https://www.holstein.hu (accessed on 21 July 2024).
- Nayeri, S.; Sargolzaei, M.; Abo-Ismail, M.K.; May, N.; Miller, S.P.; Schenkel, F.; Moore, S.S.; Stothard, P. Genome-wide association for milk production and female fertility traits in Canadian dairy Holstein cattle. BMC Genet. 2016, 17, 75. [Google Scholar] [CrossRef] [PubMed]
- Wiggans, G.R.; Carrillo, J.A. Genomic selection in United States dairy cattle. Front. Genet. 2022, 13, 994466. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Liu, J.; Sun, D.; Ma, P.; Ding, X.; Yu, Y.; Zhang, Q. Genome wide association studies for milk production traits in Chinese Holstein population. PLoS ONE 2010, 5, e13661. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Sun, D.; Zhang, S.; Wang, S.; Wu, X.; Zhang, Q.; Liu, L.; Li, Y.; Qiao, L. Genome wide association study identifies 20 novel promising genes associated with milk fatty acid traits in Chinese Holstein. PLoS ONE 2014, 9, e96186. [Google Scholar] [CrossRef]
- Zhou, C.; Li, C.; Cai, W.; Liu, S.; Yin, H.; Shi, S.; Zhang, Q.; Zhang, S. Genome-Wide Association Study for Milk Protein Composition Traits in a Chinese Holstein Population Using a Single-Step Approach. Front. Genet. 2019, 10, 72. [Google Scholar] [CrossRef]
- Wang, X.; Ma, P.; Liu, J.; Zhang, Q.; Zhang, Y.; Ding, X.; Jiang, L.; Wang, Y.; Zhang, Y.; Sun, D.; et al. Genome-wide association study in Chinese Holstein cows reveal two candidate genes for somatic cell score as an indicator for mastitis susceptibility. BMC Genet. 2015, 16, 111. [Google Scholar] [CrossRef]
- Nazar, M.; Abdalla, I.M.; Chen, Z.; Ullah, N.; Liang, Y.; Chu, S.; Xu, T.; Mao, Y.; Yang, Z.; Lu, X. Genome-Wide Association Study for Udder Conformation Traits in Chinese Holstein Cattle. Animals 2022, 12, 2542. [Google Scholar] [CrossRef]
- Meredith, B.K.; Kearney, F.J.; Finlay, E.K.; Bradley, D.G.; Fahey, A.G.; Berry, D.P.; Lynn, D.J. Genome-wide associations for milk production and somatic cell score in Holstein-Friesian cattle in Ireland. BMC Genet. 2012, 13, 21. [Google Scholar] [CrossRef]
- Cai, Z.; Dusza, M.; Guldbrandtsen, B.; Lund, M.S.; Sahana, G. Distinguishing pleiotropy from linked QTL between milk production traits and mastitis resistance in Nordic Holstein cattle. Genet. Sel. Evol. 2020, 52, 19. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, L.; Prakapenka, D.; VanRaden, P.M.; Cole, J.B.; Da, Y. A Large-Scale Genome-Wide Association Study in U.S. Holstein Cattle. Front. Genet. 2019, 10, 412. [Google Scholar] [CrossRef]
- Atashi, H.; Salavati, M.; De Koster, J.; Ehrlich, J.; Crowe, M.; Opsomer, G.; Gplus, E.c.; Hostens, M. Genome-wide association for milk production and lactation curve parameters in Holstein dairy cows. J. Anim. Breed. Genet. 2020, 137, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Anton, I.; Kovacs, K.; Fesus, L.; Varhegyi, J.; Lehel, L.; Hajda, Z.; Polgar, J.P.; Szabo, F.; Zsolnai, A. Effect of DGAT1 and TG gene polymorphisms on intramuscular fat and on milk production traits in different cattle breeds in Hungary. Acta Vet. Hung. 2008, 56, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Anton, I.; Huth, B.; Fuller, I.; Gabor, G.; Hollo, G.; Zsolnai, A. Effect of single-nucleotide polymorphisms on the breeding value of fertility and breeding value of beef in Hungarian Simmental cattle. Acta Vet. Hung. 2018, 66, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, C.; Stalhammar, H.; Strandberg, E.; Eriksson, S.; Fikse, W.F. Association of genomically enhanced and parent average breeding values with cow performance in Nordic dairy cattle. J. Dairy. Sci. 2020, 103, 6383–6391. [Google Scholar] [CrossRef]
- Stoop, W.M.; Eding, H.; Schrooten, C. Method of Genomic Breeding Value Estimation, Specified for Hungarian data. In Proposal for the National Association of Hungarian Holstein Friesian Breeders; Working Document; CRV BV: Arnhem, The Netherlands, 2017. [Google Scholar]
- Meuwissen, T.H.; Goddard, M.E. Mapping multiple QTL using linkage disequilibrium and linkage analysis information and multitrait data. Genet. Sel. Evol. 2004, 36, 261–279. [Google Scholar] [CrossRef]
- Calus, M.P.; Meuwissen, T.H.; de Roos, A.P.; Veerkamp, R.F. Accuracy of genomic selection using different methods to define haplotypes. Genetics 2008, 178, 553–561. [Google Scholar] [CrossRef]
- Vilhjalmsson, B.J. Mixmogam [Internet]. Available online: https://github.com/bvilhjal/mixmogam (accessed on 21 July 2024).
- Excoffier, L.; Slatkin, M. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol. Biol. Evol. 1995, 12, 921–927. [Google Scholar] [CrossRef]
- Storey, J.D. A direct approach to false discovery rates. J. R. Stat. Soc. B 2002, 64, 479–498. [Google Scholar] [CrossRef]
- Mota, L.F.M.; Lopes, F.B.; Fernandes Junior, G.A.; Rosa, G.J.M.; Magalhaes, A.F.B.; Carvalheiro, R.; Albuquerque, L.G. Genome-wide scan highlights the role of candidate genes on phenotypic plasticity for age at first calving in Nellore heifers. Sci. Rep. 2020, 10, 6481. [Google Scholar] [CrossRef]
- Paiva, J.T.; Peixoto, M.G.C.D.; Bruneli, F.A.T.; Alvarenga, A.B.; Oliveira, H.R.; Silva, A.A.; Silva, D.A.; Veroneze, R.; Silva, F.F.; Lopes, P.S. Genetic parameters, genome-wide association and gene networks for milk and reproductive traits in Guzerá cattle. Livest. Sci. 2020, 242, 104273. [Google Scholar] [CrossRef]
- Laodim, T.; Koonawootrittriron, S.; Elzo, M.A.; Suwanasopee, T.; Jattawa, D.; Sarakul, M. Genetic factors influencing milk and fat yields in tropically adapted dairy cattle: Insights from quantitative trait loci analysis and gene associations. Anim. Biosci. 2024, 37, 576–590. [Google Scholar] [CrossRef] [PubMed]
- Solzer, N.; Brugemann, K.; Yin, T.; Konig, S. Genetic evaluations and genome-wide association studies for specific digital dermatitis diagnoses in dairy cows considering genotype x housing system interactions. J. Dairy. Sci. 2024, 107, 3724–3737. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhang, J.; Ma, X.; Ma, R.; Shen, J.; Liu, M.; Yu, D.; Feng, F.; Huang, C.; Ma, X.; et al. Polymorphisms of CCSER1 Gene and Their Correlation with Milk Quality Traits in Gannan Yak (Bos grunniens). Foods 2023, 12, 4318. [Google Scholar] [CrossRef] [PubMed]
- Ling, A.K.; Munro, M.; Chaudhary, N.; Li, C.; Berru, M.; Wu, B.; Durocher, D.; Martin, A. SHLD2 promotes class switch recombination by preventing inactivating deletions within the Igh locus. EMBO Rep. 2020, 21, e49823. [Google Scholar] [CrossRef]
- ANXA8L1 GeneCards. Available online: https://www.genecards.org/cgi-bin/carddisp.pl?gene=ANXA8L1 (accessed on 21 July 2024).
- Fonseca, P.A.S.; Dos Santos, F.C.; Lam, S.; Suarez-Vega, A.; Miglior, F.; Schenkel, F.S.; Diniz, L.A.F.; Id-Lahoucine, S.; Carvalho, M.R.S.; Canovas, A. Genetic mechanisms underlying spermatic and testicular traits within and among cattle breeds: Systematic review and prioritization of GWAS results. J. Anim. Sci. 2018, 96, 4978–4999. [Google Scholar] [CrossRef] [PubMed]
- Salcedo-Arellano, M.J.; Hagerman, R.J.; Martinez-Cerdeno, V. Fragile X syndrome: Clinical presentation, pathology and treatment. Gac. Med. Mex. 2020, 156, 60–66. [Google Scholar] [CrossRef]
- FMR1NB GeneCards. Available online: https://www.genecards.org/cgi-bin/carddisp.pl?gene=FMR1NB (accessed on 21 July 2024).
- Hermisdorff, I.D.C.; Diaz, I.; de Camargo, G.M.F.; de Albuquerque, L.G.; Costa, R.B. Effect of genomic X-chromosome regions on Nelore bull fertility. J. Appl. Genet. 2021, 62, 655–659. [Google Scholar] [CrossRef]
- Friso, A.; Tomanin, R.; Zanetti, A.; Mennuni, C.; Calvaruso, F.; La Monica, N.; Marin, O.; Zacchello, F.; Scarpa, M. Gene therapy of Hunter syndrome: Evaluation of the efficiency of muscle electro gene transfer for the production and release of recombinant iduronate-2-sulfatase (IDS). Biochim. Biophys. Acta 2008, 1782, 574–580. [Google Scholar] [CrossRef]
- Miki, K.; Willis, W.D.; Brown, P.R.; Goulding, E.H.; Fulcher, K.D.; Eddy, E.M. Targeted disruption of the Akap4 gene causes defects in sperm flagellum and motility. Dev. Biol. 2002, 248, 331–342. [Google Scholar] [CrossRef]
- Chotiner, J.Y.; Leu, N.A.; Xu, Y.; Wang, P.J. Recurrent pregnancy loss in mice lacking the X-linked Ccnb3 genedagger. Biol. Reprod. 2022, 106, 382–384. [Google Scholar] [CrossRef]
- Iannuzzi, A.; Braun, M.; Genualdo, V.; Perucatti, A.; Reinartz, S.; Proios, I.; Heppelmann, M.; Rehage, J.; Hulskotter, K.; Beineke, A.; et al. Clinical, cytogenetic and molecular genetic characterization of a tandem fusion translocation in a male Holstein cattle with congenital hypospadias and a ventricular septal defect. PLoS ONE 2020, 15, e0227117. [Google Scholar] [CrossRef] [PubMed]
- Bian, W.J.; Li, Z.J.; Wang, J.; Luo, S.; Li, B.M.; Gao, L.D.; He, N.; Yi, Y.H. SHROOM4 Variants Are Associated With X-Linked Epilepsy With Features of Generalized Seizures or Generalized Discharges. Front. Mol. Neurosci. 2022, 15, 862480. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.P.; Song, Y.P.; Du, Q.Z.; Song, L.W.; Tian, Y.Z.; Zhang, S.L.; Hua, G.H.; Yang, L.G. Polymorphisms in the bone morphogenetic protein 15 gene and their effect on sperm quality traits in Chinese Holstein bulls. Genet. Mol. Res. 2014, 13, 1805–1812. [Google Scholar] [CrossRef] [PubMed]
- Christenson, L.K.; Gunewardena, S.; Hong, X.; Spitschak, M.; Baufeld, A.; Vanselow, J. Research resource: Preovulatory LH surge effects on follicular theca and granulosa transcriptomes. Mol. Endocrinol. 2013, 27, 1153–1171. [Google Scholar] [CrossRef] [PubMed]
- Dewaele, B.; Przybyl, J.; Quattrone, A.; Finalet Ferreiro, J.; Vanspauwen, V.; Geerdens, E.; Gianfelici, V.; Kalender, Z.; Wozniak, A.; Moerman, P.; et al. Identification of a novel, recurrent MBTD1-CXorf67 fusion in low-grade endometrial stromal sarcoma. Int. J. Cancer 2014, 134, 1112–1122. [Google Scholar] [CrossRef]
- Zhouravleva, G.; Schepachev, V.; Petrova, A.; Tarasov, O.; Inge-Vechtomov, S. Evolution of translation termination factor eRF3: Is GSPT2 generated by retrotransposition of GSPT1’s mRNA? IUBMB Life 2006, 58, 199–202. [Google Scholar] [CrossRef]
- Mitko, K.; Ulbrich, S.E.; Wenigerkind, H.; Sinowatz, F.; Blum, H.; Wolf, E.; Bauersachs, S. Dynamic changes in messenger RNA profiles of bovine endometrium during the oestrous cycle. Reproduction 2008, 135, 225–240. [Google Scholar] [CrossRef]
- Fuqua, B.K.; Lu, Y.; Darshan, D.; Frazer, D.M.; Wilkins, S.J.; Wolkow, N.; Bell, A.G.; Hsu, J.; Yu, C.C.; Chen, H.; et al. The multicopper ferroxidase hephaestin enhances intestinal iron absorption in mice. PLoS ONE 2014, 9, e98792. [Google Scholar] [CrossRef]
- Li, J.; Diao, B.; Guo, S.; Huang, X.; Yang, C.; Feng, Z.; Yan, W.; Ning, Q.; Zheng, L.; Chen, Y.; et al. VSIG4 inhibits proinflammatory macrophage activation by reprogramming mitochondrial pyruvate metabolism. Nat. Commun. 2017, 8, 1322. [Google Scholar] [CrossRef]
- Kovacs, A.L.; Karteszi, J.; Prohaszka, Z.; Kalmar, T.; Kesmarky, G.; Koltai, K.; Nagy, Z.; Sebok, J.; Vas, T.; Molnar, K.; et al. Hemizygous nonsense variant in the moesin gene (MSN) leads to a new autoimmune phenotype of Immunodeficiency 50. Front. Immunol. 2022, 13, 919411. [Google Scholar] [CrossRef]
- Aguilera, C.; Gabau, E.; Ramirez-Mallafre, A.; Brun-Gasca, C.; Dominguez-Carral, J.; Delgadillo, V.; Laurie, S.; Derdak, S.; Padilla, N.; de la Cruz, X.; et al. New genes involved in Angelman syndrome-like: Expanding the genetic spectrum. PLoS ONE 2021, 16, e0258766. [Google Scholar] [CrossRef] [PubMed]
- Wawro, M.; Wawro, K.; Kochan, J.; Solecka, A.; Sowinska, W.; Lichawska-Cieslar, A.; Jura, J.; Kasza, A. ZC3H12B/MCPIP2, a new active member of the ZC3H12 family. RNA 2019, 25, 840–856. [Google Scholar] [CrossRef] [PubMed]
- El Nagar, A.G.; Salem, M.M.I.; Amin, A.M.S.; Khalil, M.H.; Ashour, A.F.; Hegazy, M.M.; Abdel-Shafy, H. A Single-Step Genome-Wide Association Study for Semen Traits of Egyptian Buffalo Bulls. Animals 2023, 13, 3758. [Google Scholar] [CrossRef] [PubMed]
- Bazile, J.; Jaffrezic, F.; Dehais, P.; Reichstadt, M.; Klopp, C.; Laloe, D.; Bonnet, M. Molecular signatures of muscle growth and composition deciphered by the meta-analysis of age-related public transcriptomics data. Physiol. Genom. 2020, 52, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Id-Lahoucine, S.; Casellas, J.; Fonseca, P.A.S.; Suarez-Vega, A.; Schenkel, F.S.; Canovas, A. Deviations from Mendelian Inheritance on Bovine X-Chromosome Revealing Recombination, Sex-of-Offspring Effects and Fertility-Related Candidate Genes. Genes. 2022, 13, 2322. [Google Scholar] [CrossRef]
- Lui, J.C.; Wagner, J.; Zhou, E.; Dong, L.; Barnes, K.M.; Jee, Y.H.; Baron, J. Loss-of-function variant in SPIN4 causes an X-linked overgrowth syndrome. JCI Insight 2023, 8, e167074. [Google Scholar] [CrossRef]
- Zhu, C.; Fan, H.; Yuan, Z.; Hu, S.; Zhang, L.; Wei, C.; Zhang, Q.; Zhao, F.; Du, L. Detection of Selection Signatures on the X Chromosome in Three Sheep Breeds. Int. J. Mol. Sci. 2015, 16, 20360–20374. [Google Scholar] [CrossRef]
- Lugtenberg, D.; Yntema, H.G.; Banning, M.J.; Oudakker, A.R.; Firth, H.V.; Willatt, L.; Raynaud, M.; Kleefstra, T.; Fryns, J.P.; Ropers, H.H.; et al. ZNF674: A new kruppel-associated box-containing zinc-finger gene involved in nonsyndromic X-linked mental retardation. Am. J. Hum. Genet. 2006, 78, 265–278. [Google Scholar] [CrossRef]
- Minozzi, G.; Nicolazzi, E.L.; Stella, A.; Biffani, S.; Negrini, R.; Lazzari, B.; Ajmone-Marsan, P.; Williams, J.L. Genome wide analysis of fertility and production traits in Italian Holstein cattle. PLoS ONE 2013, 8, e80219. [Google Scholar] [CrossRef]
- Pedrosa, V.B.; Schenkel, F.S.; Chen, S.Y.; Oliveira, H.R.; Casey, T.M.; Melka, M.G.; Brito, L.F. Genomewide Association Analyses of Lactation Persistency and Milk Production Traits in Holstein Cattle Based on Imputed Whole-Genome Sequence Data. Genes. 2021, 12, 1830. [Google Scholar] [CrossRef]
- Bekele, R.; Taye, M.; Abebe, G.; Meseret, S. Genomic Regions and Candidate Genes Associated with Milk Production Traits in Holstein and Its Crossbred Cattle: A Review. Int. J. Genom. 2023, 2023, 8497453. [Google Scholar] [CrossRef] [PubMed]
- Kolenda, M.; Sitkowska, B.; Kamola, D.; Lambert, B.D. Composite genotypes of progestogen-associated endometrial protein gene and their association with composition and quality of dairy cattle milk. Anim. Biosci. 2021, 34, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak-Fiecko, R.; Kamelska-Sadowska, A.M. The Comparison of Nutritional Value of Human Milk with Other Mammals’ Milk. Nutrients 2020, 12, 1404. [Google Scholar] [CrossRef] [PubMed]
SNP no. | EBVmilk | EBVfat | EBVprot |
---|---|---|---|
5 | + | + | |
44 | + | + | |
16 | + | + | |
9 | + | + | + |
Total | 58 | 30 | 69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bognár, L.; Kőrösi, Z.J.; Bene, S.A.; Szabó, F.; Anton, I.; Zsolnai, A. Simultaneous Effects of Single-Nucleotide Polymorphisms on the Estimated Breeding Value of Milk, Fat, and Protein Yield of Holstein Friesian Cows in Hungary. Animals 2024, 14, 3518. https://doi.org/10.3390/ani14233518
Bognár L, Kőrösi ZJ, Bene SA, Szabó F, Anton I, Zsolnai A. Simultaneous Effects of Single-Nucleotide Polymorphisms on the Estimated Breeding Value of Milk, Fat, and Protein Yield of Holstein Friesian Cows in Hungary. Animals. 2024; 14(23):3518. https://doi.org/10.3390/ani14233518
Chicago/Turabian StyleBognár, László, Zsolt Jenő Kőrösi, Szabolcs Albin Bene, Ferenc Szabó, István Anton, and Attila Zsolnai. 2024. "Simultaneous Effects of Single-Nucleotide Polymorphisms on the Estimated Breeding Value of Milk, Fat, and Protein Yield of Holstein Friesian Cows in Hungary" Animals 14, no. 23: 3518. https://doi.org/10.3390/ani14233518
APA StyleBognár, L., Kőrösi, Z. J., Bene, S. A., Szabó, F., Anton, I., & Zsolnai, A. (2024). Simultaneous Effects of Single-Nucleotide Polymorphisms on the Estimated Breeding Value of Milk, Fat, and Protein Yield of Holstein Friesian Cows in Hungary. Animals, 14(23), 3518. https://doi.org/10.3390/ani14233518