Heat Stress in Japanese Quails (Coturnix japonica): Benefits of Phytase Supplementation
Simple Summary
Abstract
1. Introduction
2. Japanese Quail (Coturnix japonica)
3. Influence of Heat Stress on Japanese Quail Production
4. Phytase Enzyme and the Hydrolysis of the Phytate Molecule
5. Phytase Overdose
- Greater quantity of phosphate made available by the enzyme or greater proportion in the release of calcium and phosphorus;
- Less phytate excreted, i.e., destruction of the antinutritional effect and increased generation of more soluble esters;
- Generation of myo-inositol with vitamin/lipotropic effects.
6. Role of Phytase in Reducing Heat Stress
7. Calcium and Phosphorus in the Diet of Laying Quails (Coturnix japonica)
8. Calcium (Ca) Absorption
9. Transepithelial Calcium Transport Mediated by TRPV6 and Calbindin-D28K
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, T.C.; Gates, R.S.; Tinôco, I.F.F.; Zolnier, S.; Baêta, F.C. Behavior of Japanese quail in different air velocities and air temperatures. Pesqui. Agropecuária Bras. 2017, 52, 344–354. [Google Scholar] [CrossRef]
- Truong, L.; Miller, M.R.; Sainz, R.D.; King, A.J. Changes in Japanese quail (Coturnix japonica) blood gases and electrolytes in response to multigenerational heat stress. PLoS Clim. 2023, 2, e0000144. [Google Scholar] [CrossRef]
- Moraes, L.R.; Delicato, M.E.A.; Cruz, A.S.; Silva, H.T.F.N.P.; Alves, C.V.B.V.; Campos, D.B.; Saraiva, E.P.; Costa, F.G.P.; Guerra, R.R. Methionine supplementing effects on intestine, liver and uterus morphology, and on positivity and expression of Calbindin-D28k and TRPV6 epithelial calcium carriers in laying quail in thermoneutral conditions and under thermal stress. PLoS ONE 2021, 16, e0245615. [Google Scholar] [CrossRef]
- Niu, Z.Y.; Liu, F.Z.; Yan, Q.L.; Li, W.C. Effects of different levels of vitamin E on growth performance and immune responses of broilers under heat stress. Poult. Sci. 2009, 88, 2101–2107. [Google Scholar] [CrossRef]
- Mehaisen, G.M.K.; Ibrahim, R.M.; Desoky, A.A.; Safaa, H.M.; El-Sayed, O.A.; Abass, A.O. The importance of propolis in alleviating the negative physiological effects of heat stress in quail chicks. PLoS ONE 2017, 12, e0186907. [Google Scholar] [CrossRef]
- Mehaisen, G.M.K.; Desoky, A.A.; Sakr, O.G.; Sallam, W.; Abass, A.O. Propolis alleviates the negative effects of heat stress on egg production, egg quality, physiological and immunological aspects of laying Japanese quail. PLoS ONE 2019, 14, e0214839. [Google Scholar] [CrossRef]
- Miller, D.B.; O’Callaghan, J.P. Neuroendocrine aspects of the response to stress. Metabolism 2002, 51, 5–10. [Google Scholar] [CrossRef]
- Mashaly, M.M.; Hendricks, G.L.; Kalama, M.A.; Gehad, A.E.; Abbas, A.O.; Patterson, P.H. Effect of Heat Stress on Production Parameters and Immune Responses of Commercial Laying Hens. Poult. Sci. 2004, 83, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Sahin, K.; Sahin, N.; Onderci, M. Vitamin E supplementation can alleviate negative effects of heat stress on egg production, egg quality, digestibility of nutrients and egg yolk mineral concentrations of Japanese quails. Res. Vet. Sci. 2002, 73, 307–312. [Google Scholar] [CrossRef]
- Vercese, F.; Garcia, E.A.; Sartori, J.R.; Silva, A.P.; Faitarone, A.B.G.; Berto, D.A.; Molino, A.B.; Pelícia, K. Performance and egg quality of Japanese quails submitted to cyclic heat stress. Braz. J. Poult. Sci. 2012, 14, 37–41. [Google Scholar] [CrossRef]
- Akdemir, F.; Sahin, N.; Orhan, C.; Tuzcu, M.; Sahin, K.; Hayirli, A. Chromium-histidinate ameliorates productivity in heat-stressed Japanese quails through reducing oxidative stress and inhibiting heat-shock protein expression. Br. Poult. Sci. 2015, 56, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Patra, T.; Pati, P.K.; Mohapatra, A.K. Study on carcass quality of coloured broiler chicks supplemented with vitamin E and C during summer stress. SAARC Agric. Inf. Cent. SAIC 2011, 9, 123–132. Available online: https://www.cabdirect.org/cabdirect/abstract/20123050083 (accessed on 2 January 2024).
- Deng, W.; Dong, X.F.; Tong, J.M.; Zhang, Q. The probiotic Bacillus licheniformis ameliorates heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens. Poult. Sci. 2012, 91, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Sandikci, M.; Eren, U.; Onol, A.G.; Kum, S. The effect of heat stress and the use of Saccharomyces cerevisiae or (and) bacitracin zinc against heat stress on the intestinal mucosa in quails. Rev. De Med. Vet. 2004, 11, 552–556. Available online: https://www.researchgate.net/publication/289759420_The_effect_of_heat_stress_and_the_use_of_Saccharomyces_cerevisiae_or_and_bacitracin_zinc_against_heat_stress_on_the_intestinal_mucosa_in_quails (accessed on 2 April 2024).
- Sahin, N.; Orhan, C.; Tuzcu, M.; Sahin, K.; Kucuk, O. The Effects of Tomato Powder Supplementation on Performance and Lipid Peroxidation in Quail. Poult. Sci. 2008, 87, 276–283. [Google Scholar] [CrossRef]
- Akdemir, F.; Köseman, A.; Şeker, I. Alchemilla vulgaris effects on egg production and quality expressed by heat-stressed quail during the late laying period. S. Afr. J. Anim. Sci. 2019, 49, 1–12. [Google Scholar] [CrossRef]
- Farias, M.R.S.; Leite, S.C.B.; Silva, H.P.; Pacheco, D.B.; Alves, G.C.; Abreu, C.G.; Freitas, E.R. Superdosing Phytases in the Diets of Light Laying Hens: Productive Performance and Bone Quality. Braz. J. Poult. Sci. 2021, 23, 001–010. [Google Scholar] [CrossRef]
- Hirvonen, J.; Liljavirta, J.; Saarinen, M.T.; Lehtinen, M.J.; Ahonen, I.; Nurminen, P.I. Effect of Phytase on in Vitro Hydrolysis of Phytate and the Formation of myo-Inositol Phosphate Esters in Various Feed Materials. J. Agric. Food Chem. 2019, 67, 11396–11402. [Google Scholar] [CrossRef]
- Sena, T.L.; Leite, S.C.B.; Vasconcelos, A.M.; Bezerra, M.M.R.; Abreu, C.G.; Farias, M.R.S.; Silveira, R.M.F. Does dietary supplementation with phytases affect the thermoregulatory and behavioral responses of pullets in a tropical environment? J. Therm. Biol. 2020, 88, 102499. [Google Scholar] [CrossRef]
- Maynard, C.J.; Maynard, C.W.; Mullenix, G.J.; Ramser, A.; Greene, E.S.; Bedford, M.R.; Dridi, S. Impact of Phytase Supplementation on Meat Quality of Heat-Stressed Broilers. Animals 2023, 13, 2043. [Google Scholar] [CrossRef]
- Farias, M.R.S.; Leite, S.C.B.; Vasconcelos, A.M.; Silva, T.A.G.; Leitão, A.M.F.; Sena, T.L.; Pacheco, D.B.; Abreu, C.G.; Silveira, R.M.F. Thermoregulatory, behavioral and productive responses of laying hens supplemented with different types and dosages of phytases raised in a hot environment: An integrative approach. J. Therm. Biol. 2020, 94, 102773. [Google Scholar] [CrossRef]
- Pirgozliev, V.; Bedford, M.R.; Acamovic, T.; Allymehr, M. The effects of supplementary bacterial phytase on dietary energy and total tract amino acid digestibility when fed to young chickens. Br. Poult. Sci. 2011, 52, 245–254. [Google Scholar] [CrossRef]
- Martínez-Vallespín, B.; Männer, K.; Ader, P.; Zentek, J. Evaluation of high doses of phytase in a low-phosphorus diet in comparison to a phytate-free diet on performance, apparent ileal digestibility of nutrients, bone mineralization, intestinal morphology, and immune traits in 21-day-old broiler chickens. Animals 2022, 12, 1955. [Google Scholar] [CrossRef]
- Rojas, I.Y.M.; González, E.A.; Menocal, J.A.; Santos, T.T.; Arguello, J.R.; Coello, C.L. Assessment of a phytase included with lactic acid on productive parameters and on deposition of phosphorus, calcium, and zinc in laying hens fed with sorghum-soybean-meal-based diets. J. Appl. Anim. Res. 2017, 46, 314–321. [Google Scholar] [CrossRef]
- Manobhavan, M.; Elangovan, A.V.; Sridhar, M.; Shet, D.; Ajith, S.; Pal, D.T.; Gowda, N.K.S. Effect of super dosing of phytase on growth performance, ileal digestibility and bone characteristics in broilers fed corn-soya-based diets. J. Anim. Physiol. Anim. Nutr. 2016, 100, 93–100. [Google Scholar] [CrossRef]
- Pinto, R.; Ferreira, A.S.; Albino, L.F.T.; Gomes, P.C.; Vargas Júnior, J.G. Protein and Energy Levels for Laying Japanese Quails. Rev. Bras. De Zootec. 2002, 31, 1761–1770. [Google Scholar] [CrossRef]
- Vogado, G.M.S.; Silva, L.P. Características Anatômicas e Fatores Genéticos Ligados ao Desenvolvimento Reprodutivo de Codornas de Corte; Agron Science: Cuddalore, India, 2023; pp. 119–133. [Google Scholar] [CrossRef]
- Lukanov, H.; Pavlova, I. Domestication changes in Japanese quail (Coturnix japonica): A review. Worlds Poult. Sci. J. 2020, 76, 787–801. [Google Scholar] [CrossRef]
- Lukanov, H. Domestic quail (Coturnix japonica domestica), is there such farm animal? Worlds Poult. Sci. J. 2019, 75, 547–558. [Google Scholar] [CrossRef]
- Pastore, S.M.; Oliveira, W.P.; Muniz, J.C.L. Panorama Da Coturnicultura No Brasil. Rev. Eletrônica Nutr. 2012, 9, 2041–2049. Available online: https://portalidea.com.br/cursos/25e421f08de4aab6d494d4a76b957d11.pdf (accessed on 2 March 2024).
- Almeida, T.J.O.; Araújo, V.V.; Silva, A.V.; Silva, R.F.; Santos, N.A.; Santana, M.D.; Oliveira, V.P. Evolução Da Produção De Codornas Para Abate E Postura No Brasil. XIII Jornada de Ensino, Pesquisa e Extensão—JEPEX—UFRPE: Recife, Anais 2013. Available online: https://portalidea.com.br/cursos/6409d8df3ed7101311dc5da38592c83c.pdf (accessed on 15 June 2024).
- Silva, J.H.V.; Jordão Filho, J.; Costa, F.G.P.; Lacerda, P.B.; Vargas, D.G.V.; Lima, M.R. Exigências nutricionais de codornas. Rev. Bras. De Saúde E Produção Anim. 2012, 13, 775–790. Available online: https://www.scielo.br/j/rbspa/a/kJDrRVLb6cMr7p6hskmZKzj/?format=pdf&lang=pt (accessed on 16 June 2024).
- Vieira, S.S. Desempenho e Qualidade Dos Ovos de Codornas Japonesas (Coturnix japônica) Alimentadas com Dietas Contendo Diferentes Níveis Óleo de Palma. Master's Thesis, Universidade Federal Rural da Amazônia, Belém, Amazônia, Brasil, 2014. [Google Scholar]
- Nasar, A.; Rahman, A.; Hoque, N.; Kumar Talukder, A.; Das, Z.C. A survey of Japanese quail (Coturnix japonica) farming in selected areas of Bangladesh. Vet. World 2016, 9, 940–947. [Google Scholar] [CrossRef] [PubMed]
- Matos Júnior, J.J.L.; Furtado, D.A.; Ribeiro, N.L.; Marques, J.I.; Leite, P.G.; Nascimento, J.W.B.; Rodrigues, V.P.; Lopes Neto, J.P.; Rodrigues, L.R.; Santos, S.G.C.G.; et al. Productive performance, egg quality and the morphometry of the organs of Japanese quails (Cotournix japônica) kept at different temperatures. Food Sci. Technol. 2023, 43, 117822. [Google Scholar] [CrossRef]
- Sarcinelli, M.F.; Venturini, K.S.; Silva, L.C. Características dos Ovos. In Boletim Técnico, Universidade Federal do Espirito Santo; Universidade Federal do Espirito Santo: Vitoria, Brazil, 2007; Available online: https://www.agais.com/telomc/b00707_caracteristicas_ovos.pdf (accessed on 3 June 2024).
- Carvalho, F.B.; Stringhini, J.H.; Jardim Filho, R.M.; Leandro, N.S.M.; Café, M.B.; Deus, H.A.S.B. Qualidade interna e de casca para ovos de poedeiras comerciais de diferentes linhagens e idades. Ciência Anim. Bras. 2007, 8, 25–30. Available online: https://www.revistas.ufg.br/vet/article/view/1155 (accessed on 4 July 2024).
- Mota, A.S.B.; Lima, P.M.S.; Silva, D.S.; Abreu, V.K.G.; Freitas, E.R.; Pereira, A.L.F. Internal quality of eggs coated with cassava and yam starches. Rev. Bras. De Ciências Agrárias 2017, 12, 47–50. [Google Scholar] [CrossRef]
- National Academics Press (NRC). Nutrient Requirements of Poultry, 9th ed.; National Academics Press: Washington, DC, USA, 1994; Available online: https://books.google.com.br/books?hl=pt-BR&lr=&id=bbV1FUqRcM0C&oi=fnd&pg=PT13&dq=NRC+1994+Nutrient+Requirements+of+Poultry.+9th+ed.+National+Academics+Press,+Washington&ots=IleM4AkqTs&sig=2Ll0iW3NGbzHsQc19UoHD17wtxM#v=onepage&q&f=false (accessed on 5 July 2024).
- Institut National de la Recherche Agronomique (INRA). Alimentação dos Animais Monogástricos: Suínos, Coelhos e Aves, 2nd ed.; Roca: São Paulo, Brazil, 1999; 245p. [Google Scholar]
- Silva, J.H.V.; Costa, F.G.P. Tabelas para Codornas Japonesas e Europeias, 2nd ed.; FUNEP: Jaboticabal, Brazil, 2009; 107p. [Google Scholar]
- Rostagno, H.S.; Albino, L.F.T.; Hannas, M.I.; Donzele, J.L.; Sakomura, N.K.; Perazzo, F.G.; Brito, C.O. Brazilian Tables for Poultry and Swine: Composition of Feedstuffs and Nutritional Requirements, 4th ed. In Proceedings of the IV International Symposium on Nutritional Requirements of Poultry and Swine, Viçosa, Brazil, 30 March 2017. [Google Scholar]
- Rostagno, H.S.; Albino, L.F.T.; Calderano, A.A.; Hannas, M.I.; Donzele, J.L.; Sakomura, N.K.; Perazzo, F.G.; Brito, C.O. Tabelas Brasileiras para Aves e Suínos, 5th ed.; Universidade Federal de Viçosa: Viçosa, Brazil, 2024; 576p. [Google Scholar]
- Silva, R.C.; Trocas de Calor e Desempenho de Codornas Japonesas Confinadas em Ambiente Termoneutro e Sob Estresse Térmico. Tese (Doutor em Engenharia Agrícola), Programa de Pós-Graduação em Engenharia Agrícola do Centro de Tecnologia e Recursos Naturais da Universidade Federal de Campina Grande, Campina Grande—Paraíba, Brasil. 2017. Available online: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/28065 (accessed on 4 July 2024).
- Kim, D.H.; Kim, Y.B.; Lee, S.H.; Lee, Y.K.; Lee, S.D.; Lee, K.W. Identical thermal stress coupled with different temperature and humidity combinations affects nutrient digestibility and gut metabolites of laying hens. Braz. J. Anim. Sci. 2023, 52, e20220067. [Google Scholar] [CrossRef]
- Alagawany, M.; Farag, M.R.; Abd El-Hack, M.E.; Patra, A. Heat stress: Effects on productive and reproductive performance of quail. Worlds Poult. Sci. J. 2017, 73, 747–756. [Google Scholar] [CrossRef]
- Teyssier, J.R.; Brugaletta, G.; Sirri, F.; Dridi, S.; Samuel, J.; Rochell, S.J. A review of heat stress in chickens. Part II: Insights into protein and energy utilization and feeding. Front. Physiol. 2022, 13, 943612. [Google Scholar] [CrossRef]
- Wasti, S.; Sah, N.; Mishra, B. Impact of Heat Stress on Poultry Health and Performances, and Potential Mitigation Strategies. Animals 2020, 10, 1266. [Google Scholar] [CrossRef]
- Linsley, J.G.; Burger, R.E. Respiratory and cardiovascular responses in the hyperthermic domestic cock. Poult. Sci. 1964, 43, 291–305. [Google Scholar] [CrossRef]
- Vercese, F. Efeito da Temperatura Sobre o Desempenho e a Qualidade dos Ovos de Codornas Japonesas. Master’s Dissertation, Graduate Program in Animal Science at São Paulo State University, School of Veterinary Medicine and Animal Science, Botucatu, São Paulo, Brazil, 2010; 70p. Available online: https://www.fmvz.unesp.br/Home/ensino/pos-graduacao768/zootecnia/dissertacoeseteses/francine-vercese.pdf (accessed on 2 May 2024).
- Furlan, R.L.; Macari, M.; Moraes, V.M.B.; Malheiros, R.D.; Malheiros, E.B.; Secato, E.R. Alterações hematológicas e gasométricas em diferentes linhagens de frangos de corte submetidos ao estresse calórico agudo. Rev. Bras. De Ciência Avícola 1999, 1, 77–84. [Google Scholar]
- Ruzal, M.; Shinder, D.; Malka, I.; Yahav, S. Ventilation plays an important role in hens’ egg production at high ambient temperature. Poult. Sci. 2011, 90, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Cruvinel, J.M.; Urayama, P.M.G.; Santos, T.S.; Denadai, J.C.; Muro, E.M.; Dornelas, L.C.; Pasquali, G.A.M.; Contin Neto, A.C.; Zanetti, L.H.; Ferreira Netto, R.G.; et al. Different dietary electrolyte balance values on performance, egg, and bone quality of Japanese quail (Coturnix japonica) under heat stress. Trop. Anim. Health Prod. 2020, 53, 17. [Google Scholar] [CrossRef] [PubMed]
- Abdulkadir, A.; Reddy, D. A scoping review of the impact of heat stress on the organs of the Japanese quail (Coturnix japonica). J. Basic Appl. Zool. 2023, 84, 8. [Google Scholar] [CrossRef]
- Lesson, S.; Summers, J.D. Commercial Poultry Nutrition; Nottingham University Press: Nottingham, UK, 1991; 283p. [Google Scholar]
- Mongin, P. Role of acid-base balance in the physiology of egg-shell formation. Worlds Poult. Sci. J. 1968, 24, 200–230. [Google Scholar] [CrossRef]
- Campos, E.J. Avicultura: Razões Fatos e Divergências; FEPMVZ: Belo Horizonte, Brazil, 2000; 311p. [Google Scholar]
- Ebeid, T.A.; Suzuki, T.; Sugiyama, T. High ambient temperature influences eggshell quality and calbindin-D28k localization of eggshell gland and all intestinal segments of laying hens. Poult. Sci. 2012, 91, 2282–2287. [Google Scholar] [CrossRef]
- Sahin, K.; Sahin, N.; Kucuk, O.; Hayirli, A.; Prasad, A.S. Role of dietary zinc in heat-stressed poultry: A review. Poult. Sci. 2009, 88, 2176–2183. [Google Scholar] [CrossRef]
- Melo, A.S.; Fernandes, R.T.V.; Marinho, J.B.M.; Arruda, A.M.V.; Figueirêdo, L.C.; Fernandes, R.T.V. Relação temperatura e nutrição sobre o desempenho de galinhas poedeiras. PUBVET 2016, 10, 855–860. [Google Scholar] [CrossRef]
- Kumar, S.; Anand, R. Effect of Germination and Temperature on Phytic Acid Content of Cereals. Int. J. Res. Agric. Sci. 2021, 8, 1–13. Available online: https://ijras.org/administrator/components/com_jresearch/files/publications/IJRAS_932_FINAL.pdf (accessed on 2 August 2024).
- Kim, D.H.; Lee, Y.K.; Lee, S.D.; Kim, S.H.; Lee, S.R.; Lee, H.G.; Lee, K.W. Changes in Production Parameters, Egg Qualities, Fecal Volatile Fatty Acids, Nutrient Digestibility, and Plasma Parameters in Laying Hens Exposed to Ambient Temperature. Front. Vet. Sci. 2020, 7, 412. [Google Scholar] [CrossRef]
- Lehrfeld, J. High-performance Liquid Chromatography Analysis of Phytic Acid on a pH-stable, Macroporous Polymer Column. Cereal Chemistry 1989, 66, 510–515. Available online: https://www.cerealsgrains.org/publications/cc/backissues/1989/Documents/66_510.pdf (accessed on 3 August 2024).
- Bloot, A.P.M.; Kalschne, D.L.; Amaral, J.A.S.; Baraldi, I.J.; Canan, C. A Review of Phytic Acid Sources, Obtention, and Applications. Food Rev. Int. 2021, 39, 73–92. [Google Scholar] [CrossRef]
- Lolas, G.; Palamidis, N.; Markakis, P. Phytic Acid Total Phosphorus Relationship Relationship in Barley, Oats, Soybeans and Wheat. Cereal Chem. 1976, 53, 867–871. Available online: https://www.cerealsgrains.org/publications/cc/backissues/1976/Documents/chem53_867.pdf (accessed on 3 August 2024).
- Stein, H.H. Analyzed Values for P and Phytate in Feed Ingredients. Monogastric Nutrition Laboratory. 2023. Available online: https://nutrition.ansci.illinois.edu/node/1753 (accessed on 8 August 2024).
- Ravindran, S.; Ravindran, V.; Sivalogan, G. Total and Phytate Phosphorus Contents of Various Foods and Feedstuffs of Plant Origin. Food Chem. 1994, 50, 133–136. [Google Scholar] [CrossRef]
- Frossard, E.; Bucher, M.; Mächler, F.; Mozafar, A.; Hurrell, R. Potential for Increasing the Content and Bioavailability of Fe, Zn and Ca in Plants for Human Nutrition. J. Sci. Food Agric. 2000, 80, 861–879. [Google Scholar] [CrossRef]
- Banaszkiewicz, T. Nutritional Value of Soybean Meal. In Soybean and Nutrition; InTech Open: London, UK, 2011. [Google Scholar] [CrossRef]
- Kasim, B.; Edwards, H.M. The Analysis of Inositol Phosphate Forms in Feed Ingredients. J. Sci. Food Agric. 1998, 76, 1–9. [Google Scholar] [CrossRef]
- Canan, C.; Cruz, F.T.L.; Delaroza, F.; Casagrande, R.; Sarmento, C.P.M.; Shimokomaki, M.; Ida, E.I. Studies on the Extraction and Purification of Phytic Acid from Rice Bran. J. Food Compos. Anal. 2011, 24, 1057–1063. [Google Scholar] [CrossRef]
- García-Estepa, R.; García-Estepa, R.M.; Guerra-Hernández, E.; García-Villanova, B. Phytic Acid Content in Milled Cereal Products and Breads. Food Res. Int. 1999, 32, 217–221. [Google Scholar] [CrossRef]
- Hu, Y.X.; Van Harn, J.; Hendriks, W.H.; Van Baal, J.; Dijkslag, M.A.; Van Krimpen, M.M.; Bikker, P. Low-calcium diets increase duodenal mRNA expression of calcium and phosphorus transporters and claudins but compromise growth performance irrespective of microbial phytase inclusion in broilers. Poult. Sci. 2021, 100, 101488. [Google Scholar] [CrossRef]
- Figueirêdo, A.V.; Fialho, E.T.; Vitti, D.M.S.S.; Lopes, J.B.; Silva Filho, J.C.; Teixeira, A.S.; Lima, J.A.F. Ação da Fitase sobre a Disponibilidade Biológica do Fósforo, por Intermédio da Técnica de Diluição Isotópica, em Dietas com Farelo de Arroz Integral para Suínos. Rev. Bras. De Zootec. 2000, 29, 177–182. [Google Scholar] [CrossRef]
- Payne, R.L.; Lavergne, T.K.; Southern, L.L. A comparison of two sources of phytase in liquid and dry forms in broilers. Poult. Sci. 2005, 84, 265–272. [Google Scholar] [CrossRef]
- Woyengo, T.A.; Nyachoti, C.M. Review: Supplementation of phytase and carbohydrases to diets for poultry. Can. J. Anim. Sci. 2011, 91, 177–192. [Google Scholar] [CrossRef]
- Costello, A.J.R.; Glonek, T.; Myers, T.C. 31P Nuclear Magnetic Resonance-pH Titrations of Myo-Inositol Hexaphosphate. CarbohyrIrate Res. 1976, 46, 159–171. [Google Scholar] [CrossRef]
- Vasconcelos, D.M. Diferentes Níveis Nutricionais e de Fitase Nas Dietas para Codornas Japonesas. D. Master’s Dissertation, Center for Agricultural Sciences at the Federal University of Paraíba (UFPB), Areia, Paraíba, Brazil, 2018. Available online: https://repositorio.ufpb.br/jspui/bitstream/123456789/14997/1/DZ329.pdf (accessed on 18 July 2024).
- Gautier, A.E.; Walk, C.L.; Dilger, R.N. Effects of a high level of phytase on broiler performance, bone ash, phosphorus utilization, and phytate dephosphorylation to inositol. Poult. Sci. 2017, 97, 211–218. [Google Scholar] [CrossRef]
- Alves, N.M.; Guimarães, L.H.S.; Piccoli, R.H.; Cardoso, P.G. Production and Partial Characterizationof an Extracellular Phytase Produced by Muscodor sp. under Submerged Fermentation. Adv. Microbiol. 2016, 6, 23–32. [Google Scholar] [CrossRef]
- Rezaeipour, V.; Barsalani, A.; Abdullahpour, R. Effects of phytase supplementation on growth performance, jejunum morphology, liver health, and serum metabolites of Japanese quails fed sesame (Sesamum indicum) meal-based diets containing graded levels of protein. Trop. Anim. Health Prod. 2016, 48, 1141–1146. [Google Scholar] [CrossRef] [PubMed]
- Lelis, G.R.; Albino, L.F.T.; Silva, C.R.; Rostagno, H.S.; Gomes, P.G.; Borsatto, C.G. Suplementação dietética de fitase sobre o metabolismo de nutrientes de frangos de corte. Rev. Bras. De Zootec. 2010, 39, 1768–1773. [Google Scholar] [CrossRef]
- Jatuwong, K.; Suwannarach, N.; Kumla, J.; Penkhrue, W.; Kakumyan, P.; Lumyong, S. Bioprocess for Production, Characteristics, and Biotechnological Applications of Fungal Phytases. Front. Microbiol. 2020, 11, 188. [Google Scholar] [CrossRef]
- Sena, T.L.; Leite, S.C.B.; Farias, M.R.S.; Abreu, C.G.; Freitas, E.R.; Costa, A.C. Phytase Superdosing in the Diet of Lightweight Replacement Pullets: Performance, Organ Biometry and Bone Characteristics. Braz. J. Poult. Sci. 22, 001–008. [CrossRef]
- Kriseldi, R.; Walk, C.L.; Bedford, M.R.; Dozier, W.A. Inositol and gradient phytase supplementation in broiler diets during a 6-week production period: 2. Effects on phytate degradation and inositol liberation in gizzard and ileal digesta contentes. Poult. Sci. 2021, 100, 100899. [Google Scholar] [CrossRef]
- Vats, P.; Banerjee, U.C. Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate phosphohydrolases): An overview. Enzym. Microb. Technol. 2004, 35, 3–14. [Google Scholar] [CrossRef]
- Sato, V.S.; Jorge, J.A.; Oliveira, W.P.; Souza, C.R.F.; Guimarães, L.H.S. Phytase production by Rhizopus microsporus var. microsporus biofilm: Characterization of enzymatic activity after spray drying in presence of carbohydrates and nonconventional adjuvants. J. Microbiol. Biotechnol. 2014, 24, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Dailin, D.J.; Hanapi, S.Z.; Elsayed, E.A.; Sukmawati, D.; Azelee, N.I.W.; Eyahmalay, J.; Siwapiragam, V.; El Enshasy, H. Fungal Phytases: Biotechnological Applications in Food and Feed Industries. In Recent Advancement in White Biotechnology Through Fungi; Springer Nature: Berlin, Germany, 2019; pp. 65–99. [Google Scholar] [CrossRef]
- Greiner, R.; Konietzny, U. Phytases: Biochemistry, Enzymology and Characteristics Relevant to Animal Feed Use. In Enzymes in Farm Animal Nutrition; Bedford, M.R., Partridge, G.G., Eds.; CAB International Publishing: Oxfordshire, UK, 2010; pp. 96–128. Available online: https://www.researchgate.net/publication/286044581_Phytases_Biochemistry_Enzymology_and_Characteristics_Relevant_to_Animal_Feed_Use (accessed on 20 August 2024).
- Bhavsar, K.; Khire, J.M. Current research and future perspectives of phytase bioprocessing. R. Soc. Chem. Adv. 2014, 4, 26677–26691. [Google Scholar] [CrossRef]
- Santos, K.O.; Costa-Filho, J.; Riet, J.; Spagnol, K.L.; Nornberg, B.F.; Kütter, M.T.; Tesser, M.B.; Marins, L.F. Probiotic expressing heterologous phytase improves the immune system and attenuates inflammatory response in zebrafish fed with a diet rich in soybean meal. Fish Shellfish Immunol. 2019, 93, 652–658. [Google Scholar] [CrossRef]
- Greiner, R.; Alminger, M.L.; Carlsson, N.G. Stereospecificity of myo-Inositol Hexakisphosphate Dephosphorylation by a Phytate-Degrading Enzyme of Baker’s Yeast. J. Agric. Food Chem. 2001, 49, 2228–2233. [Google Scholar] [CrossRef]
- Naves, L.P.; Corrêa, A.D.; Bertechini, A.G.; Gomide, E.M.; Santos, C.D. Effect of ph and Temperature on the Activity of Phytase Products Used in Broiler Nutrition. Braz. J. Poult. Sci. 2012, 14, 159–232. [Google Scholar] [CrossRef]
- Delmaschio, I.B. Produção de Fitases por Fermentação em Estado Sólido e Imobilização das Enzimas por Spray Drying. Master’s Dissertation, Graduate Program in Microbiology, Concentration Area in Industrial and Applied Microbiology, Institute of Biosciences, Humanities and Exact Sciences at São Paulo State University (UNESP) ‘Júlio de Mesquita Filho’, Campus São José, do Rio Preto, Brazil, 2014; 115p. Available online: https://bdtd.ibict.br/vufind/Record/UNSP_5ea0a9a9549bebefeae1fbf3090e0ce6 (accessed on 2 April 2024).
- Nezhad, N.G.; Rahman, R.N.Z.R.A.; Normi, Y.M.; Oslan, S.N.; Shari, F.M.; Leow, T.C. Integrative Structural and Computational Biology of Phytases for the Animal Feed Industry. Catalysts 2020, 10, 844. [Google Scholar] [CrossRef]
- Dallmann, H.M.; Avila, V.S.; Krabbe, E.L.; Surek, D.; Bedendo, G.C.; Toledo, T.S.; Dallmann, P.R.; Roll, A.A.P.; Roll, V.F.B.; Rutz, F. Different phytase levels and energy densities in broiler diets on performance, nutrient digestibility, and bone integrity from 28 to 35 days of age. Arq. Bras. De Med. Veterinária E Zootec. 2023, 75, 280–292. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Wilcock, P.; Bedford, M.R. Super-dosing effects of phytase in poultry and other monogastrics. Worlds Poult. Sci. J. 2011, 67, 225–236. [Google Scholar] [CrossRef]
- Nelson, T.S.; Shieh, T.R.; Wodzinski, R.J.; Ware, J.H. Effect of supplemental phytase on the utilization of phytate phosphorus by chicks. J. Nutr. 1971, 101, 1289–1294. [Google Scholar] [CrossRef]
- Walk, C.L.; Bedford, M.R.; Santos, T.S.; Paiva, D.; Bradley, J.R.; Wladecki, H.; Honaker, C.; McElroy, A.P. Extra-phosphoric effects of superdoses of a novel microbial phytase. Poult. Sci. 2013, 92, 719–725. [Google Scholar] [CrossRef]
- Fernandes, J.I.M.; Horn, D.; Ronconi, E.J.; Buzim, R.; Lima, F.K.; Pazdiora, D.A. Effects of Phytase Superdosing on Digestibility and Bone Integrity of Broilers. J. Appl. Poult. Res. 2019, 28, 390–398. [Google Scholar] [CrossRef]
- Leyva-Jimenez, H.; Alsadwi, A.M.; Gardner, K.; Voltura, E.; Bailey, C.A. Evaluation of high dietary phytase supplementation on performance, bone mineralization, and apparent ileal digestible energy of growing broilers. Poult. Sci. 2019, 98, 811–819. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Pitargue, F.M.; Jung, H.; Han, G.P.; Choi, H.S.; Kil, D.Y. Effect of superdosing phytase on productive performance and egg quality in laying hens. Asian-Australas. J. Anim. Sci. 2017, 30, 994–998. [Google Scholar] [CrossRef]
- Ribeiro, A.G.; Silva, R.S.; Costa, F.S.; Silva, E.G.; Santos Ribeiro, J.E.; Saraiva, E.P.; Costa, F.G.P.; Guerra, R.R. Phytase super-dosing modulates bone parameters and the concentration of the calcium epithelial carrier Calbindin-D28k in quails (Coturnix japonica) under thermal stress. Anim. Prod. Sci. 2024, 64, AN24057. [Google Scholar] [CrossRef]
- Saeed, M.; Abbas, G.; Alagawany, M.; Ali Kamboh, A.; Abd El-Hack, M.E.; Khafaga, A.F.; Chao, S. Heat stress management in poultry farms: A comprehensive overview. J. Therm. Biol. 2019, 84, 414–425. [Google Scholar] [CrossRef]
- Farag, M.R.; Alagawany, M. Physiological alterations of poultry to the high environmental temperature. J. Therm. Biol. 2018, 76, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Dersjant-Li, Y.; Awati, A.; Schulze, H.; Partridge, G. Phytase in non ruminant animal nutrition: A critical review on phytase activities in the gastrointestinal tract and influencing factors. J. Sci. Food Agric. 2014, 95, 878–896. [Google Scholar] [CrossRef]
- Freeland-Graves, J.H.; Sanjeevi, N.; Lee, J.J. Global perspectives on trace element requirements. J. Trace Elem. Med. Biol. 2015, 31, 135–141. [Google Scholar] [CrossRef]
- Borges, G.C.S. Peroxidação Lipídica, Desempenho e Características de Carcaça de Frangos de Corte Estressados Pelo Calor e Suplementados com Zinco e Selênio. Master’s Dissertation, School of Veterinary Medicine, Uberlândia, Minas Gerais, Brazil, 2008; 61p. Available online: https://repositorio.ufu.br/handle/123456789/12987 (accessed on 6 July 2024).
- Hu, P.; Li, K.; Peng, X.; Yao, T.; Zhu, C.; Gu, H.; Liu, H.-Y.; Sun, M.; Hu, Y.; Ennab, W.; et al. Zinc intake ameliorates intestinal morphology and oxidative stress of broiler chickens under heat stress. Front. Immunol. 2023, 14, 1308907. [Google Scholar] [CrossRef]
- Kazim, S.; Omer, K. Zinc Supplementation Alleviates Heat Stress in Laying Japanese Quail. J. Nutr. 2003, 133, 2808–2811. [Google Scholar] [CrossRef]
- Prasad, A.S.; Kucuk, O. Zinc in cancer prevention. Cancer Metastasis Rev. 2002, 21, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Ruttkay-Nedecky, B.; Nejdl, L.; Gumulec, J.; Zitka, O.; Masarik, M.; Eckschlager, T.; Stiborova, M.; Adam, V.; Kizek, R. The Role of Metallothionein in Oxidative Stress. Int. J. Mol. Sci. 2013, 14, 6044–6066. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.N.; Zhang, H.J.; Wang, J.; Yue, H.Y.; Qi, X.L.; Wu, S.G.; Qi, G.H. Effect of dietary supplementation of organic or inorganic zinc on carbonic anhydrase activity in eggshell formation and quality of aged laying hens. Poult. Sci. 2017, 96, 2176–2183. [Google Scholar] [CrossRef]
- Benesch, R.; Barron, N.S.; Mawson, C.A. Carbonic anhydrase, sulphonamides and shell formation in the domestic fowl. Nature 1944, 153, 138–139. [Google Scholar] [CrossRef]
- Nys, Y.; Hincke, M.; Arias, J.; Garcia-Ruiz, J.; Solomon, S. Avian eggshell mineralization. Poult. Avian Biol. Rev. 1999, 10, 143–166. Available online: https://www.researchgate.net/profile/Yves-Nys/publication/279562431_Avian_Eggshell_Mineralization/links/5630e38208ae0530378cf614/Avian-Eggshell-Mineralization.pdf (accessed on 21 July 2024).
- Holm, L.; Blomqvist, A.; Brandt, I.; Brunström, B.; Ridderstråle, Y.; Berg, C. Embryonic exposure to o, p’-DDT causes eggshell thinning and altered shell gland carbonic anhydrase expression in the domestic hen. Environ. Toxicol. Chem. 2006, 25, 2787–2793. [Google Scholar] [CrossRef]
- Mohebbifar, A.; Torki, M.; Ghasemi, H.A. Effect of phytase supplementation of diets with different levels of rice bran and non-phytate phosphorus on productive performance, egg quality traits, leukocytes profile and serum lipids of laying hens reared indoor under high environmental temperatures. Anim. Feed Sci. Technol. 2015, 207, 222–233. [Google Scholar] [CrossRef]
- Hezaveh, M.S.S.; Ghasemi, H.A.; Hajkhodadadi, I.; Moradi, M.H. Single and combined effects of phytase and citric acid on growth performance, nutrient digestibility, bone characteristics, intestinal morphology, and blood components in meat-type quails fed low-phosphorous diets. Anim. Feed Sci. Technol. 2020, 269, 114677. [Google Scholar] [CrossRef]
- Lima, H.J.D.A.; Barreto, S.L.T.; Donzele, J.L.; Valeriano, M.H.; Vieira, P.A.F.; Costa, C.H.R. Dietary phytase levels on performance and egg quality of Japanese quails. Rev. Bras. De Zootec. 2011, 40, 129–134. [Google Scholar] [CrossRef]
- Euzébio, T.C.; Santos, T.C. Importance of Research on the Nutritional Requirements of Vitamins and Minerals for Quail Farming. nutriNews 2021. Available online: https://nutrinews.com/pt-br/importancia-das-pesquisas-sobre-as-exigencias-nutricionais-de-vitaminas-e-minerais-para-a-coturnicultura/ (accessed on 20 July 2024).
- Gouveia, A.B.V.S.; Paulo, L.M.; Dias, A.G.F.; Batista, J.M.; Brasileiro, J.C.L.; Minafra, C.S.; Stringhini, J.H. Fitase na nutrição de aves de corte e postura: Revisão de literatura. II Congresso Brasileiro de Produção Animal e Vegetal: Produção Anim. E Veg. Inovações E Atual. 2022, 2, 984. [Google Scholar] [CrossRef]
- Ribeiro, C.L.N.; Barreto, S.L.T.; Reis, R.S.; Muniz, J.C.L.; Viana, G.S.; Ribeiro Junior, V.; Mendonça, M.O.; Ferreira, R.C.; DeGroot, A.A. The Effect of Calcium and Available Phosphorus Levels on Performance, Egg Quality and Bone Characteristics of Japanese Quails at End of the Egg-Production Phase. Braz. J. Poult. Sci. 2016, 18, 033–040. [Google Scholar] [CrossRef]
- Stanquevis, C.E.; Furlan, A.C.; Marcato, S.M.; Oliveira-Bruxel, T.M.; Perine, T.P.; Finco, E.M.; Grecco, E.T.; Benites, M.I.; Zancanela, V.T. Calcium and available phosphorus requirements of Japanese quails in early egg-laying stage. Poult. Sci. 2021, 100, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Souza, C.S.; Barreto, S.L.T.; Vieites, F.M.; Calderano, A.A.; Moraes, G.H.K.; Oliveira, M.G.A. Cálcio e fósforo na nutrição de codornas japonesas em postura. Sci. Anim. Health 2017, 5, 260–281. Available online: https://periodicos.ufpel.edu.br/index.php/veterinaria/article/view/9166/8350 (accessed on 20 July 2024).
- Lautrou, M.; Pomar, C.; Dourmad, J.-Y.; Narcy, A.; Schmidely, P.; Létourneau-Montminy, M.P. Phosphorus and calcium requirements for bone mineralisation of growing pigs predicted by mechanistic modelling. Animal 2020, 14, s313–s322. [Google Scholar] [CrossRef]
- David, L.S.; Anwar, M.N.; Abdollahi, M.R.; Bedford, M.R.; Ravindran, V. Calcium Nutrition of Broilers: Current Perspectives and Challenges. Animals 2023, 13, 1590. [Google Scholar] [CrossRef]
- Pelicia, K.; Garcia, E.A.; Faitarone, A.B.G.; Silva, A.P.; Berto, D.A.; Molino, A.B.; Vercese, F. Calcium and Available Phosphorus Levels for Laying Hens in Second Production Cycle. Braz. J. Poult. Sci. 2009, 11, 39–49. Available online: https://www.scielo.br/j/rbca/a/VgmDHbKHdXPv4vKMXvb9qhk/?format=pdf&lang=en (accessed on 19 July 2024).
- Carvalho, L.S.S.; Fernandes, E.A. Formation and eggshell quality laying and breeding hens. Med. Veterinária Recife 2013, 7, 35–44. [Google Scholar]
- Mello, J.F. Influência dos Níveis de Cálcio e Fósforo na Dieta de Matrizes de Codornas Japonesas, no Desempenho Produtivo e no Desenvolvimento Ósseo Embrionário da Progênie. Master’s Dissertation, Graduate Program in Animal Science, State University of Maringá, Paraná, Brazil, 2015; 82p. Available online: http://repositorio.uem.br:8080/jspui/bitstream/1/1764/1/000220522.pdf (accessed on 25 July 2024).
- Chaves Hernández, A.J. Poultry and Avian Diseases. In Encyclopedia of Agriculture and Food Systems; Elsevier: Amsterdam, The Netherlands, 2014; pp. 504–520. [Google Scholar] [CrossRef]
- Zhao, S.C.; Teng, X.Q.; Xu, D.L.; Chi, X.; Ge, M.; Xu, S.W. Influences of low level of dietary calcium on bone characters in laying hens. Poult. Sci. 2020, 99, 7084–7091. [Google Scholar] [CrossRef]
- Serna, J.; Bergwitz, C. Importance of Dietary Phosphorus for Bone Metabolism and Healthy Aging. Nutrients 2020, 12, 3001. [Google Scholar] [CrossRef]
- Adedokun, S.A.; Adeola, O. Calcium and phosphorus digestibility: Metabolic limits. J. Appl. Poult. Res. 2013, 22, 600–608. [Google Scholar] [CrossRef]
- IFP—Inorganic Feed Phosphates. Phosphorus: A Vital Source of Animal Nutrition. 2024. Available online: https://www.feedphosphates.org/index.php/guides/11-guides/11-phosphorus-a-vital-source-of-animal-nutrition (accessed on 2 August 2024).
- Sinclair-Black, M.; Garcia-Mejia, R.A.; Blair, L.R.; Angel, R.; Arbe, X.; Cavero, D.; Ellestad, L.E. Circadian regulation of calcium and phosphorus homeostasis during the oviposition cycle in laying hens. Poult. Sci. 2024, 103, 103209. [Google Scholar] [CrossRef] [PubMed]
- Mazzuco, H. Osteoporose em Poedeiras Comerciais: Uma Doença Metabólica Multifatorial. Circular Técnica, n. 43, Concórdia: Embrapa Aves e Suínos. 2005, pp. 1–8. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/57891/1/CUsersPiazzonDocumentsCIT-43.pdf (accessed on 4 August 2024).
- Miranda, C.C. Formas Inorgânicas e Orgânicas de Minerais e Temperatura Ambiente Sobre o Desempenho, Imunidade e Parâmetros Sanguíneos em Frangos de Corte. Master’s Dissertation, Graduate Program in Animal Science at São Paulo State University, School of Veterinary Medicine and Animal Science, Botucatu Campus, Botucatu, SP, Brazil, 2010; 59p. Available online: https://www.fmvz.unesp.br/Home/ensino/pos-graduacao768/zootecnia/dissertacoeseteses/carolina-carvalho-de-miranda.pdf (accessed on 2 August 2024).
- Bertechini, A.G. Metabolismo dos Minerais. In Nutrição de Monogástricos; Bertechini, A.G., Ed.; UFLA: Lavras, Brazil, 2012; pp. 207–255. [Google Scholar]
- Silva, A.P. Níveis de Cálcio e Fósforo na Dieta de Codornas Japonesas (Coturnix japonica) em Diferentes Fases do Ciclo de Produção e Seus Efeitos Sobre Desempenho Produtivo e Qualidade dos Ovos. Dissertação de Mestre, Programa de Pós-Graduação em Zootecnia da Universidade Estadual Paulista, Faculdade de Medicina Veterinária e Zootecnia, Campus de Botucatu, Botucatu, SP, Brazil, 2011; 58p. Available online: https://repositorio.unesp.br/server/api/core/bitstreams/d866ecc9-3f1e-4417-a647-48ead5a8c2f5/content (accessed on 2 August 2024).
- Albino, L.F.T.; Barreto, S.L.T. Criação de Codornas para Produção de Ovos e Carne; Aprenda Fácil: Viçosa, Brazil, 2003; 268p. [Google Scholar]
- Pedroso, A.A.; Moraes, V.M.B.; Ariki, J.; Kronka, S.N. Níveis de cálcio e fósforo na ração sobre o desempenho e qualidade dos ovos de codornas japonesas. Ars Vet. 1999, 15, 135–139. [Google Scholar]
- Masukawa, Y.; Fernandes, E.; Moraes, V.; Ariki, J.; Bruno, L. Níveis de cálcio da dieta sobre o desempenho e a qualidade da casca de ovos de codornas japonesas. Ars Vet. 2001, 17, 144–148. [Google Scholar]
- Brandão, P.A.; Costa, F.G.P.; Silva, J.H.V.; Brandão, J.S.; Nobre, J.G.S.; Goulart, C.C. Exigência de cálcio para codornas japonesas (Coturnix japonica) em postura. Acta Scientiarum. Anim. Sci. 2007, 29, 17–21. Available online: https://www.redalyc.org/pdf/3031/303126486001.pdf (accessed on 2 June 2024).
- Costa, C.H.R.; Barreto, S.L.T.; Moura, W.C.O.; Reis, R.S.; Leite, C.D.S.; Maia, G.V.C. Níveis de fósforo e cálcio em dietas para codornas japonesas em postura. Rev. Bras. De Zootec. 2007, 36, 2037–2046. [Google Scholar] [CrossRef]
- Costa, C.H.R.; Barreto, S.L.T.; Umigi, R.T.; Lima, H.J.D.A.; Araujo, M.S.; Medina, P. Balanço de cálcio e fósforo e estudo dos níveis desses minerais em dietas para codornas japonesas (45 a 57 semanas de idade). Rev. Bras. De Zootec. 2010, 39, 1748–1755. [Google Scholar] [CrossRef]
- Costa, C.H.R.; Barreto, S.L.T.; Gomes, P.C.; Maia, G.V.C.; Lipari, C.A.; Hosoda, L.H. Teores de cálcio em dietas para codornas japonesas no terço final de postura (45 a 57 semanas de idade). Arq. Bras. De Med. Veterinária E Zootec. 2010, 62, 1225–1231. [Google Scholar] [CrossRef]
- Amoah, J.K.; Martin, E.A.; Barroga, A.J.; Garillo, E.P.; Domingo, I. Calcium and phosphorus requirements of Japanese quail layers. J. Appl. Biosci. 2012, 54, 3892–3900. Available online: https://m.elewa.org/JABS/2012/54/5.pdf (accessed on 2 June 2024).
- Vieira, D.V.G.; Barreto, S.L.T.; Valeriano, M.H.; Jesus, L.F.D.; Silva, L.F.F.; Mencalha, R.; Barbosa, K.S.; Mendes, R.K.V.; Cassuce, M.R.; Melo, T.S. Exigências de cálcio e de fósforo disponível para codornas japonesas de 26 a 38 semanas de idade. Rev. Bras. De Saúde E Produção Anim. 2012, 13, 204–213. Available online: https://www.scielo.br/j/rbspa/a/NvXwgKTH5RX5gJQmx4DkHsp/?format=pdf&lang=pt (accessed on 3 June 2024). [CrossRef]
- Nascimento, M.Q. Níveis de Cálcio e de Fósforo em Dietas para Codornas Japonesas Utilizando Fosfato Bicálcico com Duas Granulometrias. Master’s Dissertation, Federal University of Espírito Santo, Alegre, ES, Brazil, 2013; 84p. Available online: https://repositorio.ufes.br/server/api/core/bitstreams/52bfca24-9ea6-4806-87f3-a81e761c8309/content (accessed on 2 June 2024).
- Aguda, A.Y.; Sekoni, A.A.; Omage, J.J. Requirement of calcium and available phosphorus for laying Japanese quail birds (Coturnix japonica) in Nigeria. J. Anim. Poult. Sci. 2015, 4, 31–38. Available online: https://www.researchgate.net/publication/313387866_Requirement_of_Calcium_and_available_Phosphorus_for_Laying_Japanese_quail_birds_Coturnix_coturnix_japonica_in_Nigeria (accessed on 19 June 2024).
- Nascimento, M.Q.; Vargas Junior, J.G.; Pinto, C.E.L.; Demuner, L.F.; Petrucci, F.B.; Vieites, F.M. Optimal Available Phosphorus Levels in Diets Containing Different Dicalcium Phosphate Particle Sizes for Japanese Quails. Braz. J. Poult. Sci. 2019, 21, 001–008. [Google Scholar] [CrossRef]
- Yang, J.H.; Hou, J.F.; Farquharson, C.; Zhou, Z.L.; Deng, Y.F.; Wang, L.; Yu, Y. Localisation and expression of TRPV6 in all intestinal segments and kidney of laying hens. Br. Poult. Sci. 2011, 52, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Yu, E.; Sharma, S. Physiology, Calcium. StatPearls. 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482128/ (accessed on 4 April 2024).
- Bianco, S.D.C.; Peng, J.-B.; Takanaga, H.; Suzuki, Y.; Crescenzi, A.; Kos, C.H.; Zhuang, L.; Freeman, M.R.; Gouveia, C.H.A.; Wu, J.; et al. Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene. J. Bone Miner. Res. 2007, 22, 274–285. [Google Scholar] [CrossRef]
- Hwang, C.-S.; Shemorry, A.; Varshavsky, A. Two proteolytic pathways regulate DNA repair by cotargeting the Mgt1 alkylguanine transferase. Proc. Natl. Acad. Sci. USA 2009, 106, 2142–2147. [Google Scholar] [CrossRef]
- Sugiyama, T.; Kikuchi, H.; Hiyama, S.; Nishizawa, K.; Kusuhara, S. Expression and localisation of calbindin D28k in all intestinal segments of the laying hen. Br. Poult. Sci. 2007, 48, 233–238. [Google Scholar] [CrossRef]
- Chang, W.; Tu, C.; Chen, T.-H.; Bikle, D.; Shoback, D. The extracellular calcium-sensing receptor (CaSR) is a critical modulator of skeletal development. Sci. Signal. 2008, 1, 1–23. [Google Scholar] [CrossRef]
- Schoulten, N.A.; Teixeira, A.S.; Freitas, R.T.F.; Bertechini, A.G.; Conte, A.J.; Silva, H.O. Níveis de Cálcio em Rações de Frangos de Corte na Fase Inicial Suplementadas com Fitase. Rev. Bras. De Zootec. 2003, 32, 1190–1197. [Google Scholar] [CrossRef]
- Gobesso, A.A.O.; Wajnsztejn, H.; Ribeiro, R.M.; Bastos, F.L.; Etchichury, M.; Araújo Júnior, A.M.C. Comparison between different sources of minerals in horses with nutritional secondary hyperparathyroidism. Arq. Bras. De Med. Veterinária E Zootec. 2021, 73, 73–81. [Google Scholar] [CrossRef]
- Silva, B.C.; Bilezikian, J.P. Parathyroid hormone: Anabolic and catabolic actions on the skeleton. Curr. Opin. Pharmacol. 2015, 22, 41–50. [Google Scholar] [CrossRef]
- Moe, S.M. Disorders Involving Calcium, Phosphorus, and Magnesium. Prim. Care: Clin. Off. Pract. 2008, 35, 215–237. [Google Scholar] [CrossRef]
- McDowell, L.R. Calcium and Phosphorus. In Minerals in Animal and Human Nutrition, 2nd ed.; Elsevier Science BV: Amsterdam, The Netherlands, 2003; 144p. [Google Scholar]
- Pinheiro, S.R.F. Niveis De Fósforo, De Cálcio E De Cloreto De Sódio Para Aves De Linhagens De Crescimento Lento Criadas Em Sistema Semi-Confinado. Tese (Doutor em Zootecnia) Universidade Estadual Paulista—UNESP, “Júlio de Mesquita Filho”, Jaboticabal, São Paulo, Brasil. 2009. Available online: https://repositorio.unesp.br/server/api/core/bitstreams/d5d73a2d-e13f-472a-8597-0e30913775cb/content (accessed on 20 April 2024).
- Underwood, E.J.; Suttle, N.F. The Mineral Nutrition of Livestock, 3rd ed.; CAB International: Wallingford, UK, 1999; Available online: https://www.cabidigitallibrary.org/doi/book/10.1079/9780851991283.0000 (accessed on 19 April 2024).
- Naot, D.; Musson, D.S.; Cornish, J. The Activity of Peptides of the Calcitonin Family in Bone. Physiol. Rev. 2019, 99, 781–805. [Google Scholar] [CrossRef] [PubMed]
- Cross, H.S.; Peterlik, M. Calcium and inorganic phosphate transport in embryonic chick intestine: Triiodothyronine enhances the genomic action of 1,25-dihydroxycholecalciferol. J. Nutr. 1988, 118, 1529–1534. [Google Scholar] [CrossRef]
- Sugiyama, T.; Kusuhara, S. Avian calcium metabolismo and bone function. Asian-Australas. J. Anim. Sci. 2001, 14, 82–90. Available online: https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/7351228 (accessed on 20 July 2024).
- Bronner, F. Mechanisms of intestinal calcium absorption. J. Cell. Biochem. 2003, 88, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Van Abel, M.; Hoenderop, J.G.J.; Bindels, R.J.M. The epithelial calcium channels TRPV5 and TRPV6: Regulation and implications for disease. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2005, 371, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Hirnet, D.; Olausson, J.; Fecher-Trost, C.; Bödding, M.; Nastainczyk, W.; Wissenbach, U.; Flockerzi, V.; Freichel, M. The TRPV6 gene, cDNA and protein. Cell Calcium 2003, 33, 509–518. [Google Scholar] [CrossRef]
- Belkacemi, L.; Bédard, I.; Simoneau, L.; Lafond, J. Calcium channels, transporters and exchangers in placenta: A review. Cell Calcium 2005, 37, 1–8. [Google Scholar] [CrossRef]
- Hoenderop, J.G.J.; Nilius, B.; Bindels, R.J.M. Calcium Absorption Across Epithelia. Physiol. Rev. 2005, 85, 373–422. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, G.S.; Ji, Y.K.; Choi, K.C.; Jeung, E.B. Differential expression of uterine calcium transporter 1 and plasma membrane Ca2+ ATPase 1b during rat estrous cycle. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E234–E241. [Google Scholar] [CrossRef]
- Suzuki, Y.; Kovacs, C.S.; Takanaga, H.; Peng, J.B.; Landowski, C.P.; Hediger, M.A. Calcium channel TRPV6 is involved in murine maternal-fetal calcium transport. J. Bone Miner. Res. 2008, 23, 1249–1256. [Google Scholar] [CrossRef]
- Lee, G.S.; Jeung, E.B. Uterine TRPV6 expression during the estrous cycle and pregnancy in a mouse model. Am. J. Physiol. Endocrinol. Metab. 2007, 293, 132–139. [Google Scholar] [CrossRef]
- Lambers, T.T.; Bindels, R.J.M.; Hoenderop, J.G.J. Coordinated control of renal Ca2+ handling. Kidney Int. 2006, 69, 650–654. [Google Scholar] [CrossRef]
- Burley, R.W.; Vadhera, D.V. The Avian Egg. Chemistry and Biology; John Wiley & Sons Co.: New York, NY, USA, 1989; 472p. [Google Scholar]
- Yamamoto, K.R. Steroid receptor regulated transcription of specific genes and gene networks. Annu. Rev. Genet. 1985, 19, 209–252. [Google Scholar] [CrossRef]
- Ali, A.; Tan, H.Y.; Kaiko, G.E. Role of the Intestinal Epithelium and Its Interaction with the Microbiota in Food Allergy. Front. Immunol. 2020, 11, 604054. [Google Scholar] [CrossRef]
- Tang, V.W.; Goodenough, D.A. Paracellular ion channel at the tight junction. Biophys. J. 2003, 84, 1660–1673. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Martín-Rodríguez, A.; Redondo-Flórez, L.; Villanueva-Tobaldo, C.V.; Yáñez-Sepúlveda, R.; Tornero-Aguilera, J.F. Epithelial Transport in Disease: An Overview of Pathophysiology and Treatment. Cells 2023, 12, 2455. [Google Scholar] [CrossRef]
- Friedman, P.A.; Gesek, F.A. Cellular calcium transport in renal epithelia: Measurement, mechanisms, and regulation. Physiol. Rev. 1995, 75, 429–471. [Google Scholar] [CrossRef]
- Peng, J.B.; Suzuki, Y.; Gyimesi, G.; Hediger, M.A. TRPV5 and TRPV6 Calcium-Selective Channels. In Calcium Entry Channels in Non-Excitable Cells; Kozak, J.A., Putney, J.W., Jr., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2018; Chapter 13. Available online: https://www.ncbi.nlm.nih.gov/books/NBK531440/ (accessed on 20 August 2024).
- Nijenhuis, T.; Hoenderop, J.G.J.; Van der Kemp, A.W.C.M.; Bindels, R.J.M. Localization and Regulation of the Epithelial Ca 2+ Channel TRPV6 in the Kidney. J. Am. Soc. Nephrol. 2003, 14, 2731–2740. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.J.; Krits, I.; Armbrecht, H.J. Effect of age, vitamin D, and calcium on the regulation of rat intestinal epithelial calcium channels. Arch. Biochem. Biophys. 2005, 437, 51–58. [Google Scholar] [CrossRef]
- Bar, A. Calcium transport in strongly calcifying laying birds: Mechanisms and regulation. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2009, 152, 447–469. [Google Scholar] [CrossRef]
- Bianco, S.D.; Peng, J.B.; Takanaga, H.; Kos, C.H.; Crescenzi, A.; Brown, E.M.; Hediger, M.A. Mice lacking the epithelial calcium channel CaT1 (TRPV6) show a deficiency in intestinal calcium absorption despite high plasma levels of 1,25-dihydroxy vitamin D. FASEB J. 2004, 18, A706. Available online: https://eurekamag.com/research/035/305/035305455.php (accessed on 20 August 2024).
- Hurwitz, S.; Harrison, H.C.; Harrison, H.E. Effect of vitamin D3 on the in vitro transport of calcium by the chick intestine. J. Nutr. 1967, 91, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.B.; Chen, X.Z.; Berger, U.V.; Weremowicz, S.; Morton, C.C.; Vassilev, P.M.; Brown, E.M.; Hediger, M.A. Human calcium transport protein cat1. Biochem. Biophys. Res. Commun. 2000, 278, 326–332. [Google Scholar] [CrossRef]
- Wilkens, M.R.; Kunert-Keil, C.; Brinkmeier, H.; Schröder, B. Expression of calcium channel TRPV6 in ovine epithelial tissue. Vet. J. 2009, 182, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, R.H.; Taylor, A.N. Vitamin D3-induced calcium-binding protein in chick intestinal mucosa. Science 1966, 152, 794–796. [Google Scholar] [CrossRef]
- Qin, X.; Klandorf, H.; Porter, D.W.; Holt, S.B.; Martin, W.G. Estrogen Enhancement of Ca-, Mg-, and Ca-Mg-Stimulated Adenosine Triphosphatase Activity in the Chick Shell Gland. Gen. Comp. Endocrinol. 1993, 89, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Klandorf, H. Effect of Estrogen in Relation to Dietary Vitamin D3 and Calcium on Activity of Intestinal Alkaline Phosphatase and Ca-ATPase in Immature Chicks. Gen. Comp. Endocrinol. 1993, 90, 318–327. [Google Scholar] [CrossRef]
- Morrissey, R.; Wasserman, R. Calcium absorption and calcium-binding protein in chicks on differing calcium and phosphorus intakes. Am. J. Physiol. Leg. Content 1971, 220, 1509–1515. [Google Scholar] [CrossRef]
- Wu, J.C.Y.; Smith, M.W.; Mitchell, M.A.; Peacock, M.A.; Turvey, A.; Keable, S.J. Enterocyte expression of calbindin, calbindin mRNA and calcium transport increases in jejunal tissue during onset of egg production in the fowl (Gallus domesticus). Comp. Biochem. Physiol. Part A: Physiol. 1993, 106, 263–269. [Google Scholar] [CrossRef]
- Cai, Q.; Chandler, J.S.; Wasserman, R.H.; Kumar, R.; Penniston, J.T. Vitamin D and adaptation to dietary calcium and phosphate deficiencies increase intestinal plasma membrane calcium pump gene expression. Proc. Natl. Acad. Sci. USA 1993, 90, 1345–1349. [Google Scholar] [CrossRef]
- McCormick, C.C. Passive diffusion does not play a major role in the absorption of dietary calcium in normal adults. J. Nutr. 2002, 132, 3428–3430. [Google Scholar] [CrossRef] [PubMed]
- Fleet, J.C.; Schoch, R.D. Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and other factors. Crit. Rev. Clin. Lab. Sci. 2010, 47, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Corradino, R.A.; Wasserman, R.H.; Pubols, M.H.; Chang, S.I. Vitamin D3 induction of a calcium-binding protein in the uterus of the laying hen. Arch. Biochem. Biophys. 1968, 125, 378–380. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, R.H.; Smith, C.A.; Smith, C.M.; Brindak, M.E.; Fullmer, C.S.; Krook, L.; Penniston, J.T.; Kumar, R. Immunohistochemical localization of a calcium pump and calbindin-D28k in the oviduct of the laying hen. Histochemistry 1991, 96, 413–418. [Google Scholar] [CrossRef]
- Bar, A.; Cohen, A.; Eisner, U.; Risenfeld, G.; Hurwitz, S. Differential Response of Calcium Transport Systems in Laying Hens to Exogenous and Endogenous Changes in Vitamin D Status. J. Nutr. 1978, 108, 1322–1328. [Google Scholar] [CrossRef] [PubMed]
- Nys, Y.; Parkes, C.O.; Thomasset, M. Effects of suppression and resumption of shell formation and parathyroid hormone on uterine calcium-binding protein, carbonic anhydrase activity, and intestinal calcium absorption in hens. Gen. Comp. Endocrinol. 1986, 64, 293–299. [Google Scholar] [CrossRef]
- Corradino, R.A.; Smith, C.A.; Krook, L.P.; Fullmer, C.S. Tissue-specific regulation of shell gland calbindin D28K biosynthesis by estradiol in precociously matured, vitamin D-depleted chicks. Endocrinology 1993, 132, 193–198. [Google Scholar] [CrossRef]
Products | Phytate, % | Reference |
---|---|---|
Corn | 0.78–1.05 | [63,64] |
Soybean | 1.01–1.47 | [64,65] |
Sorghum | 0.80 | [66] |
Cottonseed meal | 2.65 | [66] |
Corn germ | 2.97 | [66] |
Polished rice | 0.60 | [64,67] |
Oats | 0.79–1.01 | [64,65] |
Wheat | 0.39–1.35 | [64,68] |
Soybean bran | 1.0–1.5 | [69] |
Rice bran | 5.90–6.48 | [70,71] |
Wheat bran | 5.38 | [63,64] |
Whole wheat flour | 2.22 | [64,72] |
White wheat flour | 0.404 | [64,72] |
Age—Weeks | Ca (%) | P (%) | Literature |
---|---|---|---|
6–16 | 3.50 | 0.45 | [141] |
6–29 | 2.00–3.05 | - | [142] |
6–19 | 3.51 | - | [143] |
8–21 | 2.50 | 0.31 | [144] |
45–57 | 3.50 | 0.15 | [145] |
45–57 | 3.80 | - | [146] |
7–54 | 2.50 | 0.25 | [139] |
12–42 | 2.50 | 0.35 | [147] |
26–38 | 2.00 | 0.31 | [148] |
21–36 | 3.10 | 0.32 | [149] |
7–20 | 2.50 | 0.35 | [150] |
8–56 | 2.99 | 0.31 | [42] |
6–57 | 2.0–3.8 | 0.15–0.45 | [124] |
20–32 | - | 0.39–0.44 | [151] |
9–24 | 2.68 | 0.38 | [123] |
8–56 | 3.01–3.04 | 0.31–0.80 | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, A.G.; Silva, R.d.S.; Silva, D.A.d.; Nascimento, J.C.d.S.; Souza, L.F.A.d.; Silva, E.G.d.; Ribeiro, J.E.S.; Campos, D.B.; Alves, C.V.B.d.V.; Saraiva, E.P.; et al. Heat Stress in Japanese Quails (Coturnix japonica): Benefits of Phytase Supplementation. Animals 2024, 14, 3599. https://doi.org/10.3390/ani14243599
Ribeiro AG, Silva RdS, Silva DAd, Nascimento JCdS, Souza LFAd, Silva EGd, Ribeiro JES, Campos DB, Alves CVBdV, Saraiva EP, et al. Heat Stress in Japanese Quails (Coturnix japonica): Benefits of Phytase Supplementation. Animals. 2024; 14(24):3599. https://doi.org/10.3390/ani14243599
Chicago/Turabian StyleRibeiro, Apolônio Gomes, Raiane dos Santos Silva, Dayane Albuquerque da Silva, Júlio Cézar dos Santos Nascimento, Lilian Francisco Arantes de Souza, Edijanio Galdino da Silva, José Evangelista Santos Ribeiro, Danila Barreiro Campos, Clara Virgínia Batista de Vasconcelos Alves, Edilson Paes Saraiva, and et al. 2024. "Heat Stress in Japanese Quails (Coturnix japonica): Benefits of Phytase Supplementation" Animals 14, no. 24: 3599. https://doi.org/10.3390/ani14243599
APA StyleRibeiro, A. G., Silva, R. d. S., Silva, D. A. d., Nascimento, J. C. d. S., Souza, L. F. A. d., Silva, E. G. d., Ribeiro, J. E. S., Campos, D. B., Alves, C. V. B. d. V., Saraiva, E. P., Costa, F. G. P., & Guerra, R. R. (2024). Heat Stress in Japanese Quails (Coturnix japonica): Benefits of Phytase Supplementation. Animals, 14(24), 3599. https://doi.org/10.3390/ani14243599