Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (288)

Search Parameters:
Keywords = phytate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2135 KB  
Article
Novel Synthesis of Phosphorus-Doped Porous Carbons from Lotus Petiole Using Sodium Phytate for Selective CO2 Capture
by Yue Zhi, Jiawei Shao, Junting Wang, Xiaohan Liu, Qiang Xiao, Muslum Demir, Utku Bulut Simsek, Linlin Wang and Xin Hu
Molecules 2025, 30(19), 3990; https://doi.org/10.3390/molecules30193990 - 5 Oct 2025
Viewed by 348
Abstract
Developing sustainable and high-performance sorbents for efficient CO2 capture is essential for mitigating climate change and reducing industrial emissions. In this study, phosphorus-doped porous carbons (LPSP-T) were synthesized via a one-step activation–doping strategy using lotus petiole biomass as a precursor and sodium [...] Read more.
Developing sustainable and high-performance sorbents for efficient CO2 capture is essential for mitigating climate change and reducing industrial emissions. In this study, phosphorus-doped porous carbons (LPSP-T) were synthesized via a one-step activation–doping strategy using lotus petiole biomass as a precursor and sodium phytate as a dual-function activating and phosphorus-doping agent. The simultaneous activation and phosphorus incorporation at various temperatures (650–850 °C) under a nitrogen atmosphere produced carbons with tailored textural properties and surface functionalities. Among them, LPSP-700 exhibited the highest specific surface area (525 m2/g) and a hierarchical porous structure, with abundant narrow micropores (<1 nm) and phosphorus-containing surface groups that synergistically enhanced CO2 capture performance. The introduction of P functionalities not only improved the surface polarity and binding affinity toward CO2 but also promoted the formation of a well-connected pore network. As a result, LPSP-700 delivered a CO2 uptake of 2.51 mmol/g at 25 °C and 1 bar (3.34 mmol/g at 0 °C), along with a high CO2/N2 selectivity, fast CO2 adsorption kinetics and moderate isosteric heat of adsorption (Qst). Furthermore, the dynamic CO2 adsorption capacity (0.81 mmol/g) was validated by breakthrough experiments, and cyclic adsorption–desorption tests revealed excellent stability with negligible loss in performance over five cycles. Correlation analysis revealed pores < 2.02 nm as the dominant contributors to CO2 uptake. Overall, this work highlights sodium phytate as an effective dual-role agent for simultaneous activation and phosphorus doping and validates LPSP-700 as a sustainable and high-performance sorbent for CO2 capture under post-combustion conditions. Full article
(This article belongs to the Special Issue Porous Carbons for CO2 Adsorption and Capture)
Show Figures

Graphical abstract

18 pages, 4709 KB  
Article
Wheat Bran-Derived Zinc Phytate Mitigates Hepatic Inflammation and Metabolic Disorders Associated with Gut Microbiota-FXR–PGC-1α Signaling in High-Fat Diet-Fed C57BL/6J Mice
by Pinglian Yu, Aiqing Zhao, Mingfang Zhan, Liansheng Zhang, Chengcheng Yang, Yan Zhao and Xingbin Yang
Foods 2025, 14(19), 3367; https://doi.org/10.3390/foods14193367 - 29 Sep 2025
Viewed by 388
Abstract
This study was designed to first investigate the effects of zinc phytate (ZnPA) from wheat bran in alleviating high-fat diet (HFD)-induced hepatic inflammation and metabolic disorders and its underlying mechanism. C57BL/6J mice were randomly assigned to five groups including normal diet (ND), HFD, [...] Read more.
This study was designed to first investigate the effects of zinc phytate (ZnPA) from wheat bran in alleviating high-fat diet (HFD)-induced hepatic inflammation and metabolic disorders and its underlying mechanism. C57BL/6J mice were randomly assigned to five groups including normal diet (ND), HFD, HFD+low-dose ZnPA (100 mg/kg), HFD+high-dose ZnPA (200 mg/kg), and HFD+wheat bran (100 mg/kg). All interventions were administered orally for 12 weeks. The results indicated that ZnPA significantly mitigated HFD-induced weight gain, dyslipidemia, pathoglycemia, hepatic steatosis and inflammation (p < 0.05). ZnPA effectively corrected HFD-induced microbial dysbiosis, in which the relative abundance of the Ruminococcus torques group decreased from 11.0% to 0.75%, and Coriobacteriaceae_UCG-002 dropped from 2.47% to 0.087% (p < 0.05). Conversely, ZnPA increased the abundance of Ileibacterium from 0.32% to 17.76% and Dubosiella from 1.03% to 4.24% (p < 0.05). Meanwhile, ZnPA could be metabolized by the gut microbiota to release IP6, which was further converted into secondary inositol phosphates (InsP3–5), resulting in increases of 52.1%, 83.3%, 62.5%, and 96.2% in the colonic contents of InsP6, InsP5, InsP4, and InsP3 (p < 0.05), respectively. In addition, ZnPA increased levels of secondary bile acids and short-chain fatty acids, especially deoxycholic acid and taurocholic acid, which were elevated by 1.95-fold and 1.88-fold (p < 0.05), respectively. Interestingly, ZnPA enhanced hepatic expressions of histone deacetylase 3, bile acid receptor FXR, and lipid metabolism coactivator PGC-1α (p < 0.05). Collectively, these results indicated that ZnPA might alleviate obesity-related hepatic inflammation and metabolic disorders by reshaping microbial composition and increasing the production of microbial metabolism such as secondary bile acids, thereby triggering FXR–PGC1α axis activation. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

19 pages, 1331 KB  
Article
Evaluation of Bioprocess-Based Technique for Iron and Zinc Fortification in Red Rice Genotypes
by Sai Sruthi Shree Kavitha Kumaravel and Nagarajan Srividya
Foods 2025, 14(18), 3162; https://doi.org/10.3390/foods14183162 - 11 Sep 2025
Viewed by 442
Abstract
Iron (Fe) and zinc (Zn) deficiencies, globally prevalent nutritional disorders, underscore the need for effective fortification strategies in staple foods like rice. This study evaluates a bioprocess-based technique for single (SF) and double fortification (DF) of two heritage red rice genotypes (Chennangi—CH, Karungkuruvai—KK) [...] Read more.
Iron (Fe) and zinc (Zn) deficiencies, globally prevalent nutritional disorders, underscore the need for effective fortification strategies in staple foods like rice. This study evaluates a bioprocess-based technique for single (SF) and double fortification (DF) of two heritage red rice genotypes (Chennangi—CH, Karungkuruvai—KK) to enhance mineral content and bioavailability. Whole rice grains were germinated in sodium iron EDTA and zinc chloride solutions (SF: 50 and 100 mg/L Fe/Zn; DF: Fe + Zn at a 2:1 ratio). Mineral quantification via microwave plasma atomic emission spectrometry (MPAES) revealed that SF significantly increased fortified mineral content but reduced accessibility of the non-fortified mineral. In contrast, DF substantially enhanced both Fe (2-fold) and Zn (7-fold) content while improving bioaccessibility (Fe: 2–2.5x; Zn: 3–7x), supported by reduced phytate levels. Both genotypes exhibited high Zn accumulation and retention. Cooked DF rice has good sensory acceptability and improved cooking characteristics. At daily consumption levels of 30–150 g, DF rice could meet 16–70% of Fe and nearly 100% Zn Recommended Dietary Intake (RDI) across age groups. This simple, scalable bioprocessing method effectively enhances Fe and Zn bioavailability in wholegrains, offering a promising solution to combat micronutrient deficiencies through dietary staples, contributing to Sustainable Development Goals (SDG 2 and 3) by promoting accessible nutrition for healthier populations. Full article
Show Figures

Graphical abstract

17 pages, 801 KB  
Article
Exploring Germination to Unlock the Nutritional Potential of Sorghum (Sorghum bicolor)
by Sara Margherita Borgonovi, Silvia Marzocchi, Federica Pasini, Alessandra Bordoni, Alberto Barbiroli, Alessandra Marti, Stefania Iametti and Mattia Di Nunzio
Molecules 2025, 30(17), 3622; https://doi.org/10.3390/molecules30173622 - 4 Sep 2025
Viewed by 981
Abstract
Thanks to its tolerance to drought, sorghum is a cereal crop that is extensively cultivated in the sub-Saharan region. Its good nutritional value makes it an interesting raw material for the food industry, although several anti-nutritional features pose a challenge to exploiting its [...] Read more.
Thanks to its tolerance to drought, sorghum is a cereal crop that is extensively cultivated in the sub-Saharan region. Its good nutritional value makes it an interesting raw material for the food industry, although several anti-nutritional features pose a challenge to exploiting its full potential. In this study, we evaluated whether the process of germination may represent a way of improving the macro- and micro-molecular profile of sorghum, lowering the content of anti-nutritional factors, and promoting the synthesis of bioactive compounds. Germination for 48 and especially 72 h promoted the hydrolysis of starch and proteins, enhanced antioxidant activity, increased the content of polyphenols, mainly flavonols and flavanones, and promoted the conversion of γ- to α-isomers of tocopherols. At the same time, it significantly reduced the concentration of phytates and linoleic acid, enhancing pepsin activity and contributing to the inaugural examination of the impact of sprouted sorghum on digestive protease activity. These findings could help to promote the utilization of sprouted sorghum as a premium ingredient for food products, providing significant nutritional advantages. Full article
Show Figures

Figure 1

29 pages, 1132 KB  
Review
Unconventional Yeast in the Bakery Industry: A Review
by Cristian Mititiuc, Adriana Dabija and Ionut Avramia
Appl. Sci. 2025, 15(17), 9732; https://doi.org/10.3390/app15179732 - 4 Sep 2025
Viewed by 996
Abstract
The shift toward future-forward foods begins with subtle yet innovative alternatives—yeast among them, playing a surprising role in this transformation. Traditionally, Saccharomyces cerevisiae has dominated the bakery industry due to its reliable fermentation and predictable performance. However, rising demand for artisanal, nutritious, and [...] Read more.
The shift toward future-forward foods begins with subtle yet innovative alternatives—yeast among them, playing a surprising role in this transformation. Traditionally, Saccharomyces cerevisiae has dominated the bakery industry due to its reliable fermentation and predictable performance. However, rising demand for artisanal, nutritious, and eco-friendly baked goods has sparked interest in unconventional yeast species. This review highlights the potential of alternative yeasts such as Torulaspora delbrueckii, Candida milleri, Pichia anomala, and Yarrowia lipolytica to enhance bakery processes. These species possess distinctive metabolic traits, enabling the formation of complex aroma and flavour compounds—like esters, higher alcohols, and organic acids—that enrich bread’s taste and texture. Moreover, some strains offer nutritional benefits by synthesizing essential micronutrients, breaking down anti-nutritional phytates, and improving mineral and vitamin bioavailability. Their robustness under stress conditions, such as high sugar, salt, or temperature, and their ability to ferment diverse substrates further support their industrial appeal. Still, challenges persist: unconventional yeasts often exhibit weaker leavening capacity, greater sensitivity to processing, and loss of volatiles during baking. Even so, hybrid fermentations that blend conventional and unconventional yeasts show promise in enhancing both dough performance and end-product quality. Overall, the integration of these alternative yeasts represents a forward-looking approach in bakery, aligning with consumer preferences for health-conscious and sustainable options while offering opportunities for innovation and product differentiation. Full article
Show Figures

Figure 1

13 pages, 828 KB  
Article
Ferric Oxide Nanoparticles Foliar Application Effectively Enhanced Iron Bioavailability and Rice Quality in Rice (Oryza sativa L.) Grains
by Xijun Yuan, Muyan Zhang, Jingtong Sun, Xinyue Liu, Jie Chen, Rui Wang, Hao Lu and Yanju Yang
Agronomy 2025, 15(9), 2096; https://doi.org/10.3390/agronomy15092096 - 30 Aug 2025
Viewed by 526
Abstract
Synergizing iron nutrition and rice quality is essential for the development of integrated high-quality rice. In this study, a two-year field experiment was conducted to investigate the influence of ferric oxide nanoparticles (Fe2O3 NPs) foliar spraying on rice yield, quality, [...] Read more.
Synergizing iron nutrition and rice quality is essential for the development of integrated high-quality rice. In this study, a two-year field experiment was conducted to investigate the influence of ferric oxide nanoparticles (Fe2O3 NPs) foliar spraying on rice yield, quality, and iron bioavailability, with spraying water as the control (CK). Our results demonstrate that Fe2O3 NPs foliar application increase grain yield by 1.22–3.97% for the improved filled grain rate and 1000-grain weight, essentially attributed to improved net photosynthetic rate and SPAD value after heading. In addition, Fe2O3 NPs application achieved a higher rate of brown rice, polished rice, and head rice, and decreased chalkiness grain rate and chalkiness degree. Rice taste value treated with Fe2O3 NPs application was notably increased by 2.75–9.43% compared to CK, respectively, which is also reflected in the superior breakdown value (5.85–15.18%) and inferior setback value (12.38–28.19%). Meanwhile, foliar spraying Fe2O3 NPs significantly increased the iron content (16.97–58.74% and 26.48–94.01%) and proportion (2.90–5.35% and 13.10–26.44%), while they decreased the molar ratio of phytate to Fe (19.70–33.67% and 31.55–45.77%) in brown rice and polished rice, increasing iron bioavailability. Our findings indicate that Fe2O3 NPs can be effectively applied as a foliar fertilizer to enhance rice yield, quality, and iron nutrition. Full article
Show Figures

Figure 1

24 pages, 4090 KB  
Article
A Comparative Study on Novel-Assisted Extraction Techniques for Retrieving Protein from Moringa oleifera Seeds
by Paul Ndubuisi Anyiam, Pipat Tangjaidee, Wanli Zhang and Saroat Rawdkuen
Foods 2025, 14(17), 3046; https://doi.org/10.3390/foods14173046 - 29 Aug 2025
Viewed by 826
Abstract
Moringa oleifera seeds are rich in protein, yet their potential as plant-based protein in food remains underutilized. This study evaluated the extraction efficiency, composition, and techno-functional properties of moringa seed protein isolate (MSPI) using enzyme-assisted (EAE), ultrasonic-assisted (UAE), and microwave-assisted extraction (MAE) methods, [...] Read more.
Moringa oleifera seeds are rich in protein, yet their potential as plant-based protein in food remains underutilized. This study evaluated the extraction efficiency, composition, and techno-functional properties of moringa seed protein isolate (MSPI) using enzyme-assisted (EAE), ultrasonic-assisted (UAE), and microwave-assisted extraction (MAE) methods, compared to conventional alkaline extraction (CE). EAE was performed with viscozyme (2%, pH 8, 50 °C, 2 h) and papain (1%, pH 7, 50 °C, 1 h), UAE at 40% amplitude (20 kHz, 20 min), and MAE at 800 W (50 °C, 90 s). All methods significantly improved extraction yield (14.60–30.08%), protein content (80.47–86.61%), solubility (40.78–60.09% at pH 10), and techno-functional properties over CE. However, MAE slightly reduced solubility. Phytates (0.83–0.49 g/100 g) and trypsin inhibitor activity significantly decreased (4.48–1.92 U/mg). In vitro protein digestibility improved (p < 0.05) across all samples (88.11–93.81%), with hydrolysis patterns supporting the enhanced digestibility. Structural modifications were indicated by altered surface hydrophobicity and thermal properties. SDS-PAGE showed consistent major protein bands at 17, 25, and 48–63 kDa, with EAE showing reduced intensity at ~63 kDa. While UAE and MAE achieved high protein yield and purity, EAE offered the best balance of functionality and digestibility, making it the most promising method for producing high-quality MSPI. These findings are relevant for guiding the selection of extraction methods for MSPI recovery for food applications. Full article
Show Figures

Graphical abstract

25 pages, 1253 KB  
Article
In Vitro Bioaccessibility and Speciation of Toxic and Nutritional Trace Elements in Brazil Nuts
by Astrid Barkleit, Jiyoung Eum, Diana Walther, Daniel Butscher, Sebastian Friedrich, Katharina Müller and Jerome Kretzschmar
Int. J. Mol. Sci. 2025, 26(17), 8312; https://doi.org/10.3390/ijms26178312 - 27 Aug 2025
Viewed by 878
Abstract
Brazil nuts (Bertholletia excelsa), mainly from the Amazon, are notable for their exceptionally high selenium (Se) content and are widely consumed as a natural dietary supplement. They also contain potentially harmful elements, including barium (Ba), and exhibit an unusual capacity to [...] Read more.
Brazil nuts (Bertholletia excelsa), mainly from the Amazon, are notable for their exceptionally high selenium (Se) content and are widely consumed as a natural dietary supplement. They also contain potentially harmful elements, including barium (Ba), and exhibit an unusual capacity to accumulate radioactive radium (Ra). In this study, we quantified the concentrations of Se, Ba, strontium (Sr), lanthanum (La), europium (Eu), and the radionuclides 226Ra and 228Ra, and assessed their in vitro bioaccessibility—data largely unavailable for these elements to date. Se was highly bioaccessible (≈85%), whereas Ba and Ra, both chemo- and/or radiotoxic, exhibited low bioaccessibility (≈2% each). Nuclear magnetic resonance (NMR) spectroscopy revealed Se to occur predominantly as selenomethionine (SeMet), alongside phytate, amino acids, peptides, and other polar low-molecular-weight compounds. The influence of Brazil nut flour (BNF) on Eu(III) speciation in simulated gastrointestinal fluids, and the effect of chelating agents such as ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), and the hydroxypyridinone 3,4,3-LI(1,2-HOPO) were investigated using time-resolved laser-induced fluorescence spectroscopy (TRLFS). Results indicate that the food matrix has only a minor impact on the decorporation efficacy of these chelators. These findings provide novel insights into the bioaccessibility and chemical speciation of nutritionally and toxicologically relevant elements in Brazil nuts. Full article
(This article belongs to the Special Issue Macro- and Micronutrients in Health and Diseases)
Show Figures

Graphical abstract

24 pages, 560 KB  
Review
Tempeh and Fermentation—Innovative Substrates in a Classical Microbial Process
by Katarzyna Górska, Ewa Pejcz and Joanna Harasym
Appl. Sci. 2025, 15(16), 8888; https://doi.org/10.3390/app15168888 - 12 Aug 2025
Viewed by 3113
Abstract
The growing consumer awareness of functional foods has increased interest in fermented plant-based products with enhanced nutritional and health-promoting properties. This comprehensive narrative literature review examines the potential of diverse raw materials for tempeh production beyond traditional soybeans, analysing their nutritional composition, bioactive [...] Read more.
The growing consumer awareness of functional foods has increased interest in fermented plant-based products with enhanced nutritional and health-promoting properties. This comprehensive narrative literature review examines the potential of diverse raw materials for tempeh production beyond traditional soybeans, analysing their nutritional composition, bioactive compounds, and functional properties. A structured literature search was conducted on peer-reviewed publications up to July 2025, focusing on tempeh fermentation technology, chemical composition, and bioactive compounds from various substrates using recognised analytical methods according to Association of Official Analytical Collaboration (AOAC) standards. The analysis of over 25 different substrates revealed significant opportunities for enhancing tempeh’s nutritional profile through alternative raw materials including legumes, cereals, algae, seeds, and agricultural by-products. Several substrates demonstrated superior nutritional characteristics compared with traditional soybean tempeh, notably tarwi (Lupinus mutabilis) with exceptional protein content ((32–53% dry matter (DM)) and mung bean (Vigna radiata) exhibiting remarkably high polyphenol concentrations (137.53 mg gallic acid equivalents (GAE)/g DM). Fermentation with Rhizopus oligosporus consistently achieved substantial reductions in anti-nutritional factors (64–67% decrease in trypsin inhibitors, up to 65% reduction in phytates) while maintaining consistent antioxidant activities (39–70% 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition) across most variants. The diversity of bioactive compounds across different substrates demonstrates potential for developing targeted functional foods with specific health-promoting properties, supporting sustainable food system development through protein source diversification. Full article
Show Figures

Figure 1

17 pages, 8538 KB  
Article
Thermodynamic and Kinetic Aspects of Calcium Oxalate Crystallization and Renal Lithiasis
by Jaume Dietrich, Antònia Costa-Bauza and Félix Grases
Biomolecules 2025, 15(8), 1141; https://doi.org/10.3390/biom15081141 - 7 Aug 2025
Viewed by 910
Abstract
Thermodynamic factors (supersaturation of substances that form crystals) and kinetic factors (heterogeneous nucleants and crystallization inhibitors) affect the formation of crystals and stones in the urinary tract. We studied the effect of five different polyhydroxycarboxylic acids and phytate on the formation of calcium [...] Read more.
Thermodynamic factors (supersaturation of substances that form crystals) and kinetic factors (heterogeneous nucleants and crystallization inhibitors) affect the formation of crystals and stones in the urinary tract. We studied the effect of five different polyhydroxycarboxylic acids and phytate on the formation of calcium oxalate crystals in artificial urine. All tested molecules are known to inhibit the crystallization of this calcium salt, and to also form complexes with calcium ions. Considering the typical concentration of polyhydroxycarboxylic acids in urine (similar to that of the calcium ion) and their ability to inhibit crystallization, their most important effect is the capacity to complex calcium—a thermodynamic effect. For phytate and its metabolites, which are present in concentrations much lower than that of the calcium ion, the most important effect is as a crystallization inhibitor—a kinetic effect. Among the five polyhydroxycarboxylic acids examined here, hydroxycitrate had the strongest complexing capacity, and the addition of phytate to hydroxycitrate led to greater inhibition of crystallization. Therefore, because oral consumption of hydroxycitrate does not increase the urinary pH, it is likely that the combined consumption of hydroxycitrate and phytate can provide certain benefits for patients with increased risk of developing calcium oxalate stones. We also discussed the effects of these different molecules on the different calcium oxalate stones, including papillary calcium oxalate monohydrate stones, cavity calcium oxalate monohydrate stones, calcium oxalate dihydrate stones, and mixed calcium oxalate dihydrate/hydroxyapatite stones. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

19 pages, 5733 KB  
Article
The Production Optimization of a Thermostable Phytase from Bacillus subtilis SP11 Utilizing Mustard Meal as a Substrate
by Md. Al Muid Khan, Sabina Akhter, Tanjil Arif, Md. Mahmuduzzaman Mian, Md. Arafat Al Mamun, Muhammad Manjurul Karim and Shakila Nargis Khan
Fermentation 2025, 11(8), 452; https://doi.org/10.3390/fermentation11080452 - 3 Aug 2025
Viewed by 1234
Abstract
Phytate, an antinutritional molecule in poultry feed, can be degraded by applying phytase, but its use in low- and middle-income countries is often limited due to importation instead of local production. Here, inexpensive raw materials were used to optimize the production of a [...] Read more.
Phytate, an antinutritional molecule in poultry feed, can be degraded by applying phytase, but its use in low- and middle-income countries is often limited due to importation instead of local production. Here, inexpensive raw materials were used to optimize the production of a thermostable phytase from an indigenous strain of Bacillus subtilis SP11 that was isolated from a broiler farm in Dhaka. SP11 was identified using 16s rDNA and the fermentation of phytase was optimized using a Plackett–Burman design and response surface methodology, revealing that three substrates, including the raw material mustard meal (2.21% w/v), caused a maximum phytase production of 436 U/L at 37 °C and 120 rpm for 72 h, resulting in a 3.7-fold increase compared to unoptimized media. The crude enzyme showed thermostability up to 80 °C (may withstand the feed pelleting process) with an optimum pH of 6 (near pH of poultry small-intestine), while retaining 96% activity at 41 °C (the body temperature of the chicken). In vitro dephytinization demonstrated its applicability, releasing 978 µg of inorganic phosphate per g of wheat bran per hour. This phytase has the potential to reduce the burden of phytase importation in Bangladesh by making local production and application possible, contributing to sustainable poultry nutrition. Full article
Show Figures

Figure 1

36 pages, 1502 KB  
Review
A Critical Review on the Role of Lactic Acid Bacteria in Sourdough Nutritional Quality: Mechanisms, Potential, and Challenges
by Youssef Mimoune Reffai and Taoufiq Fechtali
Appl. Microbiol. 2025, 5(3), 74; https://doi.org/10.3390/applmicrobiol5030074 - 29 Jul 2025
Viewed by 3021
Abstract
Sourdough fermentation, driven by the biochemical activity of lactic acid bacteria (LAB), presents a scientifically promising approach to addressing nutritional limitations in cereal-based staples. This review critically examines both the underlying mechanisms by which LAB enhance the nutritional profile of sourdough and the [...] Read more.
Sourdough fermentation, driven by the biochemical activity of lactic acid bacteria (LAB), presents a scientifically promising approach to addressing nutritional limitations in cereal-based staples. This review critically examines both the underlying mechanisms by which LAB enhance the nutritional profile of sourdough and the translational challenges in realizing these benefits. Key improvements explored include enhanced mineral bioavailability (e.g., up to 90% phytate reduction), improved protein digestibility, an attenuated glycemic response (GI ≈ 54 vs. ≈75 for conventional bread), and the generation of bioactive compounds. While in vitro and animal studies extensively demonstrate LAB’s potential to reshape nutrient profiles (e.g., phytate hydrolysis improving iron absorption, proteolysis releasing bioactive peptides), translating these effects into consistent human health outcomes proves complex. Significant challenges hinder this transition from laboratory to diet, including the limited bioavailability of LAB-derived metabolites, high strain variability, and sensitivity to fermentation conditions. Furthermore, interactions with the food matrix and host-specific factors, such as gut microbiota composition, contribute to inconsistent findings. This review highlights methodological gaps, particularly reliance on in vitro or animal models, and the lack of long-term, effective human trials. Although LAB hold significant promise for nutritional improvements in sourdough, translating these findings to validated human benefits necessitates continued efforts in mechanism-driven strain optimization, the standardization of fermentation processes, and rigorous human studies. Full article
Show Figures

Graphical abstract

27 pages, 3370 KB  
Review
Sourdough Fermentation and Gluten Reduction: A Biotechnological Approach for Gluten-Related Disorders
by Ricardo H. Hernández-Figueroa, Aurelio López-Malo and Emma Mani-López
Microbiol. Res. 2025, 16(7), 161; https://doi.org/10.3390/microbiolres16070161 - 17 Jul 2025
Viewed by 3727
Abstract
Sourdough fermentation has emerged as a promising biotechnological approach to reducing gluten content and modifying gluten proteins in wheat-based products. This review assesses the current scientific literature on the enzymatic degradation and hydrolysis of gluten during lactic acid bacteria (LAB) sourdough fermentation. It [...] Read more.
Sourdough fermentation has emerged as a promising biotechnological approach to reducing gluten content and modifying gluten proteins in wheat-based products. This review assesses the current scientific literature on the enzymatic degradation and hydrolysis of gluten during lactic acid bacteria (LAB) sourdough fermentation. It explores implications for individuals with gluten-related disorders, including celiac disease, non-celiac gluten sensitivity and intolerance, as well as irritable bowel syndrome (IBS). In addition, LAB sourdough effect on fermentable oligo-, di-, monosaccharides and polyols (FODMAPs), amylase-trypsin inhibitors (ATIs), and phytate are revised. Selected homo- and heterofermentative LAB are capable of degrading gluten proteins, especially the polypeptides derived from the action of native cereal proteases. Mixed cultures of LAB degrade gluten peptides more effectively than monocultures. However, LAB sourdough is not sufficient to remove the toxic peptides to the minimal level (<20 ppm). This goal is achieved only if sourdough is combined with fungal proteases during sourdough fermentation. LAB sourdough directly contributes to lower FODMAPs but not ATIs and phytate. Phytate is reduced by the endogenous cereal phytases activated at acidic pHs (pH < 5.0), conditions generated during sourdough fermentation. ATIs are also lowered by endogenous cereal proteases instead of LAB proteases/peptidases. Despite LAB sourdough not fully degrading the gluten or directly reducing the ATIs and phytate, it participates through peptidases activity and acidic pH that trigger the action of endogenous cereal proteases and phytases. Full article
Show Figures

Figure 1

19 pages, 6665 KB  
Article
Enhanced Flame Retardancy of Silica Fume-Based Geopolymer Composite Coatings Through In Situ-Formed Boron Phosphate from Doped Zinc Phytate and Boric Acid
by Yachao Wang, Yufei Qu, Chuanzhen Wang and Juan Dou
Minerals 2025, 15(7), 735; https://doi.org/10.3390/min15070735 - 14 Jul 2025
Viewed by 332
Abstract
Silica fume-based geopolymer composite coatings, an approach to using metallurgical solid waste, exert flame retardancy with ecological, halogen-free, and environmentally friendly advantages, but their fire resistance needs to be improved further. Herein, a silica fume-based geopolymer composite flame-retardant coating was designed by doping [...] Read more.
Silica fume-based geopolymer composite coatings, an approach to using metallurgical solid waste, exert flame retardancy with ecological, halogen-free, and environmentally friendly advantages, but their fire resistance needs to be improved further. Herein, a silica fume-based geopolymer composite flame-retardant coating was designed by doping boric acid (BA), zinc phytate (ZnPA), and melamine (MEL). The results of a cone calorimeter demonstrated that appropriate ZnPA and BA significantly enhanced its flame retardancy, evidenced by the peak heat release rate (p-HRR) decreasing from 268.78 to 118.72 kW·m−2, the fire performance index (FPI) increasing from 0.59 to 2.83 s·m2·kW−1, and the flame retardancy index increasing from 1.00 to 8.48, respectively. Meanwhile, the in situ-formed boron phosphate (BPO4) facilitated the residual resilience of the fire-barrier layer. Furthermore, the pyrolysis kinetics indicated that the three-level chemical reactions governed the pyrolysis of the coatings. BPO4 made the pyrolysis Eα climb from 94.28 (P5) to 127.08 (B3) kJ·mol−1 with temperatures of 731–940 °C, corresponding to improved thermal stability. Consequently, this study explored the synergistic flame-retardant mechanism of silica fume-based geopolymer coatings doped with ZnPA, BA, and MEL, providing an efficient strategy for the high-value-added recycling utilization of silica fume. Full article
(This article belongs to the Topic Innovative Strategies to Mitigate the Impact of Mining)
Show Figures

Figure 1

25 pages, 845 KB  
Review
Edible Tubers as a Source of Bioactive Compounds in Baked Goods: Benefits and Drawbacks
by Rafał Wiśniewski, Ewa Pejcz and Joanna Harasym
Molecules 2025, 30(13), 2838; https://doi.org/10.3390/molecules30132838 - 2 Jul 2025
Viewed by 1753
Abstract
Root and tuber vegetables—such as beetroot (Beta vulgaris), carrot (Daucus carota), cassava (Manihot esculenta), potato (Solanum tuberosum), taro (Colocasia esculenta), and Jerusalem artichoke (Helianthus tuberosus)—are increasingly recognized not only for their [...] Read more.
Root and tuber vegetables—such as beetroot (Beta vulgaris), carrot (Daucus carota), cassava (Manihot esculenta), potato (Solanum tuberosum), taro (Colocasia esculenta), and Jerusalem artichoke (Helianthus tuberosus)—are increasingly recognized not only for their nutritional value but also for their richness in bioactive compounds, including polyphenols, dietary fiber, resistant starch, and prebiotic carbohydrates that exhibit varying levels of antioxidant, anti-inflammatory, and glycemic-regulating properties. Incorporating these vegetables into baked goods offers both functional and technological benefits, such as improved moisture retention, reduced acrylamide formation, and suitability for gluten-free formulations. The processing conditions can significantly influence the stability and bioavailability of these bioactive components, while the presence of antinutritional factors—such as phytates, cyanogenic glycosides, and FODMAPs (fermentable oligo-, di-, monosaccharides, and polyols)—needs careful optimization. The structured narrative literature review approach allowed collecting studies that examine both the beneficial and potential drawbacks of tuber-based ingredients. This review provides a comprehensive overview of the chemical composition, health-promoting effects, and technological roles of edible tubers in bakery applications, also addressing current challenges related to processing, formulation, and consumer acceptance. Special emphasis is placed on the valorization of tuber by-products, enhancement of functional properties, and the promotion of sustainable food systems using zero-waste strategies. Full article
(This article belongs to the Special Issue Food Bioactive Components in Functional Foods and Nutraceuticals)
Show Figures

Graphical abstract

Back to TopTop