Seasonal Diet Changes and Trophic Links of Cold-Water Fish (Coregonus albula) within a Northern Lake Ecosystem
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Lake Ecosystem Description
2.2. Sampling and Laboratory Procedures
2.3. Stomach Content Analysis
2.4. Stable Isotope Analysis
2.5. Calculations
3. Results
3.1. Stomach Content
3.2. Stable Isotope Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kao, Y.C.; Rogers, M.W.; Bunnell, D.B.; Cowx, I.G.; Qian, S.S.; Anneville, O.; Beard, T.D., Jr.; Brinker, A.; Britton, J.R.; Chura-Cruz, R.; et al. Effects of climate and land-use changes on fish catches across lakes at a global scale. Nat. Commun. 2020, 11, 2526. [Google Scholar] [CrossRef]
- Ficke, A.D.; Myrick, C.A.; Hansen, L.J. Potential impacts of global climate change on freshwater fisheries. Rev. Fish. Biol. Fish. 2007, 17, 581–613. [Google Scholar] [CrossRef]
- Comte, L.; Olden, J. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Chang. 2017, 7, 718–722. [Google Scholar] [CrossRef]
- Jeppesen, E.; Mehner, T.; Winfield, I.J.; Kangur, K.; Sarvala, J.; Gerdeaux, D.; Rask, M.; Malmquist, H.J.; Holmgren, K.; Volta, P.; et al. Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes. Hydrobiologia 2012, 694, 1–39. [Google Scholar] [CrossRef]
- Harrod, C. Climate change and freshwater fisheries. In Freshwater Fisheries Ecology; Craig, J.F., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 641–694. [Google Scholar] [CrossRef]
- Reshetnikov, Y.S. Coregonid fishes in Arctic waters. Ann. Zool. Fenn. 2004, 41, 3–11. [Google Scholar]
- Borovikova, E.; Makhrov, A. Study of Coregonus populations in the zone of intergradation between the vendace and least cisco: The role of the environment in speciation. Princ. Ecol. 2012, 4, 5–20. [Google Scholar] [CrossRef]
- Amundsen, P.A.; Staldvik, F.J.; Reshetnikov, Y.S.; Kashulin, N.; Lukin, A.; Bøhn, T.; Sandlund, O.T.; Popova, O.A. Invasion of vendace Coregonus albula in a subarctic watercourse. Biol. Conserv. 1999, 88, 405–413. [Google Scholar] [CrossRef]
- Salonen, E. Vendace (Coregonus albula) in Lake Inari—What Has Changed in 50 years? Ann. Zool. Fenn. 2021, 58, 243–253. [Google Scholar] [CrossRef]
- Sarvala, J.; Helminen, H.; Ventelä, A.-M. Overfishing of a small planktivorous freshwater fish, vendace (Coregonus albula), in the boreal lake Pyhäjärvi (SW Finland), and the recovery of the population. Fish. Res. 2020, 230, 105664. [Google Scholar] [CrossRef]
- Mehner, T.; Emmrich, M.; Kasprzak, P. Discrete thermal windows cause opposite response of sympatric cold-water fish species to annual temperature variability. Ecosphere 2011, 2, 104. [Google Scholar] [CrossRef]
- Helminen, H.; Sarvala, J. Population regulation of vendace (Coregonus albula) in Lake Pyhäjärvi, southwest Finland. J. Fish Biol. 1994, 45, 387–400. [Google Scholar] [CrossRef]
- Stewart, T.R.; Mäkinen, M.; Goulon, C.; Guillard, J.; Marjomäki, T.J.; Lasne, E.; Karjalainen, J.; Stockwel, J.D. Influence of warming temperatures on coregonine embryogenesis within and among species. Hydrobiologia 2021, 848, 4363–4385. [Google Scholar] [CrossRef]
- Ilmast, N.V.; Kuchko, Y.A. Zooplankton and feeding of vendace introduced to Lake Vashozero, Lake Onega Basin. Russ. J. Biol. Invasion 2023, 14, 1–7. [Google Scholar] [CrossRef]
- Strandberg, U.; Hiltunen, M.; Taipale, S.J.; Yeung, S.; Kankaala, P. Planktivorous vendace (Coregonus albula) utilise algae-derived fatty acids for biomass increase and lipid deposition. Ecol. Freshw. Fish 2018, 27, 533–541. [Google Scholar] [CrossRef]
- Strelnikova, A.P.; Berezina, N.A. Diversity of food spectra of vendace in the water bodies of Eurasia. Ecosyst. Transform. 2021, 4, 42–56. [Google Scholar] [CrossRef]
- Berezina, N.A.; Strelnikova, A.P.; Maximov, A.A. The benthos as the basis of vendace, Coregonus albula, and perch, Perca fluviatilis, diets in an oligotrophic sub-Arctic lake. Polar Biol. 2018, 41, 1789–1799. [Google Scholar] [CrossRef]
- Scharf, J.; Krappe, M.; Koschel, R.; Waterstraat, A. Feeding of European cisco (Coregonus albula and C. lucinensis) on the glacial relict crustacean Mysis relicta in Lake Breiter Luzin (Germany). Limnologica 2008, 38, 147–158. [Google Scholar] [CrossRef]
- Liso, S.; Gjelland, K.Ø.; Reshetnikov, Y.S.; Amundsen, P.A. A planktivorous specialist turns rapacious: Piscivory in invading vendace Coregonus albula. J. Fish Biol. 2011, 78, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Schulz, M.; Kasprzak, P.; Anwand, K.; Mehner, T. Diet composition and food preference of vendace (Coregonus albula (L.)) in response to seasonal zooplankton succession in Lake Stechlin. Adv. Limnol. 2003, 58, 215–226. [Google Scholar]
- Sarvala, J.; Rajasilta, M.; Hangelin, C.; Hirvonen, A.; Kiiskilä, M.; Saarikari, V. Spring abundance, growth and food of 0 + vendace (Coregonus albula L.) and white-fish (C. lavaretus L. s.l.) in Lake Pyhäjärvi, SW Finland. Finn. Fish. Res. 1988, 9, 221–233. [Google Scholar]
- Lehtonen, T.K.; Gilljam, D.; Veneranta, L.; Keskinen, T.; Bergenius Nord, M. The ecology and fishery of the vendace (Coregonus albula) in the Baltic Sea. J. Fish Biol. 2023, 103, 1463–1475. [Google Scholar] [CrossRef]
- Helminen, H.; Sarvala, J.; Hirvonen, A. Growth and food consumption of vendace (Coregonus albula (L.)) in Lake Pyhäjärvi, SW Finland: A bioenergetics modeling analysis. Hydrobiologia 1990, 200, 511–522. [Google Scholar] [CrossRef]
- Pavlov, D.; Kasumyan, A. Feeding Diversity in Fishes: Trophic Classification of Fish. J. Ichthyol. 2002, 42, 137–159. [Google Scholar]
- Kelly, B.; Amundsen, P.-A.; Power, M. Trophic niche segregation among native whitefish and invasive vendace in a north Norwegian lake system. Ecol. Freshw. Fish 2022, 31, 143–153. [Google Scholar] [CrossRef]
- Eloranta, A.P.; Kahilainen, K.K.; Amundsen, P.-A.; Knudsen, R.; Harrod, C.; Jones, R.I. Lake size and fish diversity determine resource use and trophic position of a top predator in high-latitude lakes. Ecol. Evol. 2015, 5, 1664–1675. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.M.; Dunne, J.; Woodward, G. Freshwater food webs: Towards a more fundamental understanding of biodiversity and community dynamics. Freshw. Biol. 2012, 57, 1329–1341. [Google Scholar] [CrossRef]
- Potapov, A.M.; Tiunov, A.V.; Scheu, S.; Brose, U. Trophic position of consumers and size structure of food webs across aquatic and terrestrial ecosystems. Am. Nat. 2019, 194, 823–839. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-García, A.; Jeppesen, E.; Moncayo-Estrada, R.; Mercado-Silva, N.; Domínguez-Domínguez, O. Diet and trophic structure of the fish community in a small sub-tropical lake in Central Mexico. Water 2023, 15, 1301. [Google Scholar] [CrossRef]
- Post, D.M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 2002, 83, 703–718. [Google Scholar] [CrossRef]
- Maximov, A.A.; Berezina, N.A.; Litvinchuk, L.F.; Sharov, A.N.; Maximova, O.B.; Smirnov, V.V.; Usov, N.V. Hydrobiological characteristics of small lakes in northern Karelia during the freeze-up period. Proc. Zool. Inst. 2023, 327, 451–457. [Google Scholar] [CrossRef]
- Litvinchuk, L.F.; Sharov, A.N.; Chernova, E.N.; Smirnov, V.V.; Berezina, N.A. Mutual links between microcystins-producing cyanobacteria and plankton community in clear and brown northern lakes. Food Webs 2023, 35, e00279. [Google Scholar] [CrossRef]
- Gubelit, J.I.; Nikulina, V.N. Algal community of Krivoye Lake (Northern Karelia) at present time. Biological Resources of the White Sea and Inland Waters of European North. In Proceedings of the XXVIII International Conference, 5–8 October 2009; KRC RAS: Petrozavodsk, Russian, 2009; pp. 167–171. (In Russian). [Google Scholar]
- Berezina, N.A.; Litvinchuk, L.F.; Maximov, A.A. 2021. Relations between the food spectrum of fishes and the composition of zooplankton and benthos in a subarctic lake. Inl. Water Biol. 2021, 14, 438–448. [Google Scholar] [CrossRef]
- Dauvalter, V.; Terentjev, P.; Denisov, D.; Sandimirov, S.; Koroleva, I.; Cherepanov, A.; Kosova, A.; Kashulin, N.; Zubova, E.; Valkova, S. Metody ekologicheskikh issledovanii vodoemov Arktiki (Methods of Ecological Research of Arctic Water Bodies); Murmanskii Gos Tekh Univ: Murmansk, Russian, 2019. (In Russian) [Google Scholar]
- Hyslop, E.J. Stomach contents analysis—A review of methods and their application. J. Fish. Biol. 1980, 17, 411–429. [Google Scholar] [CrossRef]
- Liao, H.; Pierce, C.L.; Larscheid, J.G. Empirical assessment of indices of prey importance in the diets of predacious fish. Trans. Amer. Fish. Soc. 2001, 130, 583–591. [Google Scholar] [CrossRef]
- Perga, M.E. Potential of δ13C and δ15N of cladoceran subfossil exoskeletons for paleo-ecological studies. J. Paleolimnol. 2010, 44, 387–395. [Google Scholar] [CrossRef]
- Macko, S.A.; Helleur, R.; Hartley, G.; Jackman, P. Diagenesis in organic matter_a study using stable isotopes of individual car-bohydrates. Adv. Org. Geochem. 1989, 16, 1129–1137. [Google Scholar] [CrossRef]
- Webb, S.C.; Hedges, R.E.M.; Simpson, S.J. Diet quality influences the δ13C and δ15N of locusts and their biochemical components. J. Exp. Biol. 1998, 201, 2903–2911. [Google Scholar] [CrossRef] [PubMed]
- Post, D.M.; Layman, C.A.; Arrington, D.A. Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 2007, 152, 179–189. [Google Scholar] [CrossRef]
- Stock, B.C.; Jackson, A.L.; Ward, E.J.; Parnell, A.C.; Phillips, D.L.; Semmens, B.X. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 2018, 6, e5096. [Google Scholar] [CrossRef]
- Berezina, N.A.; Zhgareva, N.N.; Strelnikova, A.P. Feeding features of the nine-spined stickleback Pungitius pungitius (gasterosteidae) in water bodies of the North-West of Russia. J. Ichthyol. 2023, 63, 308–317. [Google Scholar] [CrossRef]
- Fanelli, E.; Principato, E.; Monfardini, E.; Da Ros, Z.; Scarcella, G.; Santojanni, A.; Colella, S. Seasonal Trophic Ecology and Diet Shift in the Common Sole Solea solea in the Central Adriatic Sea. Animals 2022, 12, 3369. [Google Scholar] [CrossRef]
- Gladyshev, M.I.; Sushchik, N.N.; Kalachova, G.S.; Makhutova, O.N. Stable Isotope Composition of Fatty Acids in Organisms of Different Trophic Levels in the Yenisei River. PLoS ONE 2012, 7, e34059. [Google Scholar] [CrossRef]
- Gladyshev, M.I.; Sushchik, N.N.; Dubovskaya, O.P.; Buseva, Z.F.; Makhutova, O.N.; Fefilova, E.B.; Feniova, I.Y.; Semenchenko, V.P.; Kolmakova, A.A.; Kalachova, G.S. Fatty acid composition of Cladocera and Copepoda from lakes of contrasting temperature. Freshw. Biol. 2015, 60, 373–386. [Google Scholar] [CrossRef]
- Sushchik, N.N.; Gladyshev, M.I.; Moskvichova, A.V.; Makhutova, O.N.; Kalachova, G.S. Comparison of fatty acid composition in major lipid classes of the dominant benthic invertebrates of the Yenisei river. Comp. Biochem. Phys. B 2003, 134, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Makhutova, O.N.; Shulepina, S.P.; Sharapova, T.A.; Kolmakova, A.A.; Glushchenko, L.A.; Kravchuk, E.S.; Gladyshev, M.I. Intraspecies variability of fatty acid content and composition of a cosmopolitan benthic invertebrate, Gammarus lacustris. Inland Waters 2018, 8, 356–367. [Google Scholar] [CrossRef]
- Makhutova, O.N.; Shulepina, S.P.; Sharapova, T.A.; Dubovskaya, O.P.; Sushchik, N.N.; Baturina, M.A.; Pryanichnikova, E.G.; Kalachova, G.S.; Gladyshev, M.I. Content of polyunsaturated fatty acids essential for fish nutrition in zoobenthos species. Freshw. Sci. 2016, 35, 1222–1234. [Google Scholar] [CrossRef]
- Bastviken, D.; Ejlertsson, J.; Sundh, I.; Tranvik, L. Methane as A Source of Carbon And Energy For Lake Pelagic Food Webs. Ecology 2003, 84, 969–981. [Google Scholar] [CrossRef]
- van Duinen, G.A.; Vermonden, K.; Bodelier, P.L.E.; Hendriks, A.J.; Leuven, R.S.E.W.; Middelburg, J.J.; van der Velde, G.; Verberk, W.C.E.P. Methane as a carbon source for the food web in raised bog pools. Freshw. Sci. 2013, 32, 1260–1272. [Google Scholar] [CrossRef]
- Jones, R.I.; Carter, C.E.; Kelly, A.; Ward, S.; Kelly, D.J.; Grey, J. Widespread contribution of methane-cycle bacteria to the diets of lake profundal chironomid larvae. Ecology 2008, 89, 857–864. [Google Scholar] [CrossRef]
- Dionne, K.; Dufresne, F.; Nozais, C. Variation in δ13C and δ15N trophic enrichment factors among Hyalella azteca amphipods from different lakes. Hydrobiologia 2016, 781, 217–230. [Google Scholar] [CrossRef]
- Gorokhova, E. Individual growth as a non-dietary determinant of the isotopic niche metrics. Methods Ecol. Evol. 2018, 9, 269–277. [Google Scholar] [CrossRef]
- Karlson, A.M.L.; Reutgard, M.; Garbaras, A.; Gorokhova, E. Isotopic niche reflects stress-induced variability in physiological status. R. Soc. Open Sci. 2018, 5, 171398. [Google Scholar] [CrossRef] [PubMed]
- Motwani, N.H.; Duberg, J.; Svedén, J.B.; Gorokhova, E. Grazing on cyanobacteria and transfer of diazotrophic nitrogen to zooplankton in the Baltic Sea. Limnol. Ocean. 2018, 63, 672–686. [Google Scholar] [CrossRef]
- Delong, M.; Thorp, J.M.; Thons, M.S.; Mcintosh, L. Trophic niche dimensions of fish communities as a function of historical hydrological conditions in a Plains River. River Syst. 2011, 19, 177–187. [Google Scholar] [CrossRef]
- Svanbäck, R.; Quevedo, M.; Olsson, J.; Eklöv, P. Individuals in food webs: The relationships between trophic position, omnivory and among-individual diet variation. Oecologia 2015, 178, 103–104. [Google Scholar] [CrossRef]
- Terentjev, P.M.; Berezina, N.A. Ecological and morphological characteristics and feeding of perch (Perca fluviatilus) in the autumn–winter period in dystrophic and oligotrophic lakes of Northern Karelia (Russia). Inland Water Biol. 2022, 15, 916–929. [Google Scholar] [CrossRef]
- Koroleva, I.M.; Valkova, S.A.; Vandysh, O.I.; Denisov, D.B.; Terentjev, P.M.; Sandimirov, S.S.; Dauvalter, V.A.; Kashulin, N.A. State of the ecosystem of Lake Kovdor and characteristics of the fish part of its population. Proc. Kola Sci. Cent. RAS 2012, 12, 100–132. (In Russian) [Google Scholar]
Time | Parameter | TL | SL | WW |
---|---|---|---|---|
June | Min–Max | 148.0–200.0 | 128.0–184.0 | 15.0–56.0 |
X ± SD | 181.6 ± 14.0 | 161.3 ± 15.6 | 41.8 ± 10.5 | |
95%CI | 7.1 | 7.9 | 5.3 | |
n | 25 | 25 | 25 | |
July | Min–Max | 156.0–211.0 | 134.0–185.0 | 23.0–67.0 |
X ± SD | 183.0 ± 18.0 | 158.9 ± 16.4 | 41.4 ± 14.4 | |
95%CI | 7.2 | 6.6 | 5.8 | |
n | 24 | 24 | 24 | |
September | Min–Max | 128.0–230.0 | 110.0–205.0 | 12.0–93.0 |
X ± SD | 175.1 ± 16.0 | 153.2 ± 15.5 | 37.3 ± 12.2 | |
95%CI | 3.9 | 3.8 | 3.0 | |
n | 64 | 64 | 64 | |
October | Min–Max | 120.0–240.0 | 101.0–213.0 | 15.0–99.4 |
X ± SD | 185.5 ± 22.5 | 160.5 ± 21.9 | 47.2 ± 17.8 | |
95%CI | 6.7 | 6.5 | 5.3 | |
n | 44 | 44 | 44 | |
February | Min–Max | 169.0–234.0 | 150.0–217.0 | 30.0–84.0 |
X ± SD | 191.4 ± 24.4 | 172.4 ± 23.6 | 60.4 ± 20.7 | |
95%CI | 12.0 | 11.6 | 10.1 | |
n | 16 | 16 | 16 | |
April | Min–Max | 110–285 | 90–264 | 9–223 |
X ± SD | 175.0 ± 28.5 | 152.4 ± 28.7 | 39.8 ± 38.4 | |
95%CI | 11.0 | 11.0 | 14.7 | |
n | 26 | 26 | 26 |
Food Item | Value | δ13C′ | δ15N | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Feb | Apr | June | Sept | Nov | Feb | Apr | June | Sept | Nov | ||
Phytoplankton | Mean | −31.5 | −32.2 | −31.7 | −29.9 | −32.5 | 1.3 | 1.4 | −1.5 | 1.1 | 1.1 |
SD | 0.3 | 0.39 | 0.3 | 0.0 | 0.2 | 0.2 | 0.2 | 0.4 | 0.1 | 0.5 | |
Periphyton | Mean | −21.5 | −18.6 | −24.1 | −17.0 | −18.0 | 0.9 | 3.4 | 1.8 | −0.8 | −1.5 |
SD | 0.3 | 0.6 | 2.8 | 0.7 | 3.9 | 0.0 | 0.2 | 0.7 | 0.5 | 0.2 | |
Cladocera | Mean | −30.9 | −31.0 | −32.3 | −29.3 | −30.9 | 2.0 | 1.4 | 1.8 | 2.8 | 2.0 |
SD | 0.0 | 0.2 | 1.9 | 0.6 | 0.0 | 0.0 | 0.2 | 0.8 | 0.9 | 0.0 | |
Copepoda | Mean | −30.5 | −31.3 | −32.7 | −34.0 | −31.8 | 10.1 | 11.1 | 2.5 | 3.9 | 6.5 |
SD | 0.3 | 0.0 | 0.9 | 3.8 | 0.2 | 0.1 | 0.1 | 0.6 | 0.7 | 0.2 | |
Monoporeia | Mean | −28.4 | −30.7 | −32.8 | −30.5 | −30.4 | 3.7 | 3.6 | 2.5 | 3.0 | 3.6 |
SD | 0.4 | 0.7 | 0.0 | 0.7 | 0.8 | 0.3 | 0.3 | 0.0 | 0.3 | 0.2 | |
Gammaracanthus | Mean | −31.6 | −30.2 | −30.5 | −30.0 | −30.4 | 7.9 | 6.6 | 7.9 | 5.0 | 5.1 |
SD | 0.2 | 0.2 | 0.1 | 0.5 | 0.7 | 0.1 | 0.6 | 0.6 | 0.8 | 0.5 | |
Gammarus | Mean | −17.9 | −20.3 | −20.9 | −22.4 | −22.9 | 1.5 | 1.8 | 2.0 | 1.4 | 1.9 |
SD | 0.6 | 1.7 | 0.6 | 1.2 | 1.1 | 0.3 | 0.5 | 0.2 | 0.8 | 0.6 | |
Bivalvia | Mean | −24.8 | −30.6 | −23.8 | −23.6 | −25.7 | 1.8 | 2.1 | 2.3 | 1.4 | 1.9 |
SD | 0.93 | 2 | 0.0 | 1.2 | 0.0 | 0.3 | 0.2 | 0.0 | 0.4 | 0.0 | |
Gastropoda | Mean | −15.7 | −14.8 | −16.0 | −21.9 | −17.1 | 1.1 | 2.0 | 1.0 | 1.7 | 1.5 |
SD | 0.0 | 1.2 | 0.5 | 1.8 | 0.0 | 0.0 | 0.7 | 0.0 | 0.1 | 0.0 | |
Ephemeroptera | Mean | −22.5 | −22.6 | −28.4 | −28.6 | −24.8 | 3.6 | 3.8 | 3.1 | 2.0 | 2.8 |
SD | 0.9 | 0.9 | 0.1 | 0.0 | 3.3 | 0.3 | 0.5 | 1.3 | 0.3 | 1.0 | |
Trichoptera | Mean | −20.9 | −25.8 | −20.0 | −21.7 | −19.7 | 2.4 | 2.2 | 4.2 | 2.5 | 2.6 |
SD | 0.2 | 0.1 | 0.0 | 0.7 | 0.5 | 0.3 | 0.0 | 0.1 | 0.8 | 0.1 | |
Megaloptera | Mean | −20.9 | −23.1 | −20.9 | −20.7 | −21.4 | 2.4 | 3.9 | 3.1 | 3.1 | 3.1 |
SD | 0.0 | 0.1 | 0.01 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 | |
Chironomidae | Mean | −20.0 | −19.1 | −19.6 | −20.5 | −24.0 | 3.1 | 2.8 | 3.0 | 2.5 | 2.4 |
SD | 0.9 | 0.5 | 0.7 | 1.6 | 3.3 | 0.1 | 0.4 | 0.1 | 0.7 | 1.0 | |
Stickleback | Mean | −26.2 | −27.5 | −25.7 | −27.4 | −27.3 | 6.2 | 8.6 | 7.0 | 5.2 | 6.3 |
SD | 0.32 | 2.8 | 0.6 | 0.8 | 0.0 | 0.1 | 0.6 | 0.9 | 0.8 | 0.0 | |
Vendace | Mean | −30.5 | −27.5 | −29.4 | −27.8 | −26.7 | 6.9 | 7.6 | 7.1 | 7.1 | 7.7 |
SD | 0.3 | 1.0 | 5.8 | 2.3 | 2.9 | 0.1 | 0.2 | 1.3 | 0.4 | 0.8 | |
Perch | Mean | −25.9 | −26.4 | −25.1 | −26.6 | −24.8 | 7.3 | 7.7 | 7.9 | 7.1 | 6.9 |
SD | 1.0 | 2.0 | 1.4 | 3.3 | 1.1 | 0.4 | 0.3 | 1.0 | 0.9 | 0.6 |
Vendace | Gammaracanthus | Perch | ||||
---|---|---|---|---|---|---|
Cladocera | <0.01–0.12 | 0.03 ± 0.03 | <0.01–0.20 | 0.06 ± 0.05 | <0.01–0.46 | 0.04 ± 0.03 |
Copepoda | 0.61–0.78 | 0.68 ± 0.04 | 0.65–0.90 | 0.76 ± 0.06 | 0.39–0.61 | 0.49 ± 0.05 |
Monoporeia | <0.01–0.18 | 0.05 ± 0.04 | <0.01–0.30 | 0.10 ± 0.08 | <0.01–0.20 | 0.06 ± 0.05 |
Gammarus | <0.01–0.21 | 0.08 ± 0.05 | <0.01–0.21 | 0.08 ± 0.05 | <0.01–0.36 | 0.17 ± 0.09 |
Ephemeroptera | <0.01–0.29 | 0.10 ± 0.07 | - | - | <0.01–0.49 | 0.17 ± 0.13 |
Bivalvia | <0.01–0.22 | 0.06 ± 0.05 | - | - | <0.01–0.29 | 0.08 ± 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berezina, N.A.; Terentjev, P.M.; Zubova, E.M.; Tsurikov, S.M.; Maximov, A.A.; Sharov, A.N. Seasonal Diet Changes and Trophic Links of Cold-Water Fish (Coregonus albula) within a Northern Lake Ecosystem. Animals 2024, 14, 394. https://doi.org/10.3390/ani14030394
Berezina NA, Terentjev PM, Zubova EM, Tsurikov SM, Maximov AA, Sharov AN. Seasonal Diet Changes and Trophic Links of Cold-Water Fish (Coregonus albula) within a Northern Lake Ecosystem. Animals. 2024; 14(3):394. https://doi.org/10.3390/ani14030394
Chicago/Turabian StyleBerezina, Nadezhda A., Piotr M. Terentjev, Elena M. Zubova, Sergey M. Tsurikov, Alexey A. Maximov, and Andrey N. Sharov. 2024. "Seasonal Diet Changes and Trophic Links of Cold-Water Fish (Coregonus albula) within a Northern Lake Ecosystem" Animals 14, no. 3: 394. https://doi.org/10.3390/ani14030394
APA StyleBerezina, N. A., Terentjev, P. M., Zubova, E. M., Tsurikov, S. M., Maximov, A. A., & Sharov, A. N. (2024). Seasonal Diet Changes and Trophic Links of Cold-Water Fish (Coregonus albula) within a Northern Lake Ecosystem. Animals, 14(3), 394. https://doi.org/10.3390/ani14030394