Effects of Elevating Zinc Supplementation on the Health and Production Parameters of High-Producing Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Treatments
2.2. Feeding and Sample Collection
2.3. Analysis of Antioxidants and Immunoglobulins in Blood
2.4. Analysis of Zinc Concentrations in Milk and Serum
2.5. Calculations and Statistical Analysis
3. Results and Discussion
3.1. Feed Intake and Production Performance
3.2. Zinc Concentrations in Blood Serum and Milk
3.3. Immunoglobin and Antioxidant Marker Concentrations in Blood
Variable 2 | 1 to 35 d | 36 to 70 d | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
CTL | +Zn | CTL | +Zn | Trt | Period | Trt × Period | ||
DMI, kg/d | 26.10 | 24.90 | 25.80 | 24.60 | 0.32 | <0.01 | 0.31 | 0.96 |
Milk yield, kg/d | 42.00 a | 39.81 b | 39.89 b | 40.90 c | 0.34 | 0.17 | 0.12 | <0.01 |
Milk composition | ||||||||
Protein, % | 3.13 | 3.11 | 3.24 | 3.22 | 0.07 | 0.83 | <0.01 | 0.92 |
Fat, % | 4.34 | 4.28 | 4.47 | 4.33 | 0.16 | 0.63 | 0.34 | 0.68 |
Lactose, % | 4.79 | 4.76 | 4.69 | 4.71 | 0.03 | 0.92 | <0.01 | 0.24 |
Protein yield, kg/d | 1.30 | 1.25 | 1.27 | 1.31 | 0.06 | 0.99 | 0.64 | 0.07 |
Fat yield, kg/d | 1.68 | 1.59 | 1.67 | 1.65 | 0.10 | 0.66 | 1.71 | 0.62 |
Lactose yield, kg/d | 2.00 | 1.96 | 1.85 | 1.97 | 0.09 | 0.75 | 0.11 | 0.07 |
SCC, ×103/mL | 457 | 252 | 251 | 69 | 112 | 0.06 | 0.03 | 0.38 |
Zinc, ppm | 4.06 | 4.30 | 4.05 | 4.65 | 0.22 | 0.07 | 0.45 | 0.40 |
ECM, kg/d 3 | 46.61 | 43.04 | 44.81 | 44.70 | 2.52 | 0.55 | 0.96 | 0.27 |
Milk yield: DMI | 1.61 | 1.64 | 1.57 | 1.67 | 0.04 | 0.19 | 0.89 | 0.46 |
Body weight, kg | 663 | 646 | 650 | 643 | 7.20 | 0.12 | 0.25 | 0.45 |
BCS | 2.50 | 2.56 | 2.64 | 2.68 | 0.06 | 0.39 | 0.05 | 0.84 |
Variable | 35 d | 70 d | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
CTL | +Zn | CTL | +Zn | Trt | Period | Trt × Period | ||
White blood cells, ×103/µL | 9.48 | 10.05 | 10.92 | 11.02 | 0.92 | 0.74 | 0.20 | 0.80 |
Red blood cells, ×103/µL | 6.36 | 6.71 | 6.60 | 6.90 | 0.28 | 0.40 | 0.22 | 0.89 |
Hemoglobin, g/dL | 10.65 | 11.15 | 11.25 | 11.75 | 0.41 | 0.40 | 0.03 | 0.99 |
Hematocrit, % | 29.19 | 30.35 | 30.76 | 31.87 | 1.19 | 0.50 | 0.07 | 0.97 |
MCV, µm3 | 46.36 | 44.82 | 46.94 | 45.74 | 0.69 | 0.19 | <0.01 | 0.20 |
Platelets, ×103/µL | 355.40 | 332.60 | 358.90 | 343.20 | 35.81 | 0.67 | 0.78 | 0.89 |
Mean platelet volume, µm3 | 6.95 | 5.89 | 6.48 | 6.97 | 0.71 | 0.69 | 0.67 | 0.30 |
Neutrophils, ×103/µL | 4.69 | 4.80 | 6.24 | 5.40 | 0.97 | 0.72 | 0.28 | 0.63 |
Lymphocyte, ×103/µL | 3.58 | 4.41 | 3.55 | 4.66 | 0.59 | 0.30 | 0.59 | 0.48 |
Monocyte, ×103/µL | 0.46 | 0.57 | 0.50 | 0.61 | 0.09 | 0.29 | 0.62 | 0.99 |
Eosinophils×103/µL | 0.39 | 0.32 | 0.18 | 0.34 | 0.11 | 0.71 | 0.43 | 0.33 |
Basophils, ×103/µL | 0.11 | 0.13 | 0.13 | 0.15 | 0.02 | 0.32 | 0.28 | 0.99 |
Variable | 35 d | 70 d | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
CTL | +Zn | CTL | +Zn | Trt | Period | Trt × Period | ||
Serum Zn, ppm | 0.80 b | 0.71 b | 0.82 b | 1.06 a | 0.08 | 0.38 | 0.02 | 0.04 |
Immunoglobulins | ||||||||
IgA, mg/mL | 0.12 | 0.12 | 0.10 | 0.11 | 0.01 | 0.76 | 0.09 | 0.11 |
IgG, mg/mL | 27.51 | 28.88 | 27.90 | 22.80 | 1.75 | 0.27 | 0.10 | 0.11 |
IgM, mg/mL | 1.53 | 1.53 | 1.40 | 1.48 | 0.19 | 0.87 | 0.57 | 0.80 |
Antioxidant markers 2 | ||||||||
CAT, U/mL | 3.60 | 3.95 | 4.73 | 3.61 | 0.69 | 0.62 | 0.55 | 0.28 |
SOD, U/mL | 4.53 | 4.79 | 7.70 | 4.25 | 1.03 | 0.18 | 0.21 | 0.09 |
MDA, µM | 7.17 | 9.05 | 8.64 | 8.63 | 1.75 | 0.68 | 0.71 | 0.51 |
GSH, µM | 2.47 | 2.09 | 2.37 | 2.01 | 0.10 | 0.02 | 0.35 | 0.82 |
GSSG, µM | 0.22 c | 0.40 a | 0.37 ab | 0.34 b | 0.04 | 0.09 | 0.15 | <0.01 |
GSH: GSSG | 12.00 b | 5.30 a | 6.40 a | 6.40 a | 0.95 | <0.01 | 0.02 | <0.01 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mills, C.F.; Quarterman, J.; Williams, R.B.; Dalgarno, A.C.; Panić, B. The effects of zinc deficiency on pancreatic carboxypeptidase activity and protein digestion and absorption in the rat. Biochem. J. 1967, 102, 712–718. [Google Scholar] [CrossRef]
- Maret, W. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life. Adv. Nutr. 2013, 4, 82–91. [Google Scholar] [CrossRef]
- Fraker, P.J.; Haas, S.M.; Luecke, R.W. Effect of Zinc Deficiency on the Immune Response of the Young Adult A/J Mouse. J. Nutr. 1977, 107, 1889–1895. [Google Scholar] [CrossRef] [PubMed]
- DePasquale-Jardieu, P.; Fraker, P.J. The Role of Corticosterone in the Loss in Immune Function in the Zinc-Deficient A/J Mouse. J. Nutr. 1979, 109, 1847–1855. [Google Scholar] [CrossRef]
- Quarterman, J.; Humpries, W.R. Effect of zinc deficiency and zinc supplementation on adrenals, plasma steroids and thymus in rats. Life Sci. 1979, 24, 177–183. [Google Scholar] [CrossRef]
- Nansen, P. Selective immunoglobulin deficiency in cattle and susceptibility to infection. Acta Pathol. Microbiol. Scand. B Microbiol. Immunol. 1972, 80B, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Capuco, A.V.; Bright, S.A.; Pankey, J.W.; Wood, D.L.; Miller, R.H.; Bitman, J. Increased Susceptibility to lntramammary Infection Following Removal of Teat Canal Keratin. J. Dairy Sci. 1992, 75, 2126–2130. [Google Scholar] [CrossRef] [PubMed]
- Paulrud, C.O. Basic Concepts of the Bovine Teat Canal. Vet. Res. Commun. 2005, 29, 215–245. [Google Scholar] [CrossRef]
- Davies, K.J.A. Oxidative Stress, Antioxidant Defenses, and Damage Removal, Repair, and Replacement Systems. IUBMB Life 2000, 50, 279–289. [Google Scholar] [CrossRef]
- Bansal, A.K.; Bilaspuri, G.S. Oxidative stress alters membrane sulfhydryl status, lipid and phospholipid contents of crossbred cattle bull spermatozoa. Anim. Reprod. Sci. 2008, 104, 398–404. [Google Scholar] [CrossRef]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative Stress and Antioxidant Defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef]
- Abuelo, A.; Hernández, J.; Benedito, J.L.; Castillo, C. The importance of the oxidative status of dairy cattle in the periparturient period: Revisiting antioxidant supplementation. J. Anim. Physiol. Anim. Nutr. 2015, 99, 1003–1016. [Google Scholar] [CrossRef] [PubMed]
- Ledoux, D.; Shannon, M. Bioavailability and Antagonists of Trace Minerals in Ruminant Metabolism. In Proceedings of the Florida Ruminant Nutrition Symposium, Gainesville, FL, USA, 10–11 February 2005. [Google Scholar]
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Duplessis, M.; Fadul-Pacheco, L.; Santschi, D.E.; Pellerin, D. Toward Precision Feeding Regarding Minerals: What Is the Current Practice in Commercial Dairy Herds in Québec, Canada? Animals 2021, 11, 1320. [Google Scholar] [CrossRef] [PubMed]
- Kellogg, D.W.; Tomlinson, D.J.; Socha, M.T.; Johnson, A.B. Effects of Zinc Methionine Complex on Milk Production and Somatic Cell Count of Dairy Cows: Twelve-Trial Summary. Prof. Anim. Sci. 2004, 20, 295–301. [Google Scholar] [CrossRef]
- Genther-Schroeder, O.N.; Branine, M.E.; Hansen, S.L. The effects of increasing supplementation of zinc-amino acid complex on growth performance, carcass characteristics, and inflammatory response of beef cattle fed ractopamine hydrochloride. J. Anim. Sci. 2016, 94, 3389–3398. [Google Scholar] [CrossRef]
- Chirase, N.K.; Hutcheson, D.P.; Thompson, G.B. Feed intake, rectal temperature, and serum mineral concentrations of feedlot cattle fed zinc oxide or zinc methionine and challenged with infectious bovine rhinotracheitis virus4. J. Anim. Sci. 1991, 69, 4137–4145. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.-J.; Li, Z.-P.; Wang, J.-H.; Xing, X.-M.; Wang, Z.-Y.; Wang, L.; Wang, Z.-H. Effects of chelated Zn/Cu/Mn on redox status, immune responses and hoof health in lactating Holstein cows. J. Vet. Sci. 2015, 16, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Al-Qaisi, M.; Horst, E.A.; Mayorga, E.J.; Goetz, B.M.; Abeyta, M.A.; Yoon, I.; Timms, L.L.; Appuhamy, J.A.; Baumgard, L.H. Effects of a Saccharomyces cerevisiae fermentation product on heat-stressed dairy cows. J. Dairy Sci. 2020, 103, 9634–9645. [Google Scholar] [CrossRef]
- Burton, J.L.; McBride, B.W.; Kennedy, B.W.; Burton, J.H.; Elsasser, T.H.; Woodward, B. Serum Immunoglobulin Profiles of Dairy Cows Chronically Treated with Recombinant Bovine Somatotropin. J. Dairy Sci. 1991, 74, 1589–1598. [Google Scholar] [CrossRef]
- Cope, C.M.; Mackenzie, A.M.; Wilde, D.; Sinclair, L.A. Effects of level and form of dietary zinc on dairy cow performance and health. J. Dairy Sci. 2009, 92, 2128–2135. [Google Scholar] [CrossRef]
- Tyrrell, H.F.; Reid, J.T. Prediction of the Energy Value of Cow’s Milk1, 2. J. Dairy Sci. 1965, 48, 1215–1223. [Google Scholar] [CrossRef]
- Lykkesfeldt, J.; Svendsen, O. Oxidants and antioxidants in disease: Oxidative stress in farm animals. Vet. J. 2007, 173, 502–511. [Google Scholar] [CrossRef]
- Rabiee, A.R.; Lean, I.J.; Stevenson, M.A.; Socha, M.T. Effects of feeding organic trace minerals on milk production and reproductive performance in lactating dairy cows: A meta-analysis. J. Dairy Sci. 2010, 93, 4239–4251. [Google Scholar] [CrossRef] [PubMed]
- Overton, T.R.; Yasui, T. Practical applications of trace minerals for dairy cattle1,2. J. Anim. Sci. 2014, 92, 416–426. [Google Scholar] [CrossRef]
- Allahyari, S.; Chaji, M.; Mamuie, M. Investigation changes in production, some blood hormones, and metabolites, serum and colostrum IgG of calves of Holstein cows fed with two levels of zinc supplement in transitional period. J. Appl. Anim. Res. 2019, 47, 440–448. [Google Scholar] [CrossRef]
- Kelleher, S.L.; Seo, Y.A.; Lopez, V. Mammary gland zinc metabolism: Regulation and dysregulation. Genes Nutr. 2009, 4, 83–94. [Google Scholar] [CrossRef]
- Permyakov, E.A.; Berliner, L.J. α-Lactalbumin: Structure and function. FEBS Lett. 2000, 473, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Barker, S.; Knutson, M.D. Iron and manganese transport in mammalian systems. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 118890. [Google Scholar] [CrossRef] [PubMed]
- Middleton, J.R.; Hardin, D.; Steevens, B.; Randle, R.; Tyler, J.W. Use of somatic cell counts and California mastitis test results from individual quarter milk samples to detect subclinical intramammary infection in dairy cattle from a herd with a high bulk tank somatic cell count. J. Am. Vet. Med. Assoc. 2004, 224, 419–423. [Google Scholar] [CrossRef]
- Kaşikçi, G.; Çetin, Ö.; Bingol, E.B.; Gündüz, M. Relations between electrical conductivity, somatic cell count, California mastitis test and some quality parameters in the diagnosis of subclinical mastitis in dairy cows. Turk. J. Vet. Anim. Sci. 2012, 36, 49–55. [Google Scholar] [CrossRef]
- Nyman, A.-K.; Emanuelson, U.; Waller, K.P. Diagnostic test performance of somatic cell count, lactate dehydrogenase, and N-acetyl-β-d-glucosaminidase for detecting dairy cows with intramammary infection. J. Dairy Sci. 2016, 99, 1440–1448. [Google Scholar] [CrossRef]
- Cook-Mills, J.M.; Fraker, P.J. Functional capacity of the residual lymphocytes from zinc-deficient adult mice. Br. J. Nutr. 1993, 69, 835–848. [Google Scholar] [CrossRef] [PubMed]
- Weng, X.; Monteiro, A.P.A.; Guo, J.; Li, C.; Orellana, R.M.; Marins, T.N.; Bernard, J.K.; Tomlinson, D.J.; DeFrain, J.M.; Wohlgemuth, S.E.; et al. Effects of heat stress and dietary zinc source on performance and mammary epithelial integrity of lactating dairy cows. J. Dairy Sci. 2018, 101, 2617–2630. [Google Scholar] [CrossRef] [PubMed]
- Parkash, S.; Jenness, R. Status of Zinc in Cow’s Milk1. J. Dairy Sci. 1967, 50, 127–134. [Google Scholar] [CrossRef]
- Miller, W.J. Zinc Nutrition of Cattle: A Review1. J. Dairy Sci. 1970, 53, 1123–1135. [Google Scholar] [CrossRef]
- Spolders, M.; Höltershinken, M.; Meyer, U.; Rehage, J.; Flachowsky, G. Assessment of Reference Values for Copper and Zinc in Blood Serum of First and Second Lactating Dairy Cows. Vet. Med. Int. 2010, 2010, 194656. [Google Scholar] [CrossRef]
- Horst, E.A.; Kvidera, S.K.; Baumgard, L.H. Invited review: The influence of immune activation on transition cow health and performance—A critical evaluation of traditional dogmas. J. Dairy Sci. 2021, 104, 8380–8410. [Google Scholar] [CrossRef]
- Wessels, I.; Maywald, M.; Rink, L. Zinc as a Gatekeeper of Immune Function. Nutrients 2017, 9, 1286. [Google Scholar] [CrossRef]
- DePasquale-Jardieu, P.; Fraker, P.J. Interference in the Development of a Secondary Immune Response in Mice by Zinc Deprivation: Persistence of Effects. J. Nutr. 1984, 114, 1762–1769. [Google Scholar] [CrossRef] [PubMed]
- Keen, C.L.; Gershwin, M.E. Zinc Deficiency and Immune Function. Annu. Rev. Nutr. 1990, 10, 415–431. [Google Scholar] [CrossRef] [PubMed]
- Ibs, K.-H.; Rink, L. Zinc-Altered Immune function. J. Nutr. 2003, 133, 1452S–1456S. [Google Scholar] [CrossRef]
- Kurosaki, T.; Kometani, K.; Ise, W. Memory B cells. Nat. Rev. Immunol. 2015, 15, 149–159. [Google Scholar] [CrossRef]
- Bartlett, J.R.; Smith, M.O. Effects of different levels of zinc on the performance and immunocompetence of broilers under heat stress. Poult. Sci. 2003, 82, 1580–1588. [Google Scholar] [CrossRef]
- Dresler, S.; Illek, J.; Zeman, L. Effects of organic zinc supplementation in weaned calves. Acta Vet. Brno 2016, 85, 49–54. [Google Scholar] [CrossRef]
- Wang, Q.; Ying, J.; Zou, P.; Zhou, Y.; Wang, B.; Yu, D.; Li, W.; Zhan, X. Effects of Dietary Supplementation of Humic Acid Sodium and Zinc Oxide on Growth Performance, Immune Status and Antioxidant Capacity of Weaned Piglets. Animals 2020, 10, 2104. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Li, Y.; Shen, Y.; Guo, Y.; Zhao, X.; Li, Q.; Cao, Y.; Zhang, X.; Li, Y.; Wang, Z.; et al. Effects of prepartum zinc-methionine supplementation on feed digestibility, rumen fermentation patterns, immunity status, and passive transfer of immunity in dairy cows. J. Dairy Sci. 2020, 103, 8976–8985. [Google Scholar] [CrossRef]
- Chandra, G.; Aggarwal, A.; Kumar, M.; Singh, A.K.; Sharma, V.K.; Upadhyay, R.C. Effect of additional vitamin E and zinc supplementation on immunological changes in peripartum Sahiwal cows. J. Anim. Physiol. Anim. Nutr. 2014, 98, 1166–1175. [Google Scholar] [CrossRef]
- Marreiro, D.D.; Cruz, K.J.; Morais, J.B.; Beserra, J.B.; Severo, J.S.; De Oliveira, A.R. Zinc and Oxidative Stress: Current Mechanisms. Antioxidants 2017, 6, 24. [Google Scholar] [CrossRef]
- Wilking, M.; Ndiaye, M.; Mukhtar, H.; Ahmad, N. Circadian Rhythm Connections to Oxidative Stress: Implications for Human Health. Antioxid. Redox Signal. 2013, 19, 192–208. [Google Scholar] [CrossRef] [PubMed]
- Castillo, C.; Hernández, J.; Valverde, I.; Pereira, V.; Sotillo, J.; Alonso, M.L.; Benedito, J.L. Plasma malonaldehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Res. Vet. Sci. 2006, 80, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.R. Critical Role of Zinc as Either an Antioxidant or a Prooxidant in Cellular Systems. Oxid. Med. Cell. Longev. 2018, 2018, 9156285. [Google Scholar] [CrossRef] [PubMed]
Item | Value |
---|---|
Ingredient composition, % of DM | |
Corn silage | 42.73 |
Alfalfa hay | 12.75 |
Ground corn | 17.13 |
Corn gluten feed | 8.65 |
Expeller soybean | 4.59 |
Soybean meal | 4.41 |
Straw | 1.24 |
Concentrate premix 1 | 8.49 |
Nutrient composition (% of DM, unless otherwise mentioned) | |
DM (% as-fed) | 52.50 |
Starch | 26.97 |
CP | 15.33 |
NDF | 31.23 |
ADF | 20.50 |
Ether extract | 4.05 |
Ca | 0.94 |
P | 0.38 |
Mg | 0.34 |
K | 1.51 |
Na | 0.58 |
Fe (mg/kg DM) | 375.33 |
Mn (mg/kg DM) | 64.00 |
Zn-methionine (mg/kg DM) | 76.00 |
Total Zn (mg/kg DM) 2 | 108.20 |
Cu (mg/kg DM) | 14.00 |
NEL (Mcal/kg of DM) | 1.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oconitrillo, M.; Wickramasinghe, J.; Omale, S.; Beitz, D.; Appuhamy, R. Effects of Elevating Zinc Supplementation on the Health and Production Parameters of High-Producing Dairy Cows. Animals 2024, 14, 395. https://doi.org/10.3390/ani14030395
Oconitrillo M, Wickramasinghe J, Omale S, Beitz D, Appuhamy R. Effects of Elevating Zinc Supplementation on the Health and Production Parameters of High-Producing Dairy Cows. Animals. 2024; 14(3):395. https://doi.org/10.3390/ani14030395
Chicago/Turabian StyleOconitrillo, Maria, Janaka Wickramasinghe, Shedrack Omale, Donald Beitz, and Ranga Appuhamy. 2024. "Effects of Elevating Zinc Supplementation on the Health and Production Parameters of High-Producing Dairy Cows" Animals 14, no. 3: 395. https://doi.org/10.3390/ani14030395
APA StyleOconitrillo, M., Wickramasinghe, J., Omale, S., Beitz, D., & Appuhamy, R. (2024). Effects of Elevating Zinc Supplementation on the Health and Production Parameters of High-Producing Dairy Cows. Animals, 14(3), 395. https://doi.org/10.3390/ani14030395